地理学报 ›› 2021, Vol. 76 ›› Issue (7): 1634-1648.doi: 10.11821/dlxb202107005
收稿日期:
2020-05-07
修回日期:
2021-04-27
出版日期:
2021-07-25
发布日期:
2021-09-25
通讯作者:
何剑锋(1967-), 女, 湖南永州人, 副研究员, 主要从事国土资源遥感与GIS应用方面的研究。E-mail: hejianfeng@igsnrr.ac.cn作者简介:
李程(1991-), 男, 山东沾化人, 博士生, 主要从事植被物候变化遥感监测方面的研究。E-mail: licheng@lreis.ac.cn
基金资助:
LI Cheng1,2(), ZHUANG Dafang1, HE Jianfeng1(
), WEN Kege1,2
Received:
2020-05-07
Revised:
2021-04-27
Published:
2021-07-25
Online:
2021-09-25
Supported by:
摘要:
物候变化是气候变化的重要指示器,通过对植被物候时空变化的研究可以为进一步分析全球气候变化提供依据。基于2000—2017年MODIS-NDVI时间序列数据,利用不对称高斯函数和动态阈值法,提取、分析了东西伯利亚苔原—泰加林过渡带植被生长季起始期(SOS)、结束期(EOS)、中期(MOS)和长度(LOS)4种植被遥感物候参数的时空变化格局。同时结合同期CRU(Climate Research Unit)气温观测数据,分析了4种物候参数对气温变化的响应关系。结果表明:遥感物候参数可以直接、有效地反映气温的变化:研究区64°N以南区域4—5月气温升高,对应区域SOS提前5~15 d;64°N~72°N之间5—6月气温升高,对应区域SOS提前10~25 d;最北端北冰洋沿岸6月气温升高幅度较小且7月气温降低,对应区域SOS推后15~25 d;西北部8月、西南部9月气温降低,对应地区EOS提前15~30 d;67°N以南区域9—10月气温升高,对应区域EOS推后5~30 d;EOS的变化对气温变化较SOS更为敏感,较小的气温波动即引起EOS较大的变动;研究区内植被生长季整体呈前移趋势,且西北部LOS缩短,中部、南部LOS延长。
李程, 庄大方, 何剑锋, 文可戈. 东西伯利亚苔原—泰加林过渡带植被遥感物候时空特征及其对气温变化的响应[J]. 地理学报, 2021, 76(7): 1634-1648.
LI Cheng, ZHUANG Dafang, HE Jianfeng, WEN Kege. Spatiotemporal variations in remote sensing phenology of vegetation and its responses to temperature change of boreal forest in tundra-taiga transitional zone in the Eastern Siberia[J]. Acta Geographica Sinica, 2021, 76(7): 1634-1648.
[1] | Zhu Kezhen, Wan Minwei. Phenology. Beijng: Science Press, 1975: 1-4. |
[ 竺可桢, 宛敏渭. 物候学. 北京: 科学出版社, 1975: 1-4.] | |
[2] | Harrison L. Phenology and Genecology of Woody Plants//Lieth H. (eds) Phenology and Seasonality Modeling. Ecological Studies: Analysis and Synthesis, vol 8. Berlin: Springer, 1974: 83-97. |
[3] |
Zheng J Y, Ge Q S, Hao Z X. Impacts of climate warming on plants phenophases in China for the last 40 years. Chinese Science Bulletin, 2002,47(21):1826-1831.
doi: 10.1360/02tb9399 |
[4] | Li Xiaoting, Guo Wei, Ni Xiangnan, et al. Plant phenological responses to temperature variation in an alpine meadow. Acta Ecologica Sinica, 2019,39(18):6670-6680. |
[ 李晓婷, 郭伟, 倪向南, 等. 高寒草甸植物物候对温度变化的响应. 生态学报, 2019,39(18):6670-6680.] | |
[5] |
Liu Yujie, Chen Qiaomin, Ge Quansheng, et al. Spatiotemporal differentiation of changes in wheat phenology in China under climate change from 1981 to 2010. Scientia Sinica: Terrae, 2018,48(7):888-898.
