地理学报 ›› 2021, Vol. 76 ›› Issue (7): 1662-1679.doi: 10.11821/dlxb202107007
收稿日期:
2020-03-03
修回日期:
2020-12-22
出版日期:
2021-07-25
发布日期:
2021-09-25
作者简介:
刘勇洪(1974-), 男, 硕士, 研究员级高级工程师, 主要从事城市气象与遥感应用。E-mail: lyh7414@163.com
基金资助:
LIU Yonghong1(), XU Yongming2, ZHANG Fangmin3, SHU Wenjun4
Received:
2020-03-03
Revised:
2020-12-22
Published:
2021-07-25
Online:
2021-09-25
Supported by:
摘要:
在城市尺度上探究城市空间形态布局对城市热岛(UHI)影响研究,对于城市规划中通风环境改善、生态宜居城市建设具有重要意义。以北京为例,利用2009—2018年高密度自动气象站逐小时气温资料和2018年NPP/VIIRS夜光卫星资料,分析了UHI时空分布特征;利用2017年1∶2000基础地理信息和Landsat8卫星资料,开展了北京主城区建筑高度(BH)、建筑密度(BD)、建筑高度标准差(BSD)、容积率(FAR)、迎风截面积指数(FAI)、粗糙度长度(RL)、天空开阔度(SVF)、城市分数维(FD)等8个空间形态参数和植被覆盖度(VC)、不透水盖度(IC)、反照率(AB)等3个陆表参数的提取,并在城市尺度上开展了这些参数与UHI之间空间相关性及对UHI变化影响研究。结果显示:2009—2018年北京主城区年均、四季以及夜晚02时UHI均存在一个较为固定的形态,年均、春、夏、秋、冬、白天14时和夜晚02时UHI分别为1.81 ℃、1.50 ℃、1.43 ℃、2.16 ℃、2.17 ℃、0.48 ℃和2.77 ℃;8个空间形态参数在一年中大部分时段与UHI存在明显空间相关性,这种相关性在冬季强于其他季节,在夜晚02时强于白天14时,排名前三的分别为SVF、FAR和BD。空间形态参数已超越陆表参数成为UHI变化的重要驱动因子,11种参数对UHI变化的单独贡献为13.7%~63.7%,其中夏季、冬季和全年时段贡献最大的空间形态参数分别是BD(43.7%)、SVF(63.7%)和SVF(45.4%),贡献最大的陆表参数分别是VC(42.6%)、AB(57.1%)和VC(45.3%);夏季、冬季和全年时段多个参数对UHI变化的综合贡献分别为51.4%、69.1%和55.3%,主导要素分别为BD、SVF和BD。
刘勇洪, 徐永明, 张方敏, 舒文军. 北京城市空间形态对热岛分布影响研究[J]. 地理学报, 2021, 76(7): 1662-1679.
LIU Yonghong, XU Yongming, ZHANG Fangmin, SHU Wenjun. Influence of Beijing spatial morphology on the distribution of urban heat island[J]. Acta Geographica Sinica, 2021, 76(7): 1662-1679.
