地理学报 ›› 2021, Vol. 76 ›› Issue (9): 2224-2239.doi: 10.11821/dlxb202109013
收稿日期:
2020-06-20
修回日期:
2021-02-26
出版日期:
2021-09-25
发布日期:
2021-11-25
通讯作者:
杨小平(1964-), 男, 宁夏固原人, 教授, 博士生导师, 主要从事沙漠地貌、干旱区环境演变、荒漠化及风沙灾害防治、干旱地区古气候与水资源、绿洲演化等方面的研究。E-mail: xpyang@zju.edu.cn作者简介:
任孝宗(1983-), 男, 甘肃人, 博士, 副教授, 研究方向为水化学、水文地球化学。E-mail: renxzmail@126.com
基金资助:
REN Xiaozong1(), YANG Xiaoping2(
)
Received:
2020-06-20
Revised:
2021-02-26
Published:
2021-09-25
Online:
2021-11-25
Supported by:
摘要:
天然水体水化学组成及其成因分析既有助于重塑和预测区域水文地质环境及水文地球化学发展历史,也是水资源评价的基础。本文基于鄂尔多斯沙区天然水体水化学数据和前人在该地区的研究成果,利用多种水化学分析方法,对该地区天然水体的水化学组成及其成因进行分析。结果表明:鄂尔多斯沙区毛乌素沙地和库布齐沙漠虽然具有不同的沙漠景观,但其相同类型的天然水体具有相似的水化学性质和成因,该现象的出现可能和两者具有相似的蒸发量有关。鄂尔多斯沙区受蒸发影响较小的深层地下水水化学类型以Ca2+-HCO3-型为主,其水化学组成主要受控于岩石风化;湖水蒸发较强烈,水化学类型为Na+-Cl-型,其水化学组成主要受控于蒸发—结晶过程的影响;浅层地下水和河水的水化学类型及其成因均处于两者之间,具有过渡特征。离子比例关系显示,蒸发岩风化、碳酸盐岩风化和硅酸盐岩风化在不同程度上影响着深层地下水、浅层地下水和河水的水化学组成。鄂尔多斯沙区地下水和河水虽然能满足灌溉水要求,但由于蒸发强烈,长期使用可能会引起盐碱化。本研究结果可为区域水资源可持续开发利用提供科学依据。
任孝宗, 杨小平. 鄂尔多斯沙区天然水体水化学组成及其成因[J]. 地理学报, 2021, 76(9): 2224-2239.
REN Xiaozong, YANG Xiaoping. Hydrochemical compositions of natural waters inOrdos Deserts and their influencing factors[J]. Acta Geographica Sinica, 2021, 76(9): 2224-2239.
表1
天然水体的水化学综合指标及离子含量
区域 | 样品号 | 样品类型 | pH | Eh | EC | TDS | SAL | F- | Cl- | NO3- | SO42- | CO32- | HCO3- | Na+ | NH4+ | K+ | Mg2+ | Ca2+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
毛乌素沙地 | ms1 | 泉水 | 7.14 | -34 | 922 | 491 | 0.5 | 1.07 | 46.36 | 2.51 | 66.78 | 0.00 | 416.13 | 99.29 | 2.22 | 1.01 | 28.56 | 43.37 |
mr1 | 河水 | 8.10 | -87 | 339 | 180 | 0.2 | 0.12 | 7.94 | 0.26 | 10.39 | 0.00 | 162.45 | 9.17 | 1.01 | 1.77 | 7.16 | 46.52 | |
mr2 | 河水 | 8.48 | -108 | 1060 | 560 | 0.6 | 0.73 | 152.15 | 1.80 | 63.79 | 0.00 | 337.40 | 105.39 | 2.25 | 6.91 | 30.24 | 37.74 | |
mr3 | 河水 | 7.91 | -77 | 688 | 367 | 0.4 | 0.75 | 37.86 | 0.41 | 23.00 | 0.00 | 323.65 | 48.93 | 1.94 | 4.89 | 22.96 | 46.48 | |
mr4 | 河水 | 7.58 | -62 | 573 | 305 | 0.3 | 0.43 | 52.32 | 1.69 | 31.09 | 0.00 | 226.18 | 41.33 | 2.33 | 2.11 | 25.83 | 35.78 | |
mg1 | 深层地下水 | 7.58 | -57 | 357 | 190 | 0.2 | 0.23 | 7.13 | 0.19 | 14.11 | 0.00 | 186.19 | 8.03 | 0.71 | 1.57 | 8.93 | 44.22 | |
mg2 | 深层地下水 | 7.21 | -38 | 1090 | 500 | 0.6 | 1.09 | 8.42 | 0.03 | 41.04 | 0.00 | 581.08 | 9.85 | 1.43 | 4.17 | 60.04 | 76.34 | |