doi: 10.1360/N072017-00100 |
[ 刘玉洁, 陈巧敏, 葛全胜, 等. 气候变化背景下1981—2010中国小麦物候变化时空分异. 中国科学: 地球科学, 2018,48(7):888-898.] | |
[6] | Xu Yuqing, Lu Peiling, Yu Qiang. Response of tree phenology to climate change for recent 50 years in Beijing. Geographical Research, 2005,24(3):412-420. |
[ 徐雨晴, 陆佩玲, 于强. 近50年北京树木物候对气候变化的响应. 地理研究, 2005,24(3):412-420.] | |
[7] | Dai Junhu, Wang Huanjiong, Ge Quansheng. Changes of spring frost risks during the flowering period of woody plants in temperate monsoon area of China over the past 50 years. Acta Geographica Sinica, 2013,68(5):593-601. |
[ 戴君虎, 王焕炯, 葛全胜. 近50年中国温带季风区植物花期春季霜冻风险变化. 地理学报, 2013,68(5):593-601.] | |
[8] |
Zhang Xiaodong, Zhu Wenbo, Zhang Jingjing, et al. Phenology of forest vegetation and its response to climate change in the Funiu Mountains. Acta Geographica Sinica, 2018,73(1):41-53.
doi: 10.11821/dlxb201801004 |
[ 张晓东, 朱文博, 张静静, 等. 伏牛山地森林植被物候及其对气候变化的响应. 地理学报, 2018,73(1):41-53.] | |
[9] | Zu Jiaxing, Yang Jian. Temporal variation of vegetation phenology in northeastern China. Acta Ecologica Sinica, 2016,36(7):2015-2023. |
[ 俎佳星, 杨健. 东北地区植被物候时序变化. 生态学报, 2016,36(7):2015-2023.] | |
[10] | Rupiya Xilaer, Yang Liao. Monitoring spatial-temporal change of cotton phenology in Xinjiang and its response to climate change. Remote Sensing Technology and Application, 2018,33(5):923-931. |
[ 茹皮亚·西拉尔, 杨辽. 新疆棉花物候时空变化遥感监测及气温影响分析. 遥感技术与应用, 2018,33(5):923-931.] | |
[11] | Ma Xiaofang, Chen Siyu, Deng Jie, et al. Vegetation phenology dynamics and its response to climate change on the Tibetan Plateau. Acta Prataculturae Sinica, 2016,25(1):13-21. |
[ 马晓芳, 陈思宇, 邓婕, 等. 青藏高原植被物候监测及其对气候变化的响应. 草业学报, 2016,25(1):13-21.] | |
[12] | Wan Minwei, Liu Xiuzhen. Methods of Phenological Observation in China. Beijng: Science Press, 1979. |
[ 宛敏渭, 刘秀珍. 中国物候观测方法. 北京: 科学出版社, 1979.] | |
[13] | Xia Chuanfu, Li Jing, Liu Qinhuo. Review of advances in vegetation phenology monitoring by remote sensing. Journal of Remote Sensing, 2013,17(1):1-16. |
[ 夏传福, 李静, 柳钦火. 植被物候遥感监测研究进展. 遥感学报, 2013,17(1):1-16.] | |
[14] | Zeng Linglin. Remote sensing for crop phenology detection: Taking corn and soybeans as examples[D]. Wuhan: Wuhan University, 2015. |
[ 曾玲琳. 作物物候期遥感监测研究: 以玉米与大豆为例[D]. 武汉: 武汉大学, 2015.] | |
[15] | Ebata M, Tateishi R. Phenological stage monitoring in Siberia by using NOAA/ AV HRR data. Singapore: The 22nd Asian Conference on Remote Sensing, 5-9 November 2001. |
[16] | Li Lanhui, Liu Linshan, Zhang Yili, et al. Elevation-dependent alpine grassland and phenology on the Tibetan Plateau. Geographical Research, 2017,36(1):26-36. |
[ 李兰晖, 刘林山, 张镱锂, 等. 青藏高原高寒草地物候沿海拔梯度变化的差异分析. 地理研究, 2017,36(1):26-36.] | |
[17] |
Xue B L, Guo Q H, Gong Y W, et al. The influence of meteorology and phenology on net ecosystem exchange in an eastern Siberian boreal larch forest. Journal of Plant Ecology, 2016,9(5):520-530.
doi: 10.1093/jpe/rtv075 |
[18] |
Chen Xiaoqiu, Wang Linhai. Progress in remote sensing phenological research. Progress in Geography, 2009,28(1):33-40.
