地理学报 ›› 2021, Vol. 76 ›› Issue (8): 2032-2047.doi: 10.11821/dlxb202108015
收稿日期:
2020-03-26
修回日期:
2021-07-08
出版日期:
2021-08-25
发布日期:
2021-10-25
通讯作者:
陆林(1962-), 男, 安徽芜湖人, 博士, 教授, 博士生导师, 中国地理学会会员(S110000078M), 主要从事旅游地理学教学与科研工作。E-mail: llin@263.net作者简介:
赵赞(1976-), 女, 广西桂林人, 博士, 副教授, 主要从事旅游地理学教学与科研工作。E-mail: zz7476@126.com
基金资助:
ZHAO Zan1,2(), LU Lin1(
), REN Yisheng3
Received:
2020-03-26
Revised:
2021-07-08
Published:
2021-08-25
Online:
2021-10-25
Supported by:
摘要:
随着旅游地发展复杂性的增加,非线性研究方法成为旅游地演化研究的有效选择。以上海为案例地,运用水平可视图算法,将旅游需求作为旅游地复杂系统动态行为表征,探讨旅游地复杂系统演化过程及动力学特征。研究发现:旅游地复杂系统演化具有小世界和近似无标度网络特性,混沌动态行为特征,表现为混沌确定非线性动力系统;上海旅游地复杂系统演化处于“无序中的有序”混沌或混沌边缘,原有秩序已瓦解,系统新的属性和结构逐渐涌现,有待新的高级有序态生成;旅游地复杂系统遵循“有序—混沌(边缘)—涌现—新有序”,从低级有序向高级有序演化跃升的过程;外部环境和主体系统主导下的重要事件是旅游地复杂系统由低级有序向高级有序演化的“关键要素”,政府学习创新能力的提升对系统阶段性演进起到“推进器”作用,旅游企业开始显现主导地位,成为未来推动上海旅游地复杂系统演替发展的主导力量。上海国际入境旅游客源国(日、韩、新、德、英、法、加、澳)和国内旅游外地游客市场处于不稳定的混沌区域,是影响上海旅游地复杂系统混沌行为的重要因素,应进行混沌控制,加强管理和引导,促进上海旅游地复杂系统新演化阶段有序态的生成。
赵赞, 陆林, 任以胜. 非线性视角下的上海旅游地复杂系统演化过程及动力学特征[J]. 地理学报, 2021, 76(8): 2032-2047.
ZHAO Zan, LU Lin, REN Yisheng. Evolution and dynamic characteristics of tourism destination complex system from the perspective of nonlinearity: A case study of Shanghai[J]. Acta Geographica Sinica, 2021, 76(8): 2032-2047.
表3
转折点数值和年份
时间序列 | 模块时间节点(年月) | 年份 |
---|---|---|
Month | 2008.12,2010.12,2013.11,2016.05 | 2008,2010,2013,2016 |
Year | 2002,2006,2008,2010,2013,2016 | 2002,2006,2008,2010,2013,2016 |
INT | 2008.04,2010.10,2013.10,2016.11 | 2008,2010,2013,2016 |
DOM | 2008.12,2010.12,2013.04,2016.05 | 2008,2010,2013,2016 |
Month(2013.01—2018.06) | 2013.11,2016.05 | 2013,2016 |
Year(1998—2013年) | 2002,2006,2008,2010 | 2002,2006,2008,2010 |
表4
上海旅游地复杂系统演化阶段特征
演化阶段 | 系统特征(产业结构、规模、业态等) | 转折点 重要事件 | 主导行 动者 | 子系统 |
---|---|---|---|---|
1998—2002年 | 旅游业实现“外事接待型”向“经济产业型”转变,成为国民经济新的增长点。以都市旅游观光产品为主,商业、休闲旅游逐步成为都市旅游重要组成部分,会展、工业、农业旅游新兴业态得到一定发展。“非典”疫情爆发后,旅游者人数明显下降。 | 2002年“非典”疫情爆发 | 自然 环境 | 外部 环境 |
