地理学报 ›› 2021, Vol. 76 ›› Issue (7): 1605-1617.doi: 10.11821/dlxb202107003
收稿日期:
2020-05-09
修回日期:
2020-12-23
出版日期:
2021-07-25
发布日期:
2021-09-25
通讯作者:
吴绍洪(1961-), 男, 广东潮州人, 博士, 研究员, 主要研究方向为自然地理综合研究与全球变化。E-mail: wush@ignsrr.ac.cn作者简介:
尹云鹤(1979-), 女, 山东德州人, 博士, 研究员, 中国地理学会会员(S110005959M), 主要从事综合自然地理, 气候变化的影响与风险研究。E-mail: yinyh@igsnrr.ac.cn
基金资助:
YIN Yunhe1(), MA Danyang2, DENG Haoyu1, WU Shaohong1,3(
)
Received:
2020-05-09
Revised:
2020-12-23
Published:
2021-07-25
Online:
2021-09-25
Supported by:
摘要:
气候变化风险是人类社会发展面临的严峻挑战,评估识别对气候波动响应敏感且复杂的干湿过渡区生态系统所面临的气候变化风险是一个重要科学问题,对区域气候治理和风险管理具有科学意义。本文利用参与耦合模式比较计划第五阶段(CMIP5)的多气候模式多情景数据,通过改进和验证Lund-Potsdam-Jena(LPJ)动态全球植被模型,辨识未来不同时段生态系统生产力的气候变化风险等级及其时空分布,明晰气候因子对净初级生产力(NPP)风险的作用特征。结果表明:未来中远期干湿过渡区生态系统生产力面临的气候变化风险面积将可能扩大,风险等级将可能提升,高排放情景下的风险更加严重,主要表现为NPP距平为负,且仍有继续下降的趋势。尤其是典型浓度路径(RCP8.5)情景下,81.85%的地区将可能面临气候变化风险,54.71%将达到高风险。2071—2099年,RCP8.5高风险区的NPP距平将达到(-96.00±46.95) gC m-2 a-1,NPP变化速率将达到(-3.56±3.40) gC m-2 a-1。干湿过渡区东部平原和内蒙古东部草原区预估将可能成为风险主要集中区域,这些地区未来的植被生长将可能受到气候变化的不利影响,增温加剧和干旱程度加重可能是未来气候变化风险的重要驱动因素。
尹云鹤, 马丹阳, 邓浩宇, 吴绍洪. 中国北方干湿过渡区生态系统生产力的气候变化风险评估[J]. 地理学报, 2021, 76(7): 1605-1617.
YIN Yunhe, MA Danyang, DENG Haoyu, WU Shaohong. Climate change risk assessment of ecosystem productivity in the arid/humid transition zone of northern China[J]. Acta Geographica Sinica, 2021, 76(7): 1605-1617.
[1] |
Urban M C. Accelerating extinction risk from climate change. Science, 2015,348(6234):571-573.
doi: 10.1126/science.aaa4984 pmid: 25931559 |
[2] |
Ding Y H. Sustainable management and action in China under the increasing risks of global climate change. Engineering, 2018,4(3):301-305.
doi: 10.1016/j.eng.2017.12.014 |
[3] | Wei Yiming, Yuan Xiaochen, Wu Gang, et al. Climate change risk assessment: A bibliometric analysis based on Web of Science. Bulletin of National Natural Science Foundation of China, 2014,28(5):347-356. |
[ 魏一鸣, 袁潇晨, 吴刚, 等. 气候变化风险评估研究现状与热点: 基于Web of Science的文献计量分析. 中国科学基金, 2014,28(5):347-356.] | |
[4] | Qin Dahe. China's National Assessment Report on Extreme Climate Events and Disaster Risk Management and Adaptation. Beijing: Science Press, 2015. |
[ 秦大河. 中国极端气候事件和灾害风险管理及适应国家评估报告. 北京: 科学出版社, 2015.] | |
[5] | Liu Yanhua, Wang Wentao. The new situation of global climate governance and China's green development strategy. China Sustainability Tribune, 2019,18(Suppl.1):16-21. |
[ 刘燕华, 王文涛. 全球气候治理新形势与我国绿色发展战略. 可持续发展经济导刊, 2019,18(Suppl.1):16-21.] | |
[6] |
Diffenbaugh N S, Field C B. Changes in ecologically critical terrestrial climate conditions. Science, 2013,341(6145):486-492.
doi: 10.1126/science.1237123 pmid: 23908225 |
[7] | IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013. |
[8] |
Seddon A W R, Macias-Fauria M, Long P R, et al. Sensitivity of global terrestrial ecosystems to climate variability. Nature, 2016,531(7593):229-232.
doi: 10.1038/nature16986 |
[9] |
Richardson A D, Hufkens K, Milliman T, et al. Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures. Nature, 2018,560(7718):368-371.
doi: 10.1038/s41586-018-0399-1 |
[10] |
Piao S L, Liu Z, Wang T, et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nature Climate Change, 2017,7(5):359-363.
