地理学报 ›› 2021, Vol. 76 ›› Issue (9): 2297-2311.doi: 10.11821/dlxb202109018
收稿日期:
2020-08-11
修回日期:
2021-04-20
出版日期:
2021-09-25
发布日期:
2021-11-25
通讯作者:
角媛梅(1972-), 女, 云南马龙人, 博士, 博士生导师, 教授, 主要从事景观生态学研究。E-mail: ymjiao@sina.com作者简介:
刘志林(1990-), 男, 宁夏吴忠人, 博士生, 主要从事自然环境要素、耕地、聚落景观演变及效应研究。E-mail: zhilin2015@foxmail.com
基金资助:
LIU Zhilin(), DING Yinping, JIAO Yuanmei(
)
Received:
2020-08-11
Revised:
2021-04-20
Published:
2021-09-25
Online:
2021-11-25
Supported by:
摘要:
全球气候变化背景下,降水格局改变食物供给将是人类当前和未来所面临的重大挑战,但很少有研究揭示食物供给随降水格局变化的关系。研究中国西南、东南季风共同作用区的降水与食物供给变化,对厘清该区降水与食物供给的动态关系、实现区域粮食安全、保障西南边疆稳定、落实区域民族政策、建成全面小康社会等具有重要意义。文章以中国西南地区的云南省为例,刻画了1988—2018年降水变化格局,并探讨了其对食物产量的影响。结果表明:① 云南省降水时间格局分为:Ⅰ降水丰沛期(1988—2004年)、Ⅱ降水偏少期(2005—2015年)、Ⅲ降水恢复期(2016—2018年)等3个降水时段;② 第Ⅰ~Ⅱ时段,全省降水发生显著变化区域为15.07%,第Ⅱ~Ⅲ时段为13.87%,第Ⅰ~Ⅲ时段为16.53%;③ 全省水平上,降水与食物产量具有显著正相关关系(p<0.01),且粮食产量与各时间段降水相关系数高于肉奶产量;④ 当降水≥1500 mm时降水量快速下降,粮食产量保持稳定、700~1500 mm时降水量与粮食产量同为小幅下降、≤ 700 mm时降水量小幅下降,粮食产量大幅波动下降。总体而言,1988—2018年云南省降水格局发生了明显的变化,且在不同区域对食物供给产生了显著影响,故亟待划分全省范围的食物产量对降水响应的空间区划,以此来应对日益加剧的降水格局变化。
刘志林, 丁银平, 角媛梅. 中国西南—东南季风交汇区降水时空格局变化及其对食物产量的影响[J]. 地理学报, 2021, 76(9): 2297-2311.
LIU Zhilin, DING Yinping, JIAO Yuanmei. Spatiotemporal patterns of precipitation changes and their impacts on food supply in Southwest China from 1988 to 2018: A case study in Yunnan Province[J]. Acta Geographica Sinica, 2021, 76(9): 2297-2311.
[1] | Barros V R, Field C B, Dokken D J, et al. Climate Change 2014: Impacts, Adaptation and Vulnerability. Cambridge: Cambridge University Press, 2014. |
[2] |
Zampieri M, Ceglar A, Dentener F, et al. When will current climate extremes affecting maize production become the norm? Earth's Future, 2019, 7(2): 113-122.
doi: 10.1029/2018EF000995 |
[3] |
Miralles D G, Gentine P, Seneviratne S I, et al. Land-atmospheric feedbacks during droughts and heatwaves: State of the science and current challenges. Annals of the New York Academy of Sciences, 2019, 1436(1): 19-35.
doi: 10.1111/nyas.13912 pmid: 29943456 |
[4] |
Kahiluoto H, Kaseva J, Balek J, et al. Decline in climate resilience of European wheat. PNAS, 2019, 116(1): 123-128.
doi: 10.1073/pnas.1804387115 pmid: 30584094 |
[5] |
Pendergrass A G. What precipitation is extreme? Science, 2018, 360(6393): 1072-1073.
doi: 10.1126/science.aat1871 pmid: 29880673 |
[6] |
Ault T R. On the essentials of drought in a changing climate. Science, 2020, 368(6488): 256-260.
doi: 10.1126/science.aaz5492 |
[7] |
Hu T, van Dijk A I J M, Renzullo L J, et al. On agricultural drought monitoring in Australia using Himawari-8 geostationary thermal infrared observations. International Journal of Applied Earth Observation and Geoinformation, 2020, 91: 102153. DOI: 10.1016/j.jag.2020.102153.