2003—2006年 | 都市旅游发展格局初步确立,传统观光旅游、工业旅游、农业旅游、休闲度假旅游、会展旅游进一步发展。通过“两节三赛”,创新旅游产品,中国旅游交易会及上海旅游节等节庆活动发展为国际性大型旅游节,上海向国际性大都市迈进,接待旅游者人数呈明显上升态势。 | 2006年举办多项世界国际性活动赛事 | 政府 | 主体 系统 |
2007—2008年 | 以“服务奥运”“迎世博”为契机,推动旅游产业集聚,提升旅游自主创新能力,增强旅游国际竞争力。都市旅游成为上海建设大都市的重要途径和形象品牌,节庆会展旅游更趋势国际化;形成国际、国内旅游共同繁荣局面,接待旅游者人数呈显著增长趋势。 | 2008年北京奥运会足球赛事|分会场 | ||
2009—2010年 | 世博会的举办,推动上海多中心、多流向、多圈层旅游格局的形成,旅游业成为上海支柱产业。工业旅游、文化旅游等专项产品不断升级,邮轮旅游、农旅等新型旅游业态蓬勃发展,形成一批具有国际影响力的城市旅游品牌,接待旅游者人数都呈迅速大幅增长态势。 | 2010年举办上海世界博览会 | ||
2011—2013年 | 以“创新驱动、转型发展”为主旨,大力发展邮轮旅游,邮轮旅游者人数突破百万人大关,成为上海新兴旅游业态的新增长点,出入境旅游者增长120%。注重旅游与相关产业创新融合,智慧旅游、旅游信息服务等旅游公共服务品质日益提升,形成以旅游业为核心、以服务型经济为主的产业结构。 | 2013年举办首届邮轮旅游节,成立中国邮轮旅游发展实验区 | ||
2014—2016年 | 以迪士尼开园为契机,大力创新旅游产品,突出上海都市旅游发展核心,形成“旅游+”十大系列产品,实现了从单一观光、休闲向观光、休闲、度假、商务、会议并重的旅游产业发展方式转变和转型升级,逐步形成“大旅游、大产业”的发展格局。 | 2016上海迪士尼开业 | 企业 | |
2017年— | 迪士尼溢出带动效应显著,“本土第一、世界精品”的黄浦江旅游休闲区、崇明世界生态岛等由外资、民资及社会资本参与的具有国际性吸引力的重点项目不断涌现;旅游“大旅游、大市场、大产业”产业融合格局基本形成,并由“景区旅游”向“全域旅游”发展格局转变。 | - |
表5
上海国际入境、国内旅游各构成时间序列Granger F值和度分布指数
构成 | 占比(%) | F值 | λ值 | 置信区间(95%) | sig.(双侧) | |
---|---|---|---|---|---|---|
国际 入境 旅游 | 新加坡 | 3.18 | 41.38 | 0.208 | 0.055 | 0.000 |
英国 | 2.68 | 23.40 | 0.080 | 0.064 | 0.000 | |
德国 | 3.74 | 20.30 | 0.278 | 0.061 | 0.000 | |
澳大利亚 | 2.55 | 13.06 | 0.076 | 0.058 | 0.049 | |
加拿大 | 2.37 | 11.22 | 0.101 | 0.064 | 0.029 | |
法国 | 2.66 | 10.65 | 0.028 | 0.059 | 0.010 | |
韩国 | 9.12 | 7.73 | 0.063 | 0.055 | 0.032 | |
日本 | 15.12 | 6.93 | 0.132 | 0.064 | 0.019 | |
美国 | 9.94 | 3.74 | 0.438 | 0.057 | 0.010 | |
国内 旅游 | 国内本地游客 | 42.34 | 19.69 | 0.409 | 0.205 | 0.059 |
国内外地游客 | 57.66 | 20.43 | 0.109 | 0.150 | 0.037 |
[1] |
Duval D T. Critical issues in air transport and tourism. Tourism Geographies, 2012, 15(3):494-510.
doi: 10.1080/14616688.2012.675581 |
[2] |
Baggio R. Symptoms of complexity in a tourism system. Tourism Analysis, 2008, 13(1):1-20.