表1
代表性乡村气象站点和城市气象站点信息
站名 | 经度(°) | 纬度(°) | 海拔(m) | |
---|---|---|---|---|
乡村站 | 凤凰岭 | 116.099 | 40.111 | 73 |
永乐店 | 116.776 | 39.677 | 13 | |
庞各庄 | 116.325 | 39.603 | 25 | |
安定 | 116.511 | 39.616 | 24 | |
大孙各庄 | 116.915 | 40.087 | 35 | |
龙湾屯 | 116.851 | 40.231 | 52 | |
城市站 | 天安门 | 116.391 | 39.9 | 52 |
工人体育场 | 116.443 | 39.931 | 45 | |
奥体中心 | 116.397 | 39.982 | 48 | |
十八里店 | 116.475 | 39.853 | 37 | |
丽泽桥 | 116.306 | 39.862 | 48 | |
古观象台 | 116.428 | 39.905 | 48 | |
先农坛 | 116.389 | 39.872 | 49 | |
四惠桥 | 116.481 | 39.908 | 40 | |
南长街 | 116.384 | 39.907 | 49 |
表3
北京主城区115个街区各空间形态参数之间皮尔逊相关系数表
BD | FAR | BSD | RL | SVF | FAI | FD | |
---|---|---|---|---|---|---|---|
BH | 0.393** | 0.933** | 0.946** | 0.986** | -0.858** | 0.914** | 0.875** |
BD | - | 0.627** | 0.257** | 0.432** | -0.762** | 0.641** | 0.503** |
FAR | - | - | 0.848** | 0.945** | -0.945** | 0.952** | 0.876** |
BSD | - | - | 0.951** | -0.731** | 0.818** | 0.822** | |
RL | - | - | -0.869** | 0.930** | 0.882** | ||
SVF | - | - | - | - | - | -0.974** | -0.844** |
FAI | - | - | - | - | - | - | 0.877** |
表4
2009—2018年北京地区郊区站和城区站不同时段平均气温及相应UHI比较(℃)
时段 | 城市站平均气温 | 郊区站平均气温 | UHI |
---|---|---|---|
年均 | 14.21 | 12.40 | 1.81 |
年均14时 | 18.21 | 17.73 | 0.48 |
年均02时 | 11.71 | 8.94 | 2.77 |
春季 | 15.62 | 14.12 | 1.50 |
春季14时 | 20.19 | 19.69 | 0.51 |
春季02时 | 12.48 | 10.04 | 2.44 |
夏季 | 27.12 | 25.69 | 1.43 |
夏季14时 | 31.09 | 30.22 | 0.86 |
夏季02时 | 24.35 | 22.18 | 2.17 |
秋季 | 14.16 | 12.00 | 2.16 |
秋季14时 | 18.10 | 17.87 | 0.23 |
秋季02时 | 11.83 | 8.66 | 3.18 |
冬季 | -0.41 | -2.57 | 2.17 |
冬季14时 | 3.25 | 2.82 | 0.43 |
冬季02时 | -2.21 | -5.41 | 3.20 |
表5
2009—2018年北京主城区不同时段UHI与各空间形态参数皮尔逊相关系数表
时段 | BH | BD | FAR | BSD | RL | SVF | FAI | FD |
---|---|---|---|---|---|---|---|---|
年均 | 0.525** | 0.650** | 0.645** | 0.461** | 0.551** | -0.674** | 0.635** | 0.584** |
年均14时 | 0.168 | 0.438** | 0.270** | 0.13 | 0.209* | -0.325** | 0.278** | 0.267** |
年均02时 | 0.539** | 0.607** | 0.648** | 0.488** | 0.557** | -0.666** | 0.631** | 0.583** |
春季 | 0.478** | 0.673** | 0.611** | 0.406** | 0.502** | -0.658** | 0.603** | 0.560** |
春季14时 | 0.046 | 0.363** | 0.159 | 0.023 | 0.084 | -0.202* | 0.152 | 0.118 |
春季02时 | 0.556** | 0.622** | 0.665** | 0.484** | 0.569** | -0.697** | 0.658** | 0.622** |
夏季 | 0.438** | 0.661** | 0.578** | 0.370** | 0.468** | -0.621** | 0.562** | 0.515** |
夏季14时 | 0.339** | 0.541** | 0.453** | 0.275** | 0.382** | -0.500** | 0.456** | 0.428** |
夏季02时 | 0.393** | 0.615** | 0.526** | 0.330** | 0.417** | -0.564** | 0.512** | 0.466** |
秋季 | 0.570** | 0.623** | 0.677** | 0.500** | 0.594** | -0.704** | 0.670** | 0.634** |
