地理学报 ›› 2021, Vol. 76 ›› Issue (9): 2174-2186.doi: 10.11821/dlxb202109010
收稿日期:
2020-06-20
修回日期:
2021-03-10
出版日期:
2021-09-25
发布日期:
2021-11-25
通讯作者:
史文娇(1982-), 女, 辽宁葫芦岛人, 博士, 研究员, 主要研究方向为全球变化与区域农业。E-mail: shiwj@lreis.ac.cn作者简介:
丁锐(1998-), 男, 四川德阳人, 硕士生, 研究方向为区域农业与地理信息分析。E-mail: dingrui_1998@163.com
基金资助:
DING Rui1,2(), SHI Wenjiao1,2(
)
Received:
2020-06-20
Revised:
2021-03-10
Published:
2021-09-25
Online:
2021-11-25
Supported by:
摘要:
气候变化对农业的影响是全球关注的热点问题之一,青藏高原对气候变化尤其敏感,但气候变化对青藏高原农业产量的定量影响缺乏系统研究。为定量评估气候变化对西藏谷物单产的影响,本文使用气象数据与年鉴统计数据,选取了固定效应模型、差分模型和线性去趋势模型3类统计模型,分析了1993—2017年间气候变化(最低气温、降水量、生长度日和太阳辐射)对西藏县(区)级、市级和自治区3个尺度的谷物单产的影响。结果表明:西藏整体对于温度(最低气温和生长度日)的敏感性大于降水量和太阳辐射。各项气候因子对西藏谷物单产的整体影响为正影响,但不同区域对气候因子的敏感程度和显著性不同。除了生长度日对于拉萨为负影响以外,最低气温、降水量和太阳辐射对于所有市均为正影响。气候趋势对于西藏整体谷物单产的影响为正影响,不同模型计算结果集中在1.5%~4.8%区间内。3类模型中固定效应模型稳定性最好,线性去趋势模型好于差分模型,差分模型在引入气候因子间的交互项后模型稳定性降低。本文有助于西藏实施更加有空间针对性的农业适应气候变化措施,以应对气候造成的青藏高原农业生态系统变化。
丁锐, 史文娇. 1993—2017年气候变化对西藏谷物单产的定量影响[J]. 地理学报, 2021, 76(9): 2174-2186.
DING Rui, SHI Wenjiao. Quantitative evaluation of the effects of climate change on cereal yields of Tibet during 1993-2017[J]. Acta Geographica Sinica, 2021, 76(9): 2174-2186.
[1] | Matthes F C. Climate change 2007. The physical science basis, impacts, adaptation and vulnerability mitigation of climate change. Internationale Politik, 2008, 63(4): 130-132. |
[2] |
Motha R P, Baier W. Impacts of present and future climate change and climate variability on agriculture in the temperate regions: North America. Climatic Change, 2005, 70(1/2): 137-164.
doi: 10.1007/s10584-005-5940-1 |
[3] |
Salinger M J. Climate variability and change: Past, present and future: An overview. Climatic Change, 2005, 70(1/2): 9-29.
doi: 10.1007/s10584-005-5936-x |
[4] | Guo Jianping. Advances in impacts of climate change on agricultural production in China. Journal of Applied Meteorological Science, 2015, 26(1): 1-11. |
[郭建平. 气候变化对中国农业生产的影响研究进展. 应用气象学报, 2015, 26(1): 1-11.] | |
[5] |
Duan Jian, Xu Yong, Sun Xiaoyi. Spatial patterns and their changes of grain production, grain consumption and grain security in the Tibetan Plateau. Journal of Natural Resources, 2019, 34(4): 673-688.