mg3 | 浅层地下水 | 7.00 | -26 | 1230 | 660 | 0.8 | 0.21 | 147.70 | 150.42 | 25.62 | 0.00 | 74.98 | 28.95 | 2.03 | 5.35 | 28.51 | 119.14 | |
mg4 | 深层地下水 | 7.57 | -58 | 539 | 287 | 0.3 | 0.47 | 50.85 | 19.84 | 24.42 | 0.00 | 133.71 | 25.83 | 1.36 | 2.85 | 12.32 | 47.93 | |
mg5 | 浅层地下水 | 8.71 | -118 | 472 | 251 | 0.3 | 0.38 | 17.86 | 0.24 | 31.99 | 0.00 | 163.45 | 78.55 | 3.03 | 1.39 | 4.28 | 5.31 | |
mg6 | 深层地下水 | 7.79 | -68 | 529 | 281 | 0.3 | 0.32 | 21.57 | 16.68 | 48.59 | 0.00 | 136.21 | 18.15 | 1.15 | 1.83 | 11.15 | 67.51 | |
mg7 | 深层地下水 | 7.79 | -68 | 316 | 167 | 0.0 | 0.21 | 6.34 | 3.21 | 9.07 | 0.00 | 134.96 | 13.72 | 1.61 | 2.65 | 10.36 | 35.39 | |
mg8 | 深层地下水 | 7.67 | -62 | 389 | 206 | 0.2 | 0.23 | 28.54 | 5.16 | 11.11 | 0.00 | 143.08 | 11.10 | 1.33 | 2.50 | 13.00 | 43.90 | |
ml1 | 湖水 | 10.17 | -201 | 5530 | 2990 | 3.6 | 3.94 | 1508.19 | 0.00 | 311.94 | 281.94 | 414.31 | 1141.44 | 42.05 | 80.38 | 68.26 | 3.84 | |
ml2 | 湖水 | 9.13 | -144 | 4470 | 2410 | 2.8 | 3.30 | 1262.31 | 0.00 | 253.07 | 23.45 | 377.86 | 856.67 | 27.67 | 19.40 | 57.14 | 10.81 | |
ml3 | 湖水 | 9.74 | -180 | 15600 | 8600 | 9.6 | 6.08 | 5672.02 | 0.00 | 355.51 | 389.18 | 1539.32 | 3761.28 | 118.67 | 201.78 | 18.94 | 24.14 | |
ml4 | 湖水 | 9.27 | -154 | 5760 | 3090 | 3.4 | 1.18 | 1966.19 | 0.00 | 132.27 | 165.91 | 599.82 | 897.30 | 30.62 | 227.35 | 24.83 | 11.48 | |
ml5 | 湖水 | 9.14 | -145 | 14900 | 8300 | 10.1 | 3.49 | 4713.43 | 0.00 | 1140.89 | 24.56 | 386.66 | 3147.18 | 107.23 | 421.69 | 198.97 | 10.53 | |
ml6 | 湖水 | 9.86 | -186 | 31400 | 18300 | 22.0 | 11.74 | 9999.64 | 0.00 | 1673.90 | 676.32 | 2029.22 | 8009.83 | 250.15 | 304.10 | 43.99 | 47.26 | |
ml7 | 湖水 | 7.49 | -53 | - | - | - | 3.99 | 202780.82 | 0.00 | 33917.06 | 0.01 | 8.66 | 70438.01 | 2208.06 | 1114.31 | 7607.87 | 580.44 | |
ml8 | 湖水 | 8.45 | -109 | - | - | - | 0.00 | 271841.44 | 0.00 | 48958.14 | 1.02 | 78.95 | 105126.78 | 3109.05 | 10159.71 | 708.48 | 447.18 | |
ml9 | 湖水 | 9.82 | -188 | 60900 | 38400 | 42.0 | 1.68 | 34703.00 | 0.00 | 1365.61 | 562.54 | 1850.67 | 12532.98 | 386.35 | 2674.85 | 87.79 | 41.83 | |
ml10 | 湖水 | 9.63 | -175 | 78500 | 51400 | 58.9 | 3.78 | 43727.20 | 0.00 | 4293.31 | 234.50 | 1194.90 | 22550.90 | 641.40 | 4927.95 | 113.49 | 57.86 | |
mp1 | 降水 | 7.78 | -68 | 67.9 | 35.9 | 0.0 | 0.07 | 7.11 | 1.40 | 5.65 | / | / | 1.72 | 1.31 | 1.14 | 1.90 | 5.87 | |