doi: 10.1016/j.jag.2020.102153 |
[8] |
Chen S A, Michaelides K, Grieve S W D, et al. Aridity is expressed in river topography globally. Nature, 2019, 573(7775): 573-577.
doi: 10.1038/s41586-019-1558-8 |
[9] |
Konapala G, Mishra A K, Wada Y, et al. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nature Communications, 2020, 11(1): 3044. DOI: 10.1038/s41467-020-16757-w.
doi: 10.1038/s41467-020-16757-w pmid: 32576822 |
[10] |
Valmassoi A, Dudhia J, Di Sabatino S, et al. Irrigation impact on precipitation during a heatwave event using WRF-ARW: The summer 2015 Po Valley case. Atmospheric Research, 2020, 241: 104951. DOI: 10.1016/j.atmosres.2020.104951.
doi: 10.1016/j.atmosres.2020.104951 |
[11] |
Blöschl G, Hall J, Viglione A, et al. Changing climate both increases and decreases European river floods. Nature, 2019, 573(7772): 108-111.
doi: 10.1038/s41586-019-1495-6 |
[12] |
Nyström M, Jouffray J B, Norström A V, et al. Anatomy and resilience of the global production ecosystem. Nature, 2019, 575(7781): 98-108.
doi: 10.1038/s41586-019-1712-3 |
[13] |
Sadri S, Pan M, de Wada Y, et al. A global near-real-time soil moisture index monitor for food security using integrated SMOS and SMAP. Remote Sensing of Environment, 2020, 246: 111864. DOI: 10.1016/j.rse.2020.111864.
doi: 10.1016/j.rse.2020.111864 |
[14] |
Knutti R, Sedláček J. Robustness and uncertainties in the new CMIP5 climate model projections. Nature Climate Change, 2013, 3(4): 369-373.
doi: 10.1038/nclimate1716 |
[15] |
Chadwick R, Boutle I, Martin G. Spatial patterns of precipitation change in CMIP5: Why the rich do not get richer in the tropics. Journal of Climate, 2013, 26(11): 3803-3822.
doi: 10.1175/JCLI-D-12-00543.1 |
[16] |
Polade S D, Pierce D W, Cayan D R, et al. The key role of dry days in changing regional climate and precipitation regimes. Scientific Reports, 2014, 4(1): 4364. DOI: 10.1038/srep04364.
doi: 10.1038/srep04364 |
[17] |
Kumar S, Lawrence D M, Dirmeyer P A, et al. Less reliable water availability in the 21st century climate projections. Earth's Future, 2014, 2(3): 152-160.
doi: 10.1002/2013EF000159 |
[18] |
Sillmann J, Kharin V V, Zwiers F W, et al. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. Journal of Geophysical Research: Atmospheres, 2013, 118(6): 2473-2493.
doi: 10.1002/jgrd.v118.6 |
[19] |
Kharin V V, Zwiers F W, Zhang X, et al. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 2013, 119(2): 345-357.
doi: 10.1007/s10584-013-0705-8 |
[20] | Li Qifen, Wu Zhehong, Wang Xingju, et al. The characteristics of summer precipitation in China since 1981 and its relationship with SST and pre-circulation. Plateau Meteorology, 2020, 39(1): 58-67. |
[李启芬, 吴哲红, 王兴菊, 等. 1981年以来中国夏季降水变化特征及其与SST和前期环流的联系. 高原气象, 2020, 39(1): 58-67.] | |
[21] | Zhang Zhao, Chen Baorui, Xin Xiaoping. Variations of temperature and precipittion pattern in Hulunber grassland from 1960 to 2015. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(12): 121-128. |
[张钊, 陈宝瑞, 辛晓平. 1960—2015年呼伦贝尔草原气温和降水格局变化特征. 中国农业资源与区划, 2018, 39(12): 121-128.] | |
[22] | Shi Yafeng, Shen Yongping, Li Dongliang, et al. Discussion on the present climate change from warm-dry to warm wet in northwest China. Quaternary Sciences, 2003, 23(2): 152-164. |
[施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨. 第四纪研究, 2003, 23(2): 152-164.] | |
[23] |
Hulme M. Recent climatic change in the world's drylands. Geophysical Research Letters, 1996, 23(1): 61-64.