doi: 10.11820/dlkxjz.2009.01.005 |
[ 陈效逑, 王林海. 遥感物候学研究进展. 地理科学进展, 2009,28(1):33-40.] | |
[19] |
Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 2002,83(1-2):195-213.
doi: 10.1016/S0034-4257(02)00096-2 |
[20] | Varlamova E, Solovyev V. Study of NDVI vegetation index in East Siberia under global warming//International Society for Optics and Photonics. XXII International Symposium Atmospheric and Ocean Optics on Atmospheric Physics. 2016. |
[21] | Guo Jian, Chen Shi, Xu Bin, et al. Remote sensing monitoring of grassland vegetation greenup based on SPOT-VGT in Xilingol League. Geographical Research, 2017,36(1):37-48. |
[ 郭剑, 陈实, 徐斌, 等. 基于SPOT-VGT数据的锡林郭勒盟草原返青期遥感监测. 地理研究, 2017,36(1):37-48.] | |
[22] | Zhang Xuexia, Ge Quansheng, Zheng Jingyun. Overview on the vegetation phenology using the remote sensing. Advances in Earth Science, 2003,18(4):534-544. |
[ 张学霞, 葛全胜, 郑景云. 遥感技术在植物物候研究中的应用综述. 地球科学进展, 2003,18(4):534-544.] | |
[23] | Wu Wenbin, Yang Peng, Tang Huajun, et al. Monitoring spatial patterns of cropland phenology in North China based on NOAA NDVI data. Scientia Agricultura Sinica, 2009,42(2):552-560. |
[ 吴文斌, 杨鹏, 唐华俊, 等. 基于NDVI数据的华北地区耕地物候空间格局. 中国农业科学, 2009,42(2):552-560.] | |
[24] |
Liu Yujie, Ge Quansheng, Dai Junhu. Research progress in crop phenology under global climate change. Acta Geographica Sinica, 2020,75(1):14-24.
doi: 10.11821/dlxb202001002 |
[ 刘玉洁, 葛全胜, 戴君虎. 全球变化下作物物候研究进展. 地理学报, 2020,75(1):14-24.] | |
[25] |
Justice C O, Townshend J R G, Holben B N, et al. Analysis of the phenology of global vegetation using meteorological satellite data. International Journal of Remote Sensing, 1985,6(8):1271-1318.
doi: 10.1080/01431168508948281 |
[26] |
Lloyd D. A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. International Journal of Remote Sensing, 1990,11(12):2269-2279.
doi: 10.1080/01431169008955174 |
[27] |
Fischer A. A model for the seasonal variations of vegetation indices in coarse resolution data and its inversion to extract crop parameters. Remote Sensing of Environment, 1994,48(2):220-230.
doi: 10.1016/0034-4257(94)90143-0 |
[28] |
White M A, Thornton P E, Running S W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles, 1997,11(2):217-234.
doi: 10.1029/97GB00330 |
[29] |
Jönsson P, Eklundh L. TIMESAT: A program for analyzing time-series of satellite sensor data. Computers & Geosciences, 2004,30(8):833-845.
doi: 10.1016/j.cageo.2004.05.006 |
[30] | Yu Xinfang, Zhuang Dafang. Monitoring forest phenophases of northeast China based on MODIS NDVI data. Resources Science, 2006,28(4):111-117. |
[ 于信芳, 庄大方. 基于MODIS NDVI数据的东北森林物候期监测. 资源科学, 2006,28(4):111-117.] | |
[31] |
Picard G, Quegan S, Delbart N, et al. Bud‐burst modelling in Siberia and its impact on quantifying the carbon budget. Global Change Biology, 2005,11(12):2164-2176.
doi: 10.1111/gcb.2005.11.issue-12 |
[32] |
Liu R, Shang R, Liu Y, et al. Global evaluation of gap-filling approaches for seasonal NDVI with considering vegetation growth trajectory, protection of key point, noise resistance and curve stability. Remote Sensing of Environment, 2017,189:164-179.
doi: 10.1016/j.rse.2016.11.023 |
[33] |
Liu R G, Liu Y. Generation of new cloud masks from MODIS land surface reflectance products. Remote Sensing of Environment, 2013,133:21-37.