库布齐沙漠 | kr1 | 河水 | 8.16 | -84 | 456 | 246 | 0.2 | 0.43 | 18.46 | 4.62 | 16.43 | 1.10 | 215.20 | 21.85 | 0.00 | 2.44 | 16.40 | 37.65 |
kr2 | 河水 | 8.00 | -77 | 547 | 291 | 0.3 | 0.53 | 28.40 | 4.11 | 17.31 | 1.00 | 259.00 | 27.72 | 0.00 | 2.41 | 17.81 | 46.58 | |
kr3 | 河水 | 7.98 | -76 | 479 | 255 | 0.3 | 0.35 | 26.08 | 7.01 | 21.98 | 0.90 | 198.50 | 24.31 | 0.00 | 3.17 | 15.82 | 39.92 | |
kr4 | 河水 | 8.02 | -77 | 1470 | 780 | 0.8 | 1.06 | 204.00 | 22.88 | 309.68 | 1.00 | 207.30 | 143.84 | 0.00 | 5.32 | 32.14 | 65.16 | |
kr5 | 河水 | 7.69 | -59 | 1380 | 740 | 0.7 | 0.64 | 211.90 | 12.69 | 277.37 | 0.40 | 199.20 | 118.45 | 0.00 | 5.58 | 41.81 | 62.98 | |
kr6 | 河水 | 8.06 | -80 | 1230 | 660 | 0.6 | 0.66 | 163.72 | 20.53 | 206.37 | 1.10 | 195.70 | 112.28 | 0.00 | 4.96 | 37.52 | 53.97 | |
kr7 | 河水 | 8.06 | -80 | 537 | 286 | 0.3 | 0.48 | 21.79 | 16.23 | 20.59 | 1.10 | 240.70 | 28.84 | 0.00 | 2.79 | 20.97 | 42.21 | |
kr8 | 河水 | 8.02 | -77 | 495 | 263 | 0.3 | 0.42 | 20.20 | 7.33 | 19.07 | 1.00 | 226.40 | 26.70 | 0.00 | 2.66 | 16.21 | 42.51 | |
kl1 | 湖水 | 10.13 | -199 | 4810 | 2590 | 2.7 | 0.40 | 1165.99 | 0.00 | 787.01 | 182.90 | 289.10 | 1137.27 | 0.00 | 11.02 | 4.56 | 4.79 | |
kl2 | 湖水 | 8.22 | -89 | 3070 | 1650 | 1.7 | 1.81 | 783.33 | 0.00 | 30.14 | 4.20 | 547.40 | 337.68 | 0.00 | 35.47 | 92.24 | 45.04 | |
kl3 | 湖水 | 9.12 | -141 | 2280 | 1220 | 1.1 | 1.42 | 262.32 | 1.77 | 10.85 | 66.50 | 1095.80 | 235.31 | 0.00 | 116.23 | 146.17 | 6.38 | |
kl4 | 湖水 | 9.47 | -163 | 16300 | 9100 | 9.6 | 0.50 | 4071.66 | 0.00 | 29.42 | 609.90 | 3944.70 | 2595.54 | 0.00 | 801.00 | 79.54 | 7.79 |
[1] | Jiang Wenlai. Study on water resource safety strategy for China in the 21st century. Advances in Water Science, 2001, 12(1): 66-71. |
[姜文来. 中国21世纪水资源安全对策研究. 水科学进展, 2001, 12(1): 66-71.] | |
[2] | Xia Jun, Zhai Jinliang, Zhan Chesheng. Some reflections on the research and of development water resources in China. Advances in Earth Science, 2011, 26(9): 905-915. |
[夏军, 翟金良, 占车生. 我国水资源研究与发展的若干思考. 地球科学进展, 2011, 26(9): 905-915.] | |
[3] | Tian Yuan, Yu Chengqun, Zha Xinjie, et al. Hydrochemical characteristics and factors controlling of natural water in the western, southern, and northeastern border areas of the Qinghai-Tibet Plateau. Acta Geographica Sinica, 2019, 74(5): 975-991. |
[田原, 余成群, 查欣洁, 等. 青藏高原西部、南部和东北部边界地区天然水的水化学性质及其成因. 地理学报, 2019, 74(5): 975-991.] | |