秋季14时 | 0.09 | 0.341** | 0.18 | 0.058 | 0.139 | -0.231* | 0.195 | 0.179 |
秋季02时 | 0.578** | 0.579** | 0.678** | 0.515** | 0.596** | -0.692** | 0.662** | 0.634** |
冬季 | 0.654** | 0.691** | 0.757** | 0.566** | 0.681** | -0.798** | 0.761** | 0.719** |
冬季14时 | 0.143 | 0.419** | 0.273** | 0.104 | 0.208* | -0.308** | 0.275** | 0.247** |
冬季02时 | 0.634** | 0.648** | 0.740** | 0.563** | 0.661** | -0.766** | 0.734** | 0.684** |
表6
2009—2018年北京主城区夏季、冬季和全年平均UHI与各空间形态参数和陆表参数回归模型
参数 | 夏季 | 冬季 | 全年 | |
---|---|---|---|---|
空间形态参数 | BH | UHI=0.030BH+0.692 R2=0.191 P<0.01 | UHI=0.068BH+1.259 R2=0.428 P<0.01 | UHI=0.046BH+0.960 R2=0.276 P<0.01 |
BD | UHI=3.656BD+0.330 R2=0.437 P<0.01 | UHI=5.695BD+0.953 R2=0.477 P<0.01 | UHI=4.562BD+0.614 R2=0.423 P<0.01 | |
FAR | UHI=0.485FAR+0.594 R2=0.335 P<0.01 | UHI=0.947FAR+1.174 R2=0.574 P<0.01 | UHI=0.687FAR+0.863 R2=0.417 P<0.01 | |
BSD | UHI=0.027BSD+0.779 R2=0.137 P<0.01 | UHI=0.062BSD+1.438 R2=0.321 P<0.01 | UHI=0.043BSD+1.076 R2=0.213 P<0.01 | |
RL | UHI=0.272RL+0.663 R2=0.219 P<0.01 | UHI=0.594RL+1.218 R2=0.464 P<0.01 | UHI=0.393RL+0.935 R2=0.303 P<0.01 | |
FAI | UHI=4.405FAI+0.536 R2=0.316 P<0.01 | UHI=9.043FAI+1.025 R2=0.579 P<0.01 | UHI=5.743FAI+0.772 R2=0.403 P<0.01 | |
SVF | UHI=-2.440SVF+2.854 R2=0.385 P<0.01 | UHI=-4.677SVF+5.523 R2=0.637 P<0.01 | UHI=-3.363SVF+3.996 R2=0.454 P<0.01 | |
FD | UHI=1.874FD-3.719 R2=0.266 P<0.01 | UHI=3.896FD-7.853 R2=0.517 P<0.01 | UHI=2.696FD-5.353 R2=0.341 P<0.01 | |
陆表参数 | VC | UHI=-3.365VC+1.754 R2=0.426 P<0.01 | UHI=-5.691VC+3.262 R2=0.548 P<0.01 | UHI=-4.406VC+2.433 R2=0.453 P<0.01 |
IC | UHI=2.828IC-0.975 R2=0.327 P<0.01 | UHI=4.769IC-1.344 R2=0.418 P<0.01 | UHI=3.575IC-1.048 R2=0.324 P<0.01 | |
AB | UHI=-20.342AB+3.50 R2=0.413 P<0.01 | UHI=-36.347AB+6.499 R2=0.571 P<0.01 | UHI=-28.546AB+4.893 R2=0.443 P<0.01 | |
全部参数 | UHI=1.987+2.325BD -11.624AB R2=0.514 P<0.01 BetaBD=0.420 BetaAB=-0.367 VIFBD=1.753 VIFAB=1.753 | UHI=5.361-2.238SVF-15.478AB +1.558BD R2=0.691 P<0.01 BetaSVF=-3.97 BetaAB=-3.22 BetaBD=0.189 VIFSVF=4.061 VIFAB=2.755 VIFBD=2.388 | UHI=-2.299+2.828BD -12.739AB+0.016BSD R2=0.553 P<0.01 BetaBD=0.403 BetaAB=-3.10 BetaBSD=0.176 VIFBD=1.808 VIFAB=2.573 VIFBSD=1.589 |
[1] |
Golany G S. Urban design morphology and thermal performance. Atmospheric Environment, 1996,30(3):455-465.
doi: 10.1016/1352-2310(95)00266-9 |
[2] |
Middel A, Häb K, Brazel A J, et al. Impact of urban form and design on mid-afternoon microclimate in Phoenix Local Climate Zones. Landscape and Urban Planning, 2014,122:16-28.