doi: 10.1029/95GL03586 |
[24] | Cao Yan, Wang Jie, Huang Ying, et al. Research on spatial and temporal variation characteristics of climate dry-wet status in Yunnan province. Water Resources and Power, 2017, 35(8): 6-9, 22. |
[曹言, 王杰, 黄英, 等. 云南省气候干湿状况时空变化特征研究. 水电能源科学, 2017, 35(8): 6-9, 22.] | |
[25] |
Gornall J, Betts R, Burke E, et al. Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365(1554): 2973-2989.
doi: 10.1098/rstb.2010.0158 |
[26] |
Challinor A J, Watson J, Lobell D B, et al. A meta-analysis of crop yield under climate change and adaptation. Nature Climate Change, 2014, 4(4): 287-291.
doi: 10.1038/nclimate2153 |
[27] |
Knapp A K, Fay P A, Blair J M, et al. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science, 2002, 298(5601): 2202-2205.
pmid: 12481139 |
[28] | Lv Guangde, Wang Chao, Jin Xuemei, et al. Effects of water-nitrogen interaction on dry matter, nitrogen accumulation and yield of winter wheat. Chinese Journal of Applied Ecology, 2020, 31(8): 2593-2603. |
[吕广德, 王超, 靳雪梅, 等. 水氮组合对冬小麦干物质及氮素积累和产量的影响. 应用生态学报, 2020, 31(8): 2593-2603.] | |
[29] | Chao Manning, Shi Xinyue, Zhang Jianlong, et al. Effects of persistent drought at grain filling stage on flag leaf photosynthesis,antioxidant enzyme activity, grain yield and quality of wheat. Journal of Triticeae Crops, 2020, 40(4): 494-502. |
[晁漫宁, 史新月, 张健龙, 等. 灌浆期持续干旱对小麦光合、抗氧化酶活性、籽粒产量和品质的影响. 麦类作物学报, 2020, 40(4): 494-502.] | |
[30] | Li Hongwei, Jiang Yanping, Jia Shuangjie, et al. Research progress on drought stress affecting ear and tassel development of maize. Journal of Maize Sciences, 2020, 28(2): 90-95. |
[李红伟, 江艳平, 贾双杰, 等. 干旱胁迫影响玉米穗发育的研究进展. 玉米科学, 2020, 28(2): 90-95.] | |
[31] | Yang Zhe, Tang Caibao, Qian Jingya, et al. Effects of exogenous 6-BA and BR on photosynthetic pigment content and antioxidant system of rice in tillering stage under drought stress. Molecular Plant Breeding, 2021, 19(8): 2733-2739. |
[杨喆, 唐才宝, 钱婧雅, 等. 外源6-BA和BR对干旱胁迫下水稻分蘖期光合色素含量及抗氧化系统的影响. 分子植物育种, 2021, 19(8): 2733-2739.] | |
[32] | Wang Fuxiang, Xiao Kaizhuang, Jiang Shenfei, et al. Mechanisms of reactive oxygen species in plants under drought stress. Chinese Science Bulletin, 2019, 64(17): 1765-1779. |
[王福祥, 肖开转, 姜身飞, 等. 干旱胁迫下植物体内活性氧的作用机制. 科学通报, 2019, 64(17): 1765-1779.] | |
[33] | Yunnan Provincial Bureau of Statistics. Yunan Statistical Yearbook. Beijing: China Statistics Press, 2019: 122-134. |
[云南省统计局. 云南统计年鉴. 北京: 中国统计出版社, 2019: 122-134.] | |
[34] |
He J, Yang K, Tang W, et al. The first high-resolution meteorological forcing dataset for land process studies over China. Scientific Data, 2020, 25(7). DOI: 10.1038/s41597-020-0369-y.
doi: 10.1038/s41597-020-0369-y |
[35] |
Yang Kun, He Jie. China meteorological forcing dataset (1979-2018). National Tibetan Plateau Data Center, 2019. DOI: 10.11888/AtmosphericPhysics.tpe.249369.file. CSTR: 18406.11.AtmosphericPhysics.tpe.249369.file.
doi: 10.11888/AtmosphericPhysics.tpe.249369.file. CSTR: 18406.11.AtmosphericPhysics.tpe.249369.file |
[阳坤, 何杰. 中国区域高时空分辨率地面气象要素驱动数据集(1979—2018). 国家青藏高原科学数据中心, 2019. DOI: 10.11888/AtmosphericPhysics.tpe.249369.file. CSTR: 18406.11.AtmosphericPhysics.tpe.249369.file.]