doi: 10.3727/108354208784548797 |
[3] |
Pavlovich K. A rhizomic approach to tourism destination evolution and transformation. Tourism Management, 2014, 41:1-8.
doi: 10.1016/j.tourman.2013.08.004 |
[4] |
Baggio R, Scott N, Cooper C. Network science: A review focused on tourism. Annals of Tourism Research, 2010, 37(3):802-827.
doi: 10.1016/j.annals.2010.02.008 |
[5] | Newman M E. Networks: An Introduction. Oxford: Oxford University Press, 2010: 72-85 |
[6] |
Lansing J S. Complex adaptive systems. Annual Review of Anthropology, 2003, 32(1):183-204.
doi: 10.1146/annurev.anthro.32.061002.093440 |
[7] |
Kurtz C F, Snowden D J. The new dynamics of strategy: Sense-making in a complex and complicated world. IBM Systems Journal, 2003, 42(3):462-483.
doi: 10.1147/sj.423.0462 |
[8] |
Bain J S. Market classifications in modern price theory. The Quarterly Journal of Economics, 1942, 56(4):560-574.
doi: 10.2307/1883410 |
[9] |
Ferro L G, Flückiger Y. An econometric estimation of the demand for tourism: The case of Switzerland. Pacific Economic Review, 2003, 8(3):289-303.
doi: 10.1111/per.2003.8.issue-3 |
[10] |
Baggio R, Sainaghi R. Mapping time series into networks as a tool to assess the complex dynamics of tourism systems. Tourism Management, 2016, 54:23-33.
doi: 10.1016/j.tourman.2015.10.008 |
[11] |
Olmedo E, Mateos R. Quantitative characterization of chaordic tourist destination. Tourism Management, 2015, 47:115-126.
doi: 10.1016/j.tourman.2014.09.011 |
[12] |
Sainaghi R, Baggio R. Complexity traits and dynamics of tourism destinations. Tourism Management, 2017, 63:368-382.
doi: 10.1016/j.tourman.2017.07.004 |
[13] |
Ivars i Baidal J A, Rodríguez Sánchez I, Vera Rebollo J F. The evolution of mass tourism destinations: New approaches beyond deterministic models in Benidorm (Spain). Tourism Management, 2013, 34:184-195.
doi: 10.1016/j.tourman.2012.04.009 |
[14] | Huang Zhenfang, Yu Zhaoyuan. Huang Zhenlin, et al. Evolutionary stages and dynamic mechanisms of thematic cultural tourist areas: A case study of Lingshan scenic area in Wuxi. Acta Geographica Sinica, 2011, 66(6):831-841. |
[ 黄震方, 俞肇元, 黄振林, 等. 主题型文化旅游区的阶段性演进及其驱动机制: 以无锡灵山景区为例. 地理学报, 2011, 66(6):831-841.] | |
[15] | Yang Chunyu, Huang Zhenfang, Mao Weidong. A preliminary discussion about the evolutionary mechanism of tourism destinations based on system science. Tourism Tribune, 2009, 24(3):55-62. |
[ 杨春宇, 黄震方, 毛卫东. 基于系统科学的旅游地演化机制及规律性初探. 旅游学刊, 2009, 24(3):55-62.] | |
[16] | Lu Lin, Bao Jie. The course and mechanism of evolution about Qiandao Lake based on the theory of dissipative structure. Acta Geographica Sinica, 2010, 65(6):755-768. |
[ 陆林, 鲍捷. 基于耗散结构理论的千岛湖旅游地演化过程及机制. 地理学报, 2010, 65(6):755-768.] | |
[17] |
Lu Lin, Bao Jie, Ling Shanjin, et al. The evolution progress and mechanism of Guilin-Lijiang River-Yangshuo tourism destination system. Scientia Geographica Sinica, 2012, 32(9):1066-1074.
doi: 10.13249/j.cnki.sgs.2012.09.1066 |
[ 陆林, 鲍捷, 凌善金, 等. 桂林—漓江—阳朔旅游地系统空间演化模式及机制研究. 地理科学, 2012, 32(9):1066-1074.] | |
[18] |
Yang Zhongyuan, Xu Jiangang, Lin Wei. Spatial evolution progress of tourism destination based on theory of complex adaptive system: A case of southern Anhui. Acta Geographica Sinica, 2016, 71(6):1059-1074.