doi: 10.31497/zrzyxb.20190401 |
[段健, 徐勇, 孙晓一. 青藏高原粮食生产、消费及安全风险格局变化. 自然资源学报, 2019, 34(4): 673-688.] | |
[6] | Liu Jian, Li Xiangmei, Zhong Xianghao. Consumption structure of food and the countermeasure of grain in Tibet. Journal of Mountain Research, 2004, 22(3): 286-291. |
[刘键, 李祥妹, 钟祥浩. 西藏自治区居民食品消费结构与粮食对策. 山地学报, 2004, 22(3): 286-291.] | |
[7] | Zhao Yaoyang, Wang Jie, Zhang Li, et al. Analysis of arable land requirement for protecting the self-supply of grains under new food security policy. Journal of Arid Land Resources and Environment, 2015, 29(8): 1-6. |
[赵姚阳, 王洁, 张莉, 等. 粮食安全新政背景下保障我国谷物基本自给的耕地需求研究. 干旱区资源与环境, 2015, 29(8): 1-6.] | |
[8] | Shi Wenjiao, Tao Fulu, Zhang Zhao. Identifying contributions of climate change to crop yields based on statistical models: A review. Acta Geographica Sinica, 2012, 67(9): 1213-1222. |
[史文娇, 陶福禄, 张朝. 基于统计模型识别气候变化对农业产量贡献的研究进展. 地理学报, 2012, 67(9): 1213-1222.] | |
[9] | Lobell D B, Burke M. Climate Change and Food Security: Adapting Agriculture to a Warmer World. Dordrecht: Springer Science & Business Media, 2009. |
[10] | Zhao Yanxi, Xiao Dengpan, Tang Jianzhao, et al. Effects of climate change on the yield of major grain crops and its adaptation measures in China. Research of Soil and Water Conservation, 2019, 26(6): 317-326. |
[赵彦茜, 肖登攀, 唐建昭, 等. 气候变化对我国主要粮食作物产量的影响及适应措施. 水土保持研究, 2019, 26(6): 317-326.] | |
[11] |
Lobell D B, Cahill K N, Field C B. Historical effects of temperature and precipitation on California crop yields. Climatic Change, 2007, 81(2): 187-203.
doi: 10.1007/s10584-006-9141-3 |
[12] |
Lobell D B, Ortiz-Monasterio J I, Asner G P, et al. Analysis of wheat yield and climatic trends in Mexico. Field Crops Research, 2005, 94(2-3): 250-256.
doi: 10.1016/j.fcr.2005.01.007 |
[13] |
Zaveri E, Lobell D B. The role of irrigation in changing wheat yields and heat sensitivity in India. Nature Communications, 2019, 10(1). DOI: 10.1038/s41467-019-12183-9.
doi: 10.1038/s41467-019-12183-9 |
[14] |
Schlenker W, Lobell D B. Robust negative impacts of climate change on African agriculture. Environmental Research Letters, 2010, 5(1): 014010. DOI: 10.1088/1748-9326/5/1/014010.
doi: 10.1088/1748-9326/5/1/014010 |
[15] |
Lobell D B, Burke M B. On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology, 2010, 150(11): 1443-1452.
doi: 10.1016/j.agrformet.2010.07.008 |
[16] |
Lobell D B, Field C B. Global scale climate-crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2007, 2(1): 014002. DOI: 10.1088/1748-9326/2/1/014002.
doi: 10.1088/1748-9326/2/1/014002 |
[17] |
Lobell D B, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980. Science, 2011, 333(6042): 616-620.
doi: 10.1126/science.1204531 pmid: 21551030 |
[18] |
Tao F L, Zhang Z, Zhang S, et al. Response of crop yields to climate trends since 1980 in China. Climate Research, 2012, 54(3): 233-247.
doi: 10.3354/cr01131 |
[19] | Tao F L, Zhang Z, Xiao D P, et al. Responses of wheat growth and yield to climate change in different climate zones of China, 1981-2009. Agricultural and Forest Meteorology, 2014, 189: 91-104. |
[20] |
Tao F L, Yokozawa M, Liu J Y, et al. Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends. Climate Research, 2008, 38(1): 83-94.
doi: 10.3354/cr00771 |
[21] |
Zhang T Y, Huang Y. Estimating the impacts of warming trends on wheat and maize in China from 1980 to 2008 based on county level data. International Journal of Climatology, 2013, 33(3): 699-708.
doi: 10.1002/joc.v33.3 |
[22] |
Zhang T Y, Zhu J A, Wassmann R. Responses of rice yields to recent climate change in China: An empirical assessment based on long-term observations at different spatial scales (1981-2005). Agricultural and Forest Meteorology, 2010, 150(7-8): 1128-1137.
doi: 10.1016/j.agrformet.2010.04.013 |
[23] | Wan Yunfan, Li Yu'e, Gao Qingzhu, et al. Climate change trend and its impact on yield of highland barley in Tibet, China. Journal of Agricultural Resources and Environment, 2018, 35(4): 374-380. |
[万运帆, 李玉娥, 高清竹, 等. 西藏气候变化趋势及其对青稞产量的影响. 农业资源与环境学报, 2018, 35(4): 374-380.] | |
[24] | Yan Yingcun, Zhao Quanning, Wang Zhe, et al. Analysis of highland barley phenophase change trend and the driving factors in Menyuan County, Qinghai Province during 1980-2015. Acta Ecologica Sinica, 2018, 38(4): 1264-1271. |
[严应存, 赵全宁, 王喆, 等. 青海省门源县1980—2015年青稞物候期变化趋势及其驱动因素. 生态学报, 2018, 38(4): 1264-1271.] | |
[25] |
Zhao Yanxi, Xiao Dengpan, Bai Huizi, et al. Research progress on the response and adaptation of crop phenology to climate change in China. Progress in Geography, 2019, 38(2): 224-235.