doi: 10.1016/j.landurbplan.2013.11.004 |
[3] |
Wei R H, Song D X, Wong N H, et al. Impact of urban morphology parameters on microclimate. Procedia Engineering, 2016,169:142-149.
doi: 10.1016/j.proeng.2016.10.017 |
[4] |
Lan Y L, Zhan Q M. How do urban buildings impact summer air temperature? The effects of building configurations in space and time. Building and Environment, 2017,125:88-98.
doi: 10.1016/j.buildenv.2017.08.046 |
[5] |
Xu D, Zhou D, Wang Y P, et al. Field measurement study on the impacts of urban spatial indicators on urban climate in a Chinese basin and static-wind city. Building and Environment, 2019,147:482-494
doi: 10.1016/j.buildenv.2018.10.042 |
[6] |
Futcher J A, Kershaw T, Mills G. Urban form and function as building performance parameters. Building and Environment, 2013,62:112-123.
doi: 10.1016/j.buildenv.2013.01.021 |
[7] |
Taleghani M, Kleerekoper L, Tenpierik M, et al. Outdoor thermal comfort within five different urban forms in the Netherlands. Building and Environment, 2015,83:65-78.
doi: 10.1016/j.buildenv.2014.03.014 |
[8] |
Achour-Younsi S, Kharrat F. Outdoor thermal comfort: Impact of the geometry of an urban street canyon in a Mediterranean subtropical climate-case study Tunis, Tunisia. Procedia: Social and Behavioral Sciences, 2016,216:689-700.
doi: 10.1016/j.sbspro.2015.12.062 |
[9] |
Quan S J, Wu J, Wang Y, et al. Urban form and building energy performance in Shanghai neighborhoods. Energy Procedia, 2016,88:126-132.
doi: 10.1016/j.egypro.2016.06.035 |
[10] |
Zhou Y, Zhuang Z, Yang F, et al. Urban morphology on heat island and building energy consumption. Procedia Engineering, 2017,205:2401-2406.
doi: 10.1016/j.proeng.2017.09.862 |
[11] |
Zhao C J, Fu G B, Liu X M, et al. Urban planning indicators, morphology and climate indicators: A case study for a north-south transect of Beijing, China. Building and Environment, 2011,46:1174-1183.
doi: 10.1016/j.buildenv.2010.12.009 |
[12] |
Alobaydi D, Bakarman M A, Obeidat B. The impact of urban form configuration on the urban heat island: The case study of Baghdad, Iraq. Procedia Engineering, 2016,145:820-827.
doi: 10.1016/j.proeng.2016.04.107 |
[13] |
Stewart I D, Oke T R. Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 2012,93(12):1879-1900.
doi: 10.1175/BAMS-D-11-00019.1 |
[14] |
Verdonck M L, Demuzere M, Hooyberghs H, et al. The potential of local climate zones maps as a heat stress assessment tool, supported by simulated air temperature data. Landscape and Urban Planning, 2018,178:183-197.
doi: 10.1016/j.landurbplan.2018.06.004 |
[15] |
Yang X S, Yao L Y, Jin T, et al. Assessing the thermal behavior of different local climate zones in the Nanjing metropolis, China. Building and Environment, 2018,137:171-184.
doi: 10.1016/j.buildenv.2018.04.009 |
[16] |
Kotharkar R, Bagade A. Evaluating urban heat island in the critical local climate zones of an Indian city. Landscape and Urban Planning, 2018,169:92-104.
doi: 10.1016/j.landurbplan.2017.08.009 |
[17] |
Ferreira L S, Duarte D H S. Exploring the relationship between urban form, land surface temperature and vegetation indices in a subtropical megacity. Urban Climate, 2019,27:105-123.
doi: 10.1016/j.uclim.2018.11.002 |
[18] |
Ren C, Ng E Y Y, Katzschner L. Urban climatic map studies: A review. International Journal of Climatology, 2011,31(15):2213-2233.