doi: 10.11821/dlxb201606012 |
[ 杨仲元, 徐建刚, 林蔚. 基于复杂适应系统理论的旅游地空间演化模式: 以皖南旅游区为例. 地理学报, 2016, 71(6):1059-1074.] | |
[19] |
Li Bohua, Zeng Rongqian, Liu Peilin, et al. Human settlement evolution of traditional village based on theory of complex adaptive system: A case study of Zhangguying village. Geographical Research, 2018, 37(10):1982-1996.
doi: 10.11821/dlyj201810009 |
[ 李伯华, 曾荣倩, 刘沛林, 等. 基于CAS理论的传统村落人居环境演化研究: 以张谷英村为例. 地理研究, 2018, 37(10):1982-1996.] | |
[20] | Sprott J C. Chaos and Time-series Analysis. Oxford: Oxford University Press, 2003: 10-12. |
[21] |
Flagestad A, Hope C A. Strategic success in winter sports destinations: A sustainable value creation perspective. Tourism Management, 2001, 22(5):445-461.
doi: 10.1016/S0261-5177(01)00010-3 |
[22] |
Bregoli I, del Chiappa G. Coordinating relationships among destination stakeholders: Evidence from Edinburgh (UK). Tourism Analysis, 2013, 18(2):145-155.
doi: 10.3727/108354213X13645733247657 |
[23] |
Sainaghi R, Baggio R. Structural social capital and hotel performance: Is there a link? International Journal of Hospitality Management, 2014, 37:99-110.
doi: 10.1016/j.ijhm.2013.11.004 |
[24] |
Beritelli P. Cooperation among prominent actors in a tourist destination. Annals of Tourism Research, 2011, 38(2):607-629.
doi: 10.1016/j.annals.2010.11.015 |
[25] |
Campopiano G, Minola T, Sainaghi R. Students climbing the entrepreneurial ladder. International Journal of Contemporary Hospitality Management, 2016, 28(6):1115-1136.
doi: 10.1108/IJCHM-05-2014-0236 |
[26] |
Haugland S A, Ness H, Grønseth B O, et al. Development of tourism destinations: An integrated multilevel perspective. Annals of Tourism Research, 2011, 38(1):268-290.
doi: 10.1016/j.annals.2010.08.008 |
[27] |
Baggio R. Tourism destinations: A universality conjecture based on network science. Annals of Tourism Research, 2020, 82:102929. DOI: 10.1016/j.annals.2020.102929.
doi: 10.1016/j.annals.2020.102929 |
[28] |
Glückler J. Economic geography and the evolution of networks. Journal of Economic Geography, 2007, 7(5):619-634.
doi: 10.1093/jeg/lbm023 |
[29] |
Clauset A, Shalizi C R, Newman M E J. Power-law distributions in empirical data. SIAM Review, 2007, 51(4):661-703.
doi: 10.1137/070710111 |
[30] |
Zhuang E Y, Small M, Feng G. Time series analysis of the developed financial markets' integration using visibility graphs. Physica A: Statistical Mechanics and Its Applications, 2014, 410:483-495.
doi: 10.1016/j.physa.2014.05.058 |
[31] | Baggio R, Chiappa D G. Complex Tourism Systems: A Quantitative Approach. New York: Apple Academic Press, 2016: 14-21. |
[32] | Yan Zhexian, Fan Dongping. An Introduction to Systems Science: Exploration of Complexity. Beijing: People's Publishing House, 2006: 48-49. |
[ 颜泽贤, 范冬萍. 系统科学导论: 复杂性探索. 北京: 人民出版社, 2006: 48-49.] | |
[33] | Waldrop M. Complexity. Beijing: SDX Joint Publishing Company, 1997: 104-105. |
[ 米歇尔.沃尔德罗普. 复杂. 北京: 三联书店, 1997: 104-105.] | |
[34] |
Baggio R, Sainaghi R. Complex and chaotic tourism systems: Towards a quantitative approach. International Journal of Contemporary Hospitality Management, 2011, 23(6):840-861.