doi: 10.18306/dlkxjz.2019.02.006 |
[赵彦茜, 肖登攀, 柏会子, 等. 中国作物物候对气候变化的响应与适应研究进展. 地理科学进展, 2019, 38(2): 224-235.] | |
[26] | Wang Li, Li Fengxia, Xu Weixin, et al. Impact of climate change on growth of wheat in the irrigation district of Qaidam Oasis. Chinese Journal of Agrometeorology, 2010, 31(Suppl.1): 81-83, 89. |
[王力, 李凤霞, 徐维新, 等. 气候变化对柴达木灌区小麦生育期的影响. 中国农业气象, 2010, 31(Suppl.1): 81-83, 89.] | |
[27] | Shi Xiaoli, Shi Wenjiao. Impacts of extreme high temperature on winter wheat yield in the Huang-Huai-Hai Plain. Journal of Ecology and Rural Environment, 2016, 32(2): 259-269. |
[石晓丽, 史文娇. 极端高温对黄淮海平原冬小麦产量的影响. 生态与农村环境学报, 2016, 32(2): 259-269.] | |
[28] | Zhao Yan, Wang Lianfen, Yang Qingsong. Effects of temperature and variety on germination and seedling growth of naked barley. Seed, 2013, 32(11): 34-37, 41. |
[赵艳, 王连芬, 杨青松. 萌发温度及品种对青稞种子萌发和幼苗生长的影响. 种子, 2013, 32(11): 34-37, 41.] | |
[29] | Du Jun, Hu Jun, Sonam Ngotrup. Climate change on agriculture critical temperature over Tibetan Plateau from 1971 to 2000. Acta Geographica Sinica, 2005, 60(2): 289-298. |
[杜军, 胡军, 索朗欧珠. 西藏高原农业界限温度的变化特征. 地理学报, 2005, 60(2): 289-298.] | |
[30] | Hu Qingfang, Yang Dawen, Wang Yintang, et al. Effects of Angstrom coefficients on ET0 estimation and the applicability of FAO recommended coefficient values in China. Advances in Water Science, 2010, 21(5): 644-652. |
[胡庆芳, 杨大文, 王银堂, 等. Angstrom公式参数对ET0的影响及FAO建议值适用性评价. 水科学进展, 2010, 21(5): 644-652.] | |
[31] |
Lee L F, Yu J H. Estimation of spatial autoregressive panel data models with fixed effects. Journal of Econometrics, 2010, 154(2): 165-185.
doi: 10.1016/j.jeconom.2009.08.001 |
[32] |
Gourdji S, Läderach P, Valle A M, et al. Historical climate trends, deforestation, and maize and bean yields in Nicaragua. Agricultural and Forest Meteorology, 2015, 200: 270-281.
doi: 10.1016/j.agrformet.2014.10.002 |
[33] |
Nicholls N. Increased Australian wheat yield due to recent climate trends. Nature, 1997, 387(6632): 484-485.
doi: 10.1038/387484a0 |
[34] |
Verón S R, de Abelleyra D, Lobell D B. Impacts of precipitation and temperature on crop yields in the Pampas. Climatic change, 2015, 130(2): 235-245.