doi: 10.1002/joc.2237 |
[19] | Ng E Y Y, Ren C, Katzschner L. Urban climatic mapping in Hong Kong. Journal of Heat Island Institute International, 2012,7(2):55-64. |
[20] |
Xu Y, Ren C, Ma P F, et al. Urban morphology detection and computation for urban climate research. Landscape and Urban Planning, 2017,167:212-224.
doi: 10.1016/j.landurbplan.2017.06.018 |
[21] |
Touchaei A G, Wang Y. Characterizing urban heat island in Montreal (Canada): Effect of urban morphology. Sustainable Cities and Society, 2015,19:395-402.
doi: 10.1016/j.scs.2015.03.005 |
[22] |
He X D, Li Y H, Wang X R, et al. High-resolution dataset of urban canopy parameters for Beijing and its application to the integrated WRF_urban modelling system. Journal of Cleaner Production, 2019,208:373-383.
doi: 10.1016/j.jclepro.2018.10.086 |
[23] |
Li Y H, Miao S G, Chen F, et al. Introducing and evaluating a new building-height categorization based on the fractal dimension into the coupled WRF/urban model. International Journal of Climatology, 2017,37:3111-3122.
doi: 10.1002/joc.2017.37.issue-7 |
[24] |
Tong S S, Wong N H, Jusuf S K, et al. Study on correlation between air temperature and urban morphology parameters in built environment in northern China. Building and Environment, 2018,127:239-249.
doi: 10.1016/j.buildenv.2017.11.013 |
[25] | Zhu Yuemei, Li Bingxi, Liu Jing, et al. Influences of building floor area ratio on local thermal climate in high latitude severe cold area. Building Science, 2012,28(6):78-83, 91. |
[ 朱岳梅, 李炳熙, 刘京, 等. 高纬度严寒地区建筑容积率对局地热气候的影响. 建筑科学, 2012,28(6):78-83, 91.] | |
[26] |
Hu Y P, White M, Ding W W. An urban form experiment on urban heat island effect in high density area. Procedia Engineering, 2016,169:166-174.
doi: 10.1016/j.proeng.2016.10.020 |
[27] |
Giridharan R, Ganesan S, Lau S S Y. Daytime urban heat island effect in high-rise and high-density residential developments in Hong Kong. Energy and Buildings, 2004,36(6):525-534.
doi: 10.1016/j.enbuild.2003.12.016 |
[28] |
Giridharan R, Lau S S Y, Ganesan S. Nocturnal heat island effect in urban residential developments of Hong Kong. Energy and Buildings, 2005,37(9):964-971.
doi: 10.1016/j.enbuild.2004.12.005 |
[29] |
Giridharan R, Lau S S Y, Ganesan S, et al. Lowering the outdoor temperature in high-rise high-density residential developments of coastal Hong Kong: The vegetation influence. Building and Environment, 2008,43(10):1583-1595.
doi: 10.1016/j.buildenv.2007.10.003 |
[30] | Zhang H L, Zhu S Y, Gao C, et al. The relationship between urban spatial morphology parameters and urban heat island intensity under fine weather condition. Journal of Applied Meteorological Science, 2016,27(2):249-256. |
[31] |
Grimmond C S B, Roth M, Oke T R, et al. Climate and more sustainable cities: Climate information for improved planning and management of cities (producers/capabilities perspective). Procedia Environmental Sciences, 2010,1:247-274.
doi: 10.1016/j.proenv.2010.09.016 |
[32] |
Adachi S A, Kimura F, Kusaka H, et al. Moderation of summertime heat island phenomena via modification of the urban form in the Tokyo metropolitan area. Journal of Applied Meteorology and Climatology, 2014,53(8):1886-1900.
doi: 10.1175/JAMC-D-13-0194.1 |
[33] |
He X D, Shen S H, Miao S G, et al. Quantitative detection of urban climate resources and the establishment of an urban climate map (UCMap) system in Beijing. Building and Environment, 2015,92:668-678.
doi: 10.1016/j.buildenv.2015.05.044 |
[34] |
Morini E, de Touchaei A G, Rossi F, et al. Evaluation of albedo enhancement to mitigate impacts of urban heat island in Rome (Italy) using WRF meteorological model. Urban Climate, 2018,24:551-566.