[4] | Zhu Bingqi, Yang Xiaoping. Chemical composition of natural waters and its origin in the Taklamakan Desert. Chinese Science Bulletin, 2007, 52(13): 1561-1566. |
[朱秉启, 杨小平. 塔克拉玛干沙漠天然水体的化学特征及其成因. 科学通报, 2007, 52(13): 1561-1566.] | |
[5] | Ren Xiaozong, Li Jiangang, Liu Min, et al. Hydrochemical composition of natural waters and its affecting factors in the east Hunshandak Sandy Land. Arid Zone Research, 2019, 36(4): 791-800. |
[任孝宗, 李建刚, 刘敏, 等. 浑善达克沙地东部地区天然水体的水化学组成及其控制因素. 干旱区研究, 2019, 36(4): 791-800.] | |
[6] | Zhu Zhenda, Wu Zheng, Liu Shu, et al. An Outline of Chinese Deserts. Beijing: Science Press, 1980. |
[朱震达, 吴正, 刘恕, 等. 中国沙漠概论. 北京: 科学出版社, 1980.] | |
[7] | Wang Nai'ang, Huang Yinzhou, He Tonghui, et al. The environmental significance of tamping sandy layer in ancient city ramparts on Erdos Plateau. Acta Geographica Sinica, 2006, 61(9): 937-945. |
[王乃昂, 黄银洲, 何彤慧, 等. 鄂尔多斯高原古城夯层沙的环境解释. 地理学报, 2006, 61(9): 937-945.] | |
[8] | Qian Hui, Song Xiuling, Dou Yan, et al. Formation mechanism of water compositions in the middle part of the Dousitu River. Hydrogeology & Engineering Geology, 2008(6): 103-106, 120. |
[钱会, 宋秀玲, 窦妍, 等. 都思兔河中段河水化学成分的形成机制分析. 水文地质工程地质, 2008(6): 103-106, 120.] | |
[9] |
Liu F, Song X, Yang L, et al. Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in the Subei Lake basin, Ordos energy base, northwestern China. Hydrology and Earth System Sciences, 2015, 19(1): 551-565.
doi: 10.5194/hess-19-551-2015 |
[10] |
Liu F, Song X F, Zhen P N, et al. Insights from stable isotopes of water and hydrochemistry to the evolutionary processes of groundwater in the Subei lake basin, Ordos energy base, northwestern China. Isotopes in Environmental and Health Studies, 2019, 55(5): 438-458.
doi: 10.1080/10256016.2019.1654472 |
[11] |
Qian C, Wu X, Mu W P, et al. Hydrogeochemical characterization and suitability assessment of groundwater in an agro-pastoral area, Ordos Basin, NW China. Environmental Earth Sciences, 2016, 75: 1356. DOI: 10.1007/s12665-016-6123-2.
doi: 10.1007/s12665-016-6123-2 |
[12] |
Wu J H, Zhou H, He S, et al. Comprehensive understanding of groundwater quality for domestic and agricultural purposes in terms of health risks in a coal mine area of the Ordos basin, north of the Chinese Loess Plateau. Environmental Earth Sciences, 2019, 78: 446. DOI: 10.1007/s12665-019-8471-1.