doi: 10.1007/s10584-015-1350-1 |
[35] | Zhao Xueyan, Wang Weijun, Wan Wenyu, et al. Influence of climate change on potential productivity of naked barley in the Tibetan Plateau in the past 50 years. Chinese Journal of Eco-Agriculture, 2015, 23(10): 1329-1338. |
[赵雪雁, 王伟军, 万文玉, 等. 近50年气候变化对青藏高原青稞气候生产潜力的影响. 中国生态农业学报, 2015, 23(10): 1329-1338.] | |
[36] | Gesangquzhen, Pubuciren, Hu Xiyuan. Effect of climate change on yield potential of crops in Tibet. Agricultural Research in the Arid Areas, 2015, 33(2): 266-271. |
[格桑曲珍, 普布次仁, 胡希远. 西藏气候变化及其对作物产量潜力的影响. 干旱地区农业研究, 2015, 33(2): 266-271.] | |
[37] | Gao Jiajia, Du Jun, Liu Zhaoyang, et al. Study on response of sensitive area of main crops to climate change in Tibet Area. Journal of Ecology and Rural Environment, 2019, 35(11): 1484-1489. |
[高佳佳, 杜军, 刘朝阳, 等. 西藏地区主要农作物敏感区对气候变化的响应. 生态与农村环境学报, 2019, 35(11): 1484-1489.] | |
[38] | Piao Shilong, Zhang Xianzhou, Wang Tao, et al. Responses and feedback of the Tibetan Plateau's alpine ecosystem to climate change. Chinese Science Bulletin, 2019, 64(27): 2842-2855. |
[朴世龙, 张宪洲, 汪涛, 等. 青藏高原生态系统对气候变化的响应及其反馈. 科学通报, 2019, 64(27): 2842-2855.] | |
[39] | Li Yijun, Wang Chunyi, Zhao Bei, et al. Effects of climate change on agricultural meteorological disaster and crop insects diseases. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(S1): 263-271. |
[李祎君, 王春乙, 赵蓓, 等. 气候变化对中国农业气象灾害与病虫害的影响. 农业工程学报, 2010, 26(S1): 263-271.] | |
[40] | IPCC. Climate change 2007. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007. |
[41] | Wang Yuan, Fang Xiuqi, Xu Tan, et al. Impact of climate warming and adaptation activities of rice plantation in Northeast China. Resources Science, 2005, 27(1): 121-127. |
[王媛, 方修琦, 徐锬, 等. 气候变暖与东北地区水稻种植的适应行为. 资源科学, 2005, 27(1): 121-127.] |
[1] | 李文君, 李鹏, 封志明, 游珍, 肖池伟. 基于人居环境特征的青藏高原“无人区”空间界定[J]. 地理学报, 2021, 76(9): 2118-2129. |
[2] | 冯三三, 卢宏玮, 姚天次, 刘云龙, 唐孟, 冯玮, 卢静昭. 青藏高原典型区微塑料分布特征及来源分析[J]. 地理学报, 2021, 76(9): 2130-2141. |
[3] | 刘振, 刘盛和, 戚伟, 金浩然. 青藏高原流动人口居留意愿及影响因素[J]. 地理学报, 2021, 76(9): 2142-2156. |
[4] | 徐志伟, 鹿化煜. 毛乌素沙地风沙环境变化研究的理论和新认识[J]. 地理学报, 2021, 76(9): 2203-2223. |
[5] | 鲍锟山, 杨婷, 肖湘, 贾琳, 王国平, 沈吉. 基于泥炭记录的过去150 a东北山地大气粉尘沉降[J]. 地理学报, 2021, 76(9): 2283-2296. |
[6] | 李程, 庄大方, 何剑锋, 文可戈. 东西伯利亚苔原—泰加林过渡带植被遥感物候时空特征及其对气温变化的响应[J]. 地理学报, 2021, 76(7): 1634-1648. |
[7] | 尹云鹤, 马丹阳, 邓浩宇, 吴绍洪. 中国北方干湿过渡区生态系统生产力的气候变化风险评估[J]. 地理学报, 2021, 76(7): 1605-1617. |
[8] | 王可逸, 刘晓宏, 曾小敏, 徐国保, 张凌楠, 李春越. 树轮稳定氮同位素记录的进展与展望[J]. 地理学报, 2021, 76(5): 1193-1205. |
[9] | 侯光良, 兰措卓玛, 朱燕, 庞龙辉. 青藏高原史前时期交流路线及其演变[J]. 地理学报, 2021, 76(5): 1294-1313. |
[10] | 黄海, 田尤, 刘建康, 张佳佳, 杨东旭, 杨顺. 藏东地区斜坡土壤冻融侵蚀力学机制及敏感性分析[J]. 地理学报, 2021, 76(1): 87-100. |
[11] | 李哲, 丁永建, 陈艾姣, 张智华, 张世强. 1960—2019年西北地区气候变化中的Hiatus现象及特征[J]. 地理学报, 2020, 75(9): 1845-1859. |
[12] | 封志明, 李文君, 李鹏, 肖池伟. 青藏高原地形起伏度及其地理意义[J]. 地理学报, 2020, 75(7): 1359-1372. |
[13] | 孙思奥, 王晶, 戚伟. 青藏高原地区城乡虚拟水贸易格局与影响因素[J]. 地理学报, 2020, 75(7): 1346-1358. |
[14] | 梁馨月, 徐梦珍, 吕立群, 崔一飞, 张风宝. 基于地貌特征的青藏高原边缘泥石流沟分类[J]. 地理学报, 2020, 75(7): 1373-1385. |
[15] | 冯雨雪, 李广东. 青藏高原城镇化与生态环境交互影响关系分析[J]. 地理学报, 2020, 75(7): 1386-1405. |