doi: 10.1108/09596111111153501 |
[35] |
Lacasa L, Luque B, Ballesteros F, et al. From time series to complex networks: The visibility graph. PNAS, 2008, 105(13):4972-4975.
doi: 10.1073/pnas.0709247105 pmid: 18362361 |
[36] |
Luque B, Lacasa L, Ballesteros F, et al. Horizontal visibility graphs: Exact results for random time series. Physical Review E, 2009, 80(4):046103. DOI: 10.1103/PhysRevE.80.046103.
doi: 10.1103/PhysRevE.80.046103 |
[37] | Tang Yin, Yi Na, Mao Jinghui. Derived network based on directed limited penetrable visibility graph for time series. Journal of Systems Engineering, 2017, 32(2):156-264. |
[ 汤胤, 易娜, 毛景慧. 基于有向有限穿越可视图的时间序列伴生网络. 系统工程学. 2017, 32(2):156-264.] | |
[38] |
Lacasa L, Toral R. Description of stochastic and chaotic series using visibility graphs. Physical Review, 2010, 82(14):036120. DOI: 10.1103/PhysRevE.82.036120.
doi: 10.1103/PhysRevE.82.036120 |
[39] | Angel M N, Lacasa L, Gomez J P. Visibility Algorithms: A Short Review. Spain: Intech, 2012: 119-151. |
[40] | Ahmadi N, Rene M H. Assessment of visibility graph similarity as a synchronization measure for chaotic, noisy and stochastic time series. Social Network Analysis and Mining, 2018, 47(8):12-18. |
[41] |
Chao F, Li J G. Visitor flow pattern of Expo 2010. Chinese Physics B, 2012, 21(7):070209. DOI: 10.1088/1674-1056/21/7/070209.
doi: 10.1088/1674-1056/21/7/070209 |
[42] |
Tang J, Wang Y, Liu F. Characterizing traffic time series based on complex network theory. Physica A, 2013, 392(18):4192-4201.
doi: 10.1016/j.physa.2013.05.012 |
[43] |
Michail D. Vamvakaris, Athanasios A, et al. Time series analysis of S&P 500 index: A horizontal visibility graph approach. Physica A, 2018, 497(5):41-51.
doi: 10.1016/j.physa.2018.01.010 |
[44] |
Newman M E J, Girvan M. Finding and evaluating community structure in networks. Physical Review E, 2004, 69(2):026113. DOI: 10.1103/PhysRevE.69.026113.
doi: 10.1103/PhysRevE.69.026113 |
[45] | Li Xiaojia, Zhang Peng. Community structure in complex networks. Complex Systems and Complexity Science, 2008, 5(3):19-42. |
[ 李晓佳, 张鹏. 复杂网络中的社团结构. 复杂系统与复杂性科学, 2008, 5(3):19-42.] | |
[46] |
Schuetz P, Cafisch A. Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement. Physical Review E, 2008, 77(4):046112. DOI: 10.1103/PhysRevE.77.046112.
doi: 10.1103/PhysRevE.77.046112 |
[47] |
Mokryn O, Wagner A, et al. The role of temporal trends in growing networks. PLOS ONE, 2016, 11(8):0156505. DOI: 10.1371/journal.pone.0156505.
doi: 10.1371/journal.pone.0156505 |
[48] |
Fire M, Guestrin C. The rise and fall of network stars: Analyzing 2.5 million graphs to reveal how high-degree vertices emerge over time. Information Processing and Management, 2020, 57:102041. DOI: 10.1016/j.ipm.2019.05.002.
doi: 10.1016/j.ipm.2019.05.002 |
[49] |
Duncan J, Steven H. Collective dynamics of 'small-world' networks. Nature, 1998, 393(4):440-442.
doi: 10.1038/30918 |
[50] |
Wang M, Tian L. From time series to complex networks: The phase space coarse graining, Physica A, 2016, 461(11):456-468.