doi: 10.1007/s12665-019-8471-1 |
[13] |
Li P Y, Qian H, Wu J H, et al. Major ion chemistry of shallow groundwater in the Dongsheng Coalfield, Ordos Basin, China. Mine Water and the Environment, 2013, 32(3): 195-206.
doi: 10.1007/s10230-013-0234-8 |
[14] |
Yang Q C, Wang L C, Ma H Y, et al. Hydrochemical characterization and pollution sources identification of groundwater in Salawusu aquifer system of Ordos Basin, China. Environmental Pollution, 2016, 216: 340-349.
doi: 10.1016/j.envpol.2016.05.076 |
[15] | Ge jian. Natural tracing method applied for vadose zone soil moisture dynamics in arid and semi-arid areas[D]. Nanjing: Hohai University, 2017. |
[葛建. 干旱—半干旱区包气带土壤水运动示踪研究[D]. 南京: 河海大学, 2017.] | |
[16] |
Ge J, Chen J S, Ge L, et al. Isotopic and hydrochemical evidence of groundwater recharge in the Hopq Desert, NW China. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310(2): 761-775.
doi: 10.1007/s10967-016-4856-8 |
[17] | Yang Yuncheng, Shen Zhaoli, Wen Dongguang, et al. Hydrochemical characteristics and sources of sulfate in groundwater of the Ordos Cretaceous Groundwater Basin. Acta Geoscientica Sinica, 2008, 29(5): 553-562. |
[杨郧城, 沈照理, 文冬光, 等. 鄂尔多斯白垩系地下水盆地硫酸盐的水文地球化学特征及来源. 地球学报, 2008, 29(5): 553-562.] | |
[18] | Wang Deqian, Liu Zuzhi, Yin Lihe. Hydro-geological characteristics and groundwater systems of the Erdos Basin. Quaternary Sciences, 2005, 25(1): 6-14. |
[王德潜, 刘祖植, 尹立河. 鄂尔多斯盆地水文地质特征及地下水系统分析. 第四纪研究, 2005, 25(1): 6-14.] | |
[19] | Hou Guangcai, Lin Xueyu, Su Xiaosi, et al. Groundwater system in Ordos Cretaceous Artisan Basin (CAB). Journal of Jilin University (Earth Science Edition), 2006, 36(3): 391-398. |
[侯光才, 林学钰, 苏小四, 等. 鄂尔多斯白垩系盆地地下水系统研究. 吉林大学学报(地球科学版), 2006, 36(3): 391-398.] | |
[20] |
Yang X P, Li H W, Conacher A. Large-scale controls on the development of sand seas in northern China. Quaternary International, 2012, 250: 74-83.
doi: 10.1016/j.quaint.2011.03.052 |
[21] | Huang Fuxiang, Niu Haishan, Wang Mingxing, et al. The relationship between vegetation cover and sand transport flux at Mu Us Sandland. Acta Geographica Sinica, 2001, 56(6): 700-710. |
[黄富祥, 牛海山, 王明星, 等. 毛乌素沙地植被覆盖率与风蚀输沙率定量关系. 地理学报, 2001, 56(6): 700-710.] | |
[22] |
Mason J A, Swinehart J B, Lu H Y, et al. Limited change in dune mobility in response to a large decrease in wind power in semi-arid northern China since the 1970s. Geomorphology, 2008, 102(3): 351-363.
doi: 10.1016/j.geomorph.2008.04.004 |
[23] |
Yang X P, Ma N N, Dong J F, et al. Recharge to the inter-dune lakes and Holocene climatic changes in the Badain Jaran Desert, western China. Quaternary Research, 2010, 73(1): 10-19.
doi: 10.1016/j.yqres.2009.10.009 |
[24] | Penman H L. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society A, 1948, 193(1032): 120-145. |
[25] |
Yang X P, Forman S, Hu F G, et al. Initial insights into the age and origin of the Kubuqi sand sea of northern China. Geomorphology, 2016, 259: 30-39.