doi: 10.1016/j.rse.2013.01.019 |
[34] |
Liu R G. Compositing the minimum NDVI for MODIS Data. IEEE Transactions on Geoscience and Remote Sensing, 2017,55(3):1396-1406.
doi: 10.1109/TGRS.2016.2623746 |
[35] |
Reed B C, Brown J F, Vanderzee D, et al. Measuring phenological variability from satellite imagery. Journal of Vegetation Science, 1994,5(5):703-714.
doi: 10.2307/3235884 |
[36] |
Chen X, Tan Z J, Schwartz M D, et al. Determining the growing season of land vegetation on the basis of plant phenology and satellite data in northern China. International Journal of Biometeorology, 2000,44(2):97-101.
pmid: 10993564 |
[37] | Wen Kege. Vegetation responses to climate change in northern high latitudes (2000-2013)[D]. Beijing: The University of Chinese Academy of Sciences, 2016. |
[ 文可戈. 北方高纬度地区植被的气候变化响应研究(2000—2013年)[D]. 北京: 中国科学院大学, 2016.] | |
[38] |
Jonsson P, Eklundh L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing, 2002,40(8):1824-1832.
doi: 10.1109/TGRS.2002.802519 |
[1] | 尹云鹤, 马丹阳, 邓浩宇, 吴绍洪. 中国北方干湿过渡区生态系统生产力的气候变化风险评估[J]. 地理学报, 2021, 76(7): 1605-1617. |
[2] | 刘诗奇, 王平, 王田野, 黄其威, 于静洁. 西伯利亚北极河流有机碳输出特征及影响要素[J]. 地理学报, 2021, 76(5): 1065-1077. |
[3] | 王可逸, 刘晓宏, 曾小敏, 徐国保, 张凌楠, 李春越. 树轮稳定氮同位素记录的进展与展望[J]. 地理学报, 2021, 76(5): 1193-1205. |
[4] | 李哲, 丁永建, 陈艾姣, 张智华, 张世强. 1960—2019年西北地区气候变化中的Hiatus现象及特征[J]. 地理学报, 2020, 75(9): 1845-1859. |
[5] | 金凯, 王飞, 韩剑桥, 史尚渝, 丁文斌. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5): 961-974. |
[6] | 李双双, 汪成博, 延军平, 刘宪锋. 面向事件过程的秦岭南北极端降水时空变化特征[J]. 地理学报, 2020, 75(5): 989-1007. |
[7] | 马宁, 何丽烨, 梁苏洁, 郭军. 京津冀冬季冷空气过程的低频特征及西伯利亚高压低频变化的影响[J]. 地理学报, 2020, 75(3): 485-496. |
[8] | 田晶, 郭生练, 刘德地, 陈启会, 王强, 尹家波, 吴旭树, 何绍坤. 气候与土地利用变化对汉江流域径流的影响[J]. 地理学报, 2020, 75(11): 2307-2318. |
[9] | 萧凌波, 闫军辉. 基于地方志的1736-1911年华北秋粮丰歉指数序列重建及其与气候变化的关系[J]. 地理学报, 2019, 74(9): 1777-1788. |
[10] | 李双双, 延军平, 武亚群, 汪成博. 秦岭—淮河南北供暖格局变化及其影响因素[J]. 地理学报, 2019, 74(9): 1866-1877. |
[11] | 佟彪, 党安荣, 许剑. 300 BC-1900 AD无定河流域城镇时空格局演变[J]. 地理学报, 2019, 74(8): 1508-1524. |
[12] | 刘娟,姚晓军,刘时银,郭万钦,许君利. 1970-2016年冈底斯山冰川变化[J]. 地理学报, 2019, 74(7): 1333-1344. |
[13] | 刘俊,黄莉,孙晓倩,李宁馨,张恒锦. 气候变化对中国观鸟旅游的影响——基于鸟类物候变化的分析[J]. 地理学报, 2019, 74(5): 912-922. |
[14] | 马丹阳, 尹云鹤, 吴绍洪, 郑度. 中国干湿格局对未来高排放情景下气候变化响应的敏感性[J]. 地理学报, 2019, 74(5): 857-874. |
[15] | 高江波, 焦珂伟, 吴绍洪. 1982-2013年中国植被NDVI空间异质性的气候影响分析[J]. 地理学报, 2019, 74(3): 534-543. |