doi: 10.1016/j.physa.2016.06.028 |
[51] |
Zhou C, Ding L, Zhou Y, et al. Visibility graph analysis on time series of shield tunneling parameters based on complex network theory. Tunnelling and Underground Space Technology, 2019, 89:10-24.
doi: 10.1016/j.tust.2019.03.019 |
[52] |
Zhang Yu, Sun Gennian. Spatial relation between city size and tourism growth, and its evolution and driving factors: New understanding of city level system in the Yangtze River Delta. Scientia Geographica Sinica, 2016, 36(12):1877-1884.
doi: 10.13249/j.cnki.sgs.2016.12.013 |
[ 张毓, 孙根年. 城市规模与旅游成长空间关系、演变及驱动因子: 长江三角洲城市级别体系新认识. 地理科学, 2016, 36(12):1877-1884.] | |
[53] |
Mou N, Yuan R, Yang T, et al. Exploring spatio-temporal changes of city inbound tourism flow: The case of Shanghai, China. Tourism Management, 2020, 76:103955. DOI: 10.1016/j.tourman.2019.103955.
doi: 10.1016/j.tourman.2019.103955 |
[1] | 赵梓渝, 王士君, 陈肖飞. 模块化生产下中国汽车产业集群空间组织重构——以一汽-大众为例[J]. 地理学报, 2021, 76(8): 1848-1864. |
[2] | 魏石梅, 潘竟虎. 中国地级及以上城市网络结构韧性测度[J]. 地理学报, 2021, 76(6): 1394-1407. |
[3] | 李萌, 袁文, 袁武, 牛方曲, 李汉青, 胡段牧. 基于新闻大数据的北极地区地缘关系研究[J]. 地理学报, 2021, 76(5): 1090-1104. |
[4] | 郭向阳, 穆学青, 丁正山, 秦东丽. 长三角多维城市化对PM2.5浓度的非线性影响及驱动机制[J]. 地理学报, 2021, 76(5): 1274-1293. |
[5] | 盛科荣, 张杰, 张红霞. 上市公司500强企业网络嵌入对中国城市经济增长的影响[J]. 地理学报, 2021, 76(4): 818-834. |
[6] | 黄晓东, 马海涛, 苗长虹. 基于创新企业的中国城市网络联系特征[J]. 地理学报, 2021, 76(4): 835-852. |
[7] | 王录仓, 刘海洋, 刘清. 基于腾讯迁徙大数据的中国城市网络研究[J]. 地理学报, 2021, 76(4): 853-869. |
[8] | 刘清, 杨永春, 蒋小荣, 曹宛鹏, 刘笑杰. 基于全球价值链的全球化城市网络分析——以苹果手机供应商为例[J]. 地理学报, 2021, 76(4): 870-887. |
[9] | 袁丽华, 陈小强, 宋长青, 程昌秀, 沈石. 环印度洋区域国家地缘经济格局分析[J]. 地理学报, 2021, 76(4): 955-972. |
[10] | 王德, 李丹, 傅英姿. 基于手机信令数据的上海市不同住宅区居民就业空间研究[J]. 地理学报, 2020, 75(8): 1585-1602. |
[11] | 孙思奥, 王晶, 戚伟. 青藏高原地区城乡虚拟水贸易格局与影响因素[J]. 地理学报, 2020, 75(7): 1346-1358. |
[12] | 王楠, 王会蒙, 杜云艳, 易嘉伟, 刘张, 涂文娜. 青藏高原人口流入流出时空模式研究[J]. 地理学报, 2020, 75(7): 1418-1431. |
[13] | 施海洋, 罗格平, 郑宏伟, 陈春波, 白洁, 刘铁. 基于“水—能源—食物—生态”纽带因果关系和贝叶斯网络的锡尔河流域用水分析[J]. 地理学报, 2020, 75(5): 1036-1052. |
[14] | 侯纯光, 杜德斌, 刘承良, 桂钦昌, 刘树峰, 覃雄合. 全球留学生留学网络时空演化及其影响因素[J]. 地理学报, 2020, 75(4): 681-694. |
[15] | 马海涛. 知识流动空间的城市关系建构与创新网络模拟[J]. 地理学报, 2020, 75(4): 708-721. |