doi: 10.1016/j.uclim.2017.08.001 |
[35] |
Gusson C S, Duarte D H S. Effects of built density and urban morphology on urban microclimate: Calibration of the model ENVI-met V4 for the subtropical Sao Paulo, Brazil. Procedia Engineering, 2016,169:2-10.
doi: 10.1016/j.proeng.2016.10.001 |
[36] |
Jamei E, Ossen D R Rajagopalan, P. Investigating the effect of urban configurations on the variation of air temperature. International Journal of Sustainable Built Environment, 2017,6(2):389-399.
doi: 10.1016/j.ijsbe.2017.07.001 |
[37] |
Sharmin T, Steemers K, Matzarakis A. Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. Sustainable Cities and Society, 2017,34:293-308.
doi: 10.1016/j.scs.2017.07.006 |
[38] |
Niachou K, Livada I, Santamouris M. Experimental study of temperature and air flow distribution inside an urban street canyon during hot summer weather conditions (Part I): Air and surface temperatures. Building and Environment, 2008,43:1383-1392.
doi: 10.1016/j.buildenv.2007.01.039 |
[39] |
Tsoka S, Tsikaloudaki K, Theodosiou T. Urban space's morphology and microclimatic analysis: A study for a typical urban district in the Mediterranean city of Thessaloniki, Greece. Energy and Buildings, 2017,156:96-108.
doi: 10.1016/j.enbuild.2017.09.066 |
[40] | Jiang Xiaoyan, Zhang Chaolin, Gao Hua, et al. Impacts of urban albedo change on urban heat island in Beijing: A case study. Acta Meteorologica Sinica, 2007,65(2):301-307. |
[ 江晓燕, 张朝林, 高华, 等. 城市下垫面反照率变化对北京市热岛过程的影响: 个例分析. 气象学报, 2007,65(2):301-307.] | |
[41] | Dou Yiwen, Qu Yugui, Tao Shiwei, et al. The application of quality control procedures for real-time data from automatic weather stations. Meteorological Monthly, 2008,34(8):77-81. |
[ 窦以文, 屈玉贵, 陶士伟, 等. 北京自动气象站实时数据质量控制应用. 气象, 2008,34(8):77-81.] | |
[42] |
Liang H D, Guo Z Y, Wu J P, et al. GDP spatialization in Ningbo city based on NPP/VIIRS night-time light and auxiliary data using random forest regression. Advances in Space Research, 2020,65(1):481-493.
doi: 10.1016/j.asr.2019.09.035 |
[43] | Yan Zhongwei, Wang Jun, Li Zhen, et al. Assessing climatic effects of urbanization based on homogenized daily observations. Advances in Meteorological Science and Technology, 2014,4(3):41-48. |
[ 严中伟, 王君, 李珍, 等. 基于均一化观测序列评估城市化的气候效应. 气象科技进展, 2014,4(3):41-48.] | |
[44] |
Wu Zixuan, Zhang Qiang, Song Changqing, et al. Impacts of urbanization on spatio-temporal variations of temperature over the Pearl River Delta. Acta Geographica Sinica, 2019,74(11):2342-2357.
doi: 10.11821/dlxb201911011 |
[ 吴子璇, 张强, 宋长青, 等. 珠三角城市化对气温时空差异性影响. 地理学报, 2019,74(11):2342-2357.] | |
[45] |
Liu Y H, Fang X Y, Xu Y M, et al. Assessment of surface urban heat island across China's three main urban agglomerations. Theoretical and Applied Climatology, 2018,133:473-488.
doi: 10.1007/s00704-017-2197-3 |
[46] | Dou Jingjing. Fine-scale characteristics of low-level meteorological elements in Beijing urban area[D]. Beijing: Chinese Academy of Meteorological Sciences, 2014. |
[ 窦晶晶. 北京城区近地面气象要素精细化时空分布特征[D]. 北京: 中国气象科学研究院, 2014.] | |
[47] |
Chen Ailian, Sun Ranhao, Chen Liding. Studies on urban heat island from a landscape pattern view: A review. Acta Ecologica Sinica, 2012,32(14):4553-4565.