doi: 10.1016/j.geomorph.2016.02.004 |
[26] |
Yang X P, Liang P, Zhang D G, et al. Holocene aeolian stratigraphic sequences in the eastern portion of the desert belt (sand seas and sandy lands) in northern China and their palaeoenvironmental implications. Science China Earth Sciences, 2019, 62(8): 1302-1315.
doi: 10.1007/s11430-018-9304-y |
[27] |
Gran G. Determination of the equivalence point in potentiometric titrations. Part II. Analyst, 1952, 77: 661-671.
doi: 10.1039/an9527700661 |
[28] |
Ismail A H, Hassan G, Sarhan A H. Hydrochemistry of shallow groundwater and its assessment for drinking and irrigation purposes in Tarmiah district, Baghdad governorate, Iraq. Groundwater for Sustainable Development, 2020, 10(2020): 100300. DOI: 10.1016/j.gsd.2019.100300.
doi: 10.1016/j.gsd.2019.100300 |
[29] | USSL. Diagnosis and Improvements of Saline and Alkali Soils. Washington: US Department of Agriculture, 1954. |
[30] | Wilcox L. Classification and Use of Irrigation Waters. Washington: US Department of Agriculture, 1955. |
[31] | Ren Xiaozong, Liu Min, Li Jiangang, et al. Plotting Maucha Diagram based on Matlab and its applications on hydrochemistry. Arid Land Geography, 2019, 42(5): 1078-1084. |
[任孝宗, 刘敏, 李建刚, 等. Maucha图的Matlab实现及其在水化学中的应用. 干旱区地理, 2019, 42(5): 1078-1084.] | |
[32] | Zaporozec A. Graphical interpretation of water-quality data. Groundwater, 1972, 10(2): 32-43. |
[33] |
Abdalla O, Al-Abri R, Semhi K, et al. Hydro-chemical evolution of groundwater in a sequence of Tertiary Formations in Northwest Oman. Environmental Earth Sciences, 2016, 75: 1410. DOI: 10.1007/s12665-016-6196-y.
doi: 10.1007/s12665-016-6196-y |
[34] |
Karmegam U, Chidambaram S, Prasanna M V, et al. A study on the mixing proportion in groundwater samples by using Piper diagram and Phreeqc model. Chinese Journal of Geochemistry, 2011, 30(4): 490-495.
doi: 10.1007/s11631-011-0533-3 |
[35] | Zhang Renquan, Liang Xing, Jin Menggui, et al. General Hydrogeology. Beijing: Geological Publishing House, 2011. |
[张人权, 梁杏, 靳孟贵, 等. 水文地质学基础. 北京: 地质出版社, 2011.] | |
[36] | Kehew A E. Applied Chemical Hydrogeology. New Jersey: Prentice Hall, 2001. |
[37] |
Ren X Z, Zhu B Q, Liu M, et al. Mechanism of groundwater recharge in the middle-latitude desert of eastern Hunshandake, China: Diffuse or focused recharge? Hydrogeology Journal, 2019, 27(2): 761-783.
doi: 10.1007/s10040-018-1880-5 |
[38] | Raychaudhuri M, Raychaudhuri S, Jena S, et al. WQI to monitor water quality for irrigation and potable use. Bhubaneswar, India: Directorate of Water Management, 2014. |
[39] |
Zhou Y H, Li P Y, Xue L L, et al. Solute geochemistry and groundwater quality for drinking and irrigation purposes: A case study in Xinle City, North China. Geochemistry, 2020, 80(4): 125609. DOI: 10.1016/j.chemer.2020.125609.
doi: 10.1016/j.chemer.2020.125609 |
[40] | Wilcox L V. The quality of water for irrigation use. Technical Bulletin, 1948, 962: 1-40. |
[41] | Song Naiping, Zhang Fengrong. The changing process and mechanism of the farming-grazing transitional land use pattern in Ordos. Acta Geographica Sinica, 2007, 62(12): 1299-1308. |
[宋乃平, 张凤荣. 鄂尔多斯农牧交错土地利用格局的演变与机理. 地理学报, 2007, 62(12): 1299-1308.] | |
[42] |
Gibbs R J. Mechanisms controlling world water chemistry. Science, 1970, 170(3962): 1088-1090.