doi: 10.11888/AtmosphericPhysics.tpe.249369.file. CSTR: 18406.11.AtmosphericPhysics.tpe.249369.file |
|
[36] | Zhao Wenliang, He Zhen, He Junping, et al. Remote sensing estimation for winter wheat yield in Henan based on the MODIS-NDVI data. Geographical Research, 2012, 31(12): 2310-2320. |
[赵文亮, 贺振, 贺俊平, 等. 基于MODIS-NDVI的河南省冬小麦产量遥感估测. 地理研究, 2012, 31(12): 2310-2320.] | |
[37] |
Peng J, Hu X, Wang X, et al. Simulating the impact of Grain-for-Green Programme on ecosystem services trade-offs in Northwestern Yunnan, China. Ecosystem Services, 2019, 39: 1-9. DOI: 10.1016/j.ecoser.2019.100998.
doi: 10.1016/j.ecoser.2019.100998 |
[38] |
Wu Wenhuan, Peng Jian, Liu Yanxu, et al. Tradeoffs and synergies between ecosystem services in Ordos City. Progress in Geography, 2017, 36(12): 1571-1581.
doi: 10.18306/dlkxjz.2017.12.012 |
[武文欢, 彭建, 刘焱序, 等. 鄂尔多斯市生态系统服务权衡与协同分析. 地理科学进展, 2017, 36(12): 1571-1581.] | |
[39] | Ru Xiaoya, Li Guang, Chen Guopeng, et al. Regulation effects of water and nitrogen on wheat yield and biomass in different precipitation years. Acta Agronomica Sinica, 2019, 45(11): 1725-1734. |
[茹晓雅, 李广, 陈国鹏, 等. 不同降水年型下水氮调控对小麦产量及生物量的影响. 作物学报, 2019, 45(11): 1725-1734.] | |
[40] | Han Fangyu, Zhang Junbiao, Cheng Linlin, et al. Impact of climate change on rice yield and its regional heterogeneity in China. Journal of Ecology and Rural Environment, 2019, 35(3): 283-289. |
[韩芳玉, 张俊飚, 程琳琳, 等. 气候变化对中国水稻产量及其区域差异性的影响. 生态与农村环境学报, 2019, 35(3): 283-289.] | |
[41] | Ji Jinghua, Huo Zhiguo, Tang Lisheng, et al. Waterlogging effects on the morphological, physiological characteristics and yield of fresh eating maize. Journal of Maize Sciences, 2016, 24(3): 85-91. |
[姬静华, 霍治国, 唐力生, 等. 鲜食玉米形态特征、生理特性及产量对淹水的响应. 玉米科学, 2016, 24(3): 85-91.] | |
[42] | Li Caixia, Zhou Xinguo, Wang Hezhou, et al. Root zone soil temperature and grain filling progress of winter wheat under water flooding at grain filling stage. Journal of Triticeae Crops, 2013, 33(6): 1232-1236. |
[李彩霞, 周新国, 王和州, 等. 小麦花后淹水胁迫对根区土温及籽粒灌浆的影响. 麦类作物学报, 2013, 33(6): 1232-1236.] | |
[43] | Zhu Haixia, Jiang Lixia, Lv Jiajia, et al. Effect of waterlogging stress on yield components for rice of frigid region. Journal of Natural Disasters, 2019, 28(5): 198-206. |
[朱海霞, 姜丽霞, 吕佳佳, 等. 淹水胁迫对寒地水稻产量构成因子的作用. 自然灾害学报, 2019, 28(5): 198-206.] | |
[44] | Wang Ji, Li Fenghai, Lv Xiangling, et al. Physiological response of waxy corn near-isogenic lines to waterlogging. Journal of Maize Sciences, 2018, 26(5): 65-70. |
[王吉, 李凤海, 吕香玲, 等. 淹水对糯玉米耐涝性差异近等基因系生理指标的影响. 玉米科学, 2018, 26(5): 65-70.] | |
[45] | Zhang Jinyan, Li Xiaoquan, Zhang Tan. The characteristics of weather yield for global crop and its relationship with precipitation. Quarterly Journal of Applied Meteorology, 1999, 10(3): 327-332. |
[张金艳, 李小泉, 张镡. 全球粮食气象产量及其与降水量变化的关系. 应用气象学报, 1999, 10(3): 327-332.] | |
[46] |
Qi Wei, Zhang Jiwang, Wang Kongjun, et al. Effects of drought stress on the grain yield and root physiological traits of maize varieties with different drought tolerance. Chinese Journal of Applied Ecology, 2010, 21(1): 48-52.