doi: 10.5846/stxb |
[ 陈爱莲, 孙然好, 陈利顶. 基于景观格局的城市热岛研究进展. 生态学报, 2012,32(14):4553-4565.] | |
[48] |
Gál T, Unger J. Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area. Building and Environment, 2009,44(1):198-206.
doi: 10.1016/j.buildenv.2008.02.008 |
[49] |
Yuan C, Ren C, Ng E. GIS-based surface roughness evaluation in the urban planning system to improve the wind environment: A study in Wuhan, China. Urban Climate, 2014,10:585-593.
doi: 10.1016/j.uclim.2014.06.005 |
[50] |
Grimmond C S B, Oke T R. Aerodynamic properties of urban areas derived from analysis of surface form. Journal of Applied Meteorology, 1999,38(9):1262-1292.
doi: 10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2 |
[51] | Liu Yonghong, Xu Yongming, Zhang Fangmin, et al. Research and application of urban surface ventilation potential: cases of Beijing and Guangzhou. Planners, 2019,35(10):32-40. |
[ 刘勇洪, 徐永明, 张方敏, 等. 城市地表通风潜力研究技术方法与应用: 以北京和广州中心城为例. 规划师, 2019,35(10):32-40.] | |
[52] |
Chen L, Ng E. Quantitative urban climate mapping based on a geographical database: A simulation approach using Hong Kong as a case study. International Journal of Applied Earth Observation and Geoinformation, 2011,13(4):586-594.
doi: 10.1016/j.jag.2011.03.003 |
[53] |
Gál T, Lindberg F, Unger J. Computing continuous sky view factors using 3D urban raster and vector databases: Comparison and application to urban climate. Theoretical and Applied Climatology, 2009,95(1/2):111-123.
doi: 10.1007/s00704-007-0362-9 |
[54] |
Zakšek K, Oštir K, Kokalj Ž. Sky-view factor as a relief visualization technique. Remote Sensing, 2011,3:398-415.
doi: 10.3390/rs3020398 |
[55] |
Chen L, Ng E, An X P, et al. Sky view factor analysis of street canyons and its implications for daytime intra-urban air temperature differentials in high-rise, high-density urban areas of Hong Kong: A GIS-based simulation approach. International Journal of Climatology, 2012,32(1):121-136.
doi: 10.1002/joc.2243 |
[56] | Liu Yonghong, He Wenbin, Xu Yongming. Measure of Beijing urban underlying surface heterogeneity characteristic. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 2015,7(5):444-450. |
[ 刘勇洪, 何文斌, 徐永明. 北京城市下垫面的非均匀性度量研究. 南京信息工程大学学报(自然科学版), 2015,7(5):444-450.] | |
[57] |
Ridd M K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: Comparative anatomy for cities. International Journal of Remote Sensing, 1995,16(12):2165-2185.
doi: 10.1080/01431169508954549 |
[58] | Xu Yongming, Liu Yonghong. Study on the thermal environment and its relationship with impervious surface in Beijing city using TM image. Ecology and Environmental Sciences, 2013,22(4):639-643. |
[ 徐永明, 刘勇洪. 基于TM 影像的北京市热环境及其与不透水面的关系研究. 生态环境学报, 2013,22(4):639-643.] | |
[59] | Cai Erli, Dou Baocheng, Peng Shi, et al. A study of albedo product downscaling method based on image fusion. Remote Sensing Technology and Application, 2016,31(4):724-730. |
[ 蔡二丽, 窦宝成, 彭实, 等. 基于图像融合的反照率产品降尺度方法研究. 遥感技术与应用, 2016,31(4):724-730.] | |
[60] | Liu Yonghong, Fang Xiaoyi, Luan Qingzu. Estimation of roughness length of Beijing area based on satellite data and GIS technique. Plateau Meteorology, 2016,35(6):1625-1638. |
[ 刘勇洪, 房小怡, 栾庆祖. 基于卫星数据与GIS技术的北京地区粗糙度长度估算研究. 高原气象, 2016,35(6):1625-1638.] | |
[61] |
Yang J, Wang Y C, Xiao X M, et al. Spatial differentiation of urban wind and thermal environment in different grid sizes. Urban Climate, 2019,28:100458. DOI: 10.1016/j.uclim.2019.100458.