pmid: 17777828 |
[43] |
Marandi A, Shand P. Groundwater chemistry and the Gibbs Diagram. Applied Geochemistry, 2018, 97: 209-212.
doi: 10.1016/j.apgeochem.2018.07.009 |
[44] | Ren Xiaozong, Liu Min, Zhang Yingzhen, et al. Plotting Durov Diagram based on Matlab. Arid Land Geography, 2018, 41(4): 744-750. |
[任孝宗, 刘敏, 张迎珍, 等. 基于Matlab的Durov三线图的实现. 干旱区地理, 2018, 41(4): 744-750.] | |
[45] | Lloyd J W, Heathcote J A. Natural Inorganic Hydrochemistry in Relation to Groundwater: An Introduction. Oxford: Clarendon Press, 1985. |
[46] | Ding Zhenyu, Ma Jinzhu, He Jianhua. Geochemical evolution of groundwater in the southwest of Tengger Desert, NW of China. Arid Land Geography, 2009, 32(6): 948-957. |
[丁贞玉, 马金珠, 何建华. 腾格里沙漠西南缘地下水水化学形成特征及演化. 干旱区地理, 2009, 32(6): 948-957.] | |
[47] | Dang Huihui, Dong Jun, Yue Ning, et al. Study of the evolution of hydrochemical properties of groundwater in Ulan Buh Desert in the north of the Helan Mountains. Journal of Glaciology and Geocryology, 2015, 37(3): 793-802. |
[党慧慧, 董军, 岳宁, 等. 贺兰山以北乌兰布和沙漠地下水水化学特征演化规律研究. 冰川冻土, 2015, 37(3): 793-802.] | |
[48] | Wei Shuilian, Liu Xinping, Zhao Xueyong, et al. Spatial and temporal variability analysis of groundwater quality in Naiman Region of Horqin Sandy Land. Journal of Desert Research, 2017, 37(3): 571-579. |
[魏水莲, 刘新平, 赵学勇, 等. 科尔沁沙地奈曼地区地下水水质时空变化特征. 中国沙漠, 2017, 37(3): 571-579.] | |
[49] |
Ahmad T, Khanna P P, Chakrapani G J, et al. Geochemical characteristics of water and sediment of the Indus river, Trans-Himalaya, India: Constraints on weathering and erosion. Journal of Asian Earth Sciences, 1998, 16(2/3): 333-346.
doi: 10.1016/S0743-9547(98)00016-6 |
[50] | Wang Yaping, Wang Lan, Xu Chunxue, et al. Hydro-geochemistry and genesis of major ions in the Yangtze River, China. Geological Bulletin of China, 2010, 29(Suppl.1): 446-456. |
[王亚平, 王岚, 许春雪, 等. 长江水系水文地球化学特征及主要离子的化学成因. 地质通报, 2010, 29(Suppl.1): 446-456.] | |
[51] |
Zhu B Q, Yang X P. The ion chemistry of surface and ground waters in the Taklimakan Desert of Tarim Basin, western China. Chinese Science Bulletin, 2007, 52(15): 2123-2129.
doi: 10.1007/s11434-007-0298-6 |
[52] |
Zhang L, Song X F, Xia J, et al. Major element chemistry of the Huai River basin, China. Applied Geochemistry, 2011, 26(3): 293-300.
doi: 10.1016/j.apgeochem.2010.12.002 |
[53] |
Chen J S, Wang F Y, Xia X H, et al. Major element chemistry of the Changjiang (Yangtze River). Chemical Geology, 2002, 187(3/4): 231-255.
doi: 10.1016/S0009-2541(02)00032-3 |
[54] | Elango L, Kannan R. Chapter 11 Rock-water interaction and its control on chemical composition of groundwater//Sarkar D, Datta R, Hannigan R. Developments in Environmental Science, Volume 5. Amsterdam: Elsevier, 2007: 229-243. |
[1] | 黄玉生, 郭慧光, 刘富兴 . 工业区与非工业区辐射雾水的化学组成 [J]. 地理学报, 1992, 47(1): 66-73. |