pmid: 20387422 |
[齐伟, 张吉旺, 王空军, 等. 干旱胁迫对不同耐旱性玉米杂交种产量和根系生理特性的影响. 应用生态学报, 2010, 21(1): 48-52.]
pmid: 20387422 |
|
[47] |
Fang Chuanglin, Liu Haimeng, Luo Kui, et al. Comprehensive regionalization of human geography in China. Acta Geographica Sinica, 2017, 72(2): 179-196.
doi: 10.11821/dlxb201702001 |
[方创琳, 刘海猛, 罗奎, 等. 中国人文地理综合区划. 地理学报, 2017, 72(2): 179-196.] | |
[48] |
Shen Yuancun, Wang Xiuhong, Cheng Weiming, et al. Integrated physical regionalization of stony deserts in China. Progress in Geography, 2016, 35(1): 57-66.
doi: 10.18306/dlkxjz.2016.01.007 |
[申元村, 王秀红, 程维明, 等. 中国戈壁综合自然区划研究. 地理科学进展, 2016, 35(1): 57-66.] | |
[49] | Zheng Du, Ge Quansheng, Zhang Xueqin, et al. Regionalization in China: Retrospect and prospect. Geographical Research, 2005, 24(3): 330-344. |
[郑度, 葛全胜, 张雪芹, 等. 中国区划工作的回顾与展望. 地理研究, 2005, 24(3): 330-344.] |
[1] | 丁锐, 史文娇. 1993—2017年气候变化对西藏谷物单产的定量影响[J]. 地理学报, 2021, 76(9): 2174-2186. |
[2] | 徐志伟, 鹿化煜. 毛乌素沙地风沙环境变化研究的理论和新认识[J]. 地理学报, 2021, 76(9): 2203-2223. |
[3] | 蔡兴冉, 李忠勤, 张慧, 徐春海. 中国天山冰川变化脆弱性研究[J]. 地理学报, 2021, 76(9): 2253-2268. |
[4] | 鲍锟山, 杨婷, 肖湘, 贾琳, 王国平, 沈吉. 基于泥炭记录的过去150 a东北山地大气粉尘沉降[J]. 地理学报, 2021, 76(9): 2283-2296. |
[5] | 牟奎南, 宫兆宁, 邱华昌. 黄河三角洲潮沟网络形态特征的时空分异规律及其发育过程[J]. 地理学报, 2021, 76(9): 2312-2328. |
[6] | 邓楚雄, 赵浩, 谢炳庚, 李忠武, 李科. 土地资源错配对中国城市工业绿色全要素生产率的影响[J]. 地理学报, 2021, 76(8): 1865-1881. |
[7] | 龚胜生, 李孜沫, 谢海超, 王晓伟, 张涛, 石国宁, 陈发虎. 中国3000年疫灾流行的时空特征及其影响因素[J]. 地理学报, 2021, 76(8): 1976-1996. |
[8] | 陈明星, 先乐, 王朋岭, 丁子津. 气候变化与多维度可持续城市化[J]. 地理学报, 2021, 76(8): 1895-1909. |
[9] | 尹云鹤, 马丹阳, 邓浩宇, 吴绍洪. 中国北方干湿过渡区生态系统生产力的气候变化风险评估[J]. 地理学报, 2021, 76(7): 1605-1617. |
[10] | 李程, 庄大方, 何剑锋, 文可戈. 东西伯利亚苔原—泰加林过渡带植被遥感物候时空特征及其对气温变化的响应[J]. 地理学报, 2021, 76(7): 1634-1648. |
[11] | 高吉喜, 刘晓曼, 王超, 王勇, 付卓, 侯鹏, 吕娜. 中国重要生态空间生态用地变化与保护成效评估[J]. 地理学报, 2021, 76(7): 1708-1721. |
[12] | 方修琦, 何凡能, 吴致蕾, 郑景云. 过去2000年中国农耕区拓展与垦殖率变化基本特征[J]. 地理学报, 2021, 76(7): 1732-1746. |
[13] | 王涛, 刘承良, 杜德斌. 1948—2018年国际河流跨境水冲突的时空演化规律[J]. 地理学报, 2021, 76(7): 1792-1809. |
[14] | 李萌, 袁文, 袁武, 牛方曲, 李汉青, 胡段牧. 基于新闻大数据的北极地区地缘关系研究[J]. 地理学报, 2021, 76(5): 1090-1104. |
[15] | 胡畔, 陈波, 史培军. 中国暴雨洪涝灾情时空格局及影响因素[J]. 地理学报, 2021, 76(5): 1148-1162. |