doi: 10.1016/j.uclim.2019.100458 |
[62] | Zhou D C, Xiao J F, Bonafoni S, et al. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sensing, 2019,11(48). DOI: 10.3390/rs11010048. |
[63] | Oke T R, Mills G, Christen A, et al. Urban Climates. Cambridge: Cambridge University Press, 2017: 254-268. |
[64] |
Guo A D, Yang J, Xiao X M, et al. Influences of urban spatial form on urban heat island effects at the community level in China, Sustainable Cities and Society, 2020,53, 101972. DOI: 10.1016/j.scs.2019.101972.
doi: 10.1016/j.scs.2019.101972 |
[65] |
Yang J, Su J R, Xia J H, et al. The impact of spatial form of urban architecture on the urban thermal environment: A case study of the Zhongshan District, Dalian, China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018,11(8):2709-2716.
doi: 10.1109/JSTARS.4609443 |
[1] | 张琨, 吕一河, 傅伯杰, 尹礼唱, 于丹丹. 黄土高原植被覆盖变化对生态系统服务影响及其阈值[J]. 地理学报, 2020, 75(5): 949-960. |
[2] | 祝萍,黄麟,肖桐,王军邦. 中国典型自然保护区生境状况时空变化特征[J]. 地理学报, 2018, 73(1): 92-103. |
[3] | 杨俊, 国安东, 席建超, 葛全胜, 李雪铭. 城市三维景观格局时空分异特征研究——以大连市中山区为例[J]. 地理学报, 2017, 72(4): 646-656. |
[4] | 何宝忠, 丁建丽, 张喆, 阿布都瓦斯提·吾拉木. 新疆植被覆盖度趋势演变实验性分析[J]. 地理学报, 2016, 71(11): 1948-1966. |
[5] | 赵舒怡, 宫兆宁, 刘旭颖. 2001-2013年华北地区植被覆盖度与干旱条件的相关分析[J]. 地理学报, 2015, 70(5): 717-729. |
[6] | 翟俊, 刘荣高, 刘纪远, 赵国松. 1990-2010年中国土地覆被变化引起反照率改变的辐射强迫[J]. 地理学报, 2013, 68(7): 875-885. |
[7] | 穆少杰, 李建龙, 陈奕兆, 刚成诚, 周伟, 居为民. 2001-2010 年内蒙古植被覆盖度时空变化特征[J]. 地理学报, 2012, 67(9): 1255-1268. |
[8] | 张学珍, 郑景云, 何凡能, 王鐯森. MODIS BRDF/Albedo数据在中国温度模拟中的应用[J]. 地理学报, 2011, 66(3): 356-366. |
[9] | 渠涛; 蔡建明; 张理茜; 郑斌. 轨道交通导向下的容积率规划[J]. 地理学报, 2010, 65(2): 202-212. |
[10] | 杨永春, 伍俊辉, 杨晓娟, 侯利, 李志勇, 向发敏. 1949 年以来兰州城市资本密度空间变化及其机制[J]. 地理学报, 2009, 64(2): 189-201. |
[11] | 陈效逑,王恒. 1982-2003 年内蒙古植被带 和植被覆盖度的时空变化[J]. 地理学报, 2009, 64(1): 84-94. |
[12] | 孙睿, 刘昌明, 朱启疆. 黄河流域植被覆盖度动态变化与降水的关系[J]. 地理学报, 2001, 56(6): 667-672. |
[13] | 陈云浩, 李晓兵, 史培军. 中国西北地区蒸发散量计算的遥感研究[J]. 地理学报, 2001, 56(3): 261-268. |
[14] | 张琼, 钱永甫. 用NCEP/NCAR再分析辐射资料估算月平均地表反照率[J]. 地理学报, 1999, 54(4): 309-317. |