doi: 10.1038/nclimate3277 |
[11] | IPCC. Summary for Policymakers. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2014. |
[12] |
Asmus M L, Nicolodi J, Anello L S, et al. The risk to lose ecosystem services due to climate change: A South American case. Ecological Engineering, 2019,130:233-241.
doi: 10.1016/j.ecoleng.2017.12.030 |
[13] |
Xu C G, McDowell N G, Fisher R A, et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nature Climate Change, 2019,9(12):948-953.
doi: 10.1038/s41558-019-0630-6 |
[14] | Yu Guirui, He Nianpeng, Wang Qiufeng. Carbon Budget and Carbon Sink of Ecosystems in China: Theoretical Basic and Comprehensive Assessment. Beijing: Science Press, 2013. |
[ 于贵瑞, 何念鹏, 王秋凤. 中国生态系统碳收支及碳汇功能: 理论基础与综合评估. 北京: 科学出版社, 2013.] | |
[15] |
IGBP Terrestrial Carbon Working Group. The terrestrial carbon cycle: Implications for the Kyoto Protocol. Science, 1998,280(5368):1393-1394.
doi: 10.1126/science.280.5368.1393 |
[16] |
Wu Z T, Dijkstra P, Koch G W, et al. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Global Change Biology, 2011,17(2):927-942.
doi: 10.1111/gcb.2010.17.issue-2 |
[17] |
Andreu-Hayles L, D'Arrigo R, Anchukaitis K J, et al. Varying boreal forest response to Arctic environmental change at the Firth River, Alaska. Environmental Research Letters, 2011,6(4):45503-45512.
doi: 10.1088/1748-9326/6/4/045503 |
[18] |
Fung I Y, Doney S C, Lindsay K, et al. Evolution of carbon sinks in a changing climate. PNAS, 2005,102(32):11201-11206.
doi: 10.1073/pnas.0504949102 |
[19] |
Allen C D, Macalady A K, Chenchouni H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 2010,259(4):660-684.
doi: 10.1016/j.foreco.2009.09.001 |
[20] |
Littell J S, Oneil E E, McKenzie D, et al. Forest ecosystems, disturbance, and climatic change in Washington State, USA. Climatic Change, 2010,102(1/2):129-158.
doi: 10.1007/s10584-010-9858-x |
[21] |
Heyder U, Schaphoff S, Gerten D, et al. Risk of severe climate change impact on the terrestrial biosphere. Environmental Research Letters, 2011,6(3):034036. DOI: 10.1088/1748-9326/6/3/034036.
doi: 10.1088/1748-9326/6/3/034036 |
[22] |
Gang C C, Zhang Y Z, Wang Z Q, et al. Modeling the dynamics of distribution, extent, and NPP of global terrestrial ecosystems in response to future climate change. Global and Planetary Change, 2017,148:153-165.
doi: 10.1016/j.gloplacha.2016.12.007 |
[23] |
Pan S F, Tian H Q, Dangal S R, et al. Complex spatiotemporal responses of global terrestrial primary production to climate change and increasing atmospheric CO2 in the 21st century. PLOS ONE, 2014,9(11):e112810. DOI: 10.1371/journal.pone.0112810.
doi: 10.1371/journal.pone.0112810 |
[24] |
Yin Y Y, Tang Q H, Wang L X, et al. Risk and contributing factors of ecosystem shifts over naturally vegetated land under climate change in China. Scientific Reports, 2016,6:20905. DOI: 10.1038/srep20905.
doi: 10.1038/srep20905 |
[25] |
Wang L, Chen W, Huang G, et al. Changes of the transitional climate zone in East Asia: Past and future. Climate Dynamics, 2017,49(4):1463-1477.
doi: 10.1007/s00382-016-3400-4 |
[26] | Zhang Lansheng, Fang Xiuqi, Ren Guoyu, et al. Environmental changes in the north China farming-grazing transitional zone. Earth Science Frontiers, 1997,4(1/2):127-136. |
[ 张兰生, 方修琦, 任国玉, 等. 我国北方农牧交错带的环境演变. 地学前缘, 1997,4(1/2):127-136.] | |
[27] | Lin Xiang, Qian Weihong. Review of the global monsoon and monsoon marginal zones. Advances in Earth Science, 2012,27(1):26-34. |
[ 林祥, 钱维宏. 全球季风和季风边缘研究. 地球科学进展, 2012,27(1):26-34.] | |
[28] | Fu C B. Transitional Climate Zones and Biome Boundaries: A Case Study from China. in Landscape Boundaries. New York: Springer, 1992: 394-402. |
[29] | Zheng Du. Ecogeographical Regionalization Research of China. Beijing: The Commercial Press, 2008. |
[ 郑度. 中国生态地理区域系统研究. 北京: 商务印书馆, 2008.] | |
[30] |
Mao J F, Fu W T, Shi X Y, et al. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends. Environmental Research Letters, 2015,10(9):094008. DOI: 10.1088/1748-9326/10/9/094008.
doi: 10.1088/1748-9326/10/9/094008 |
[31] |
Reynolds J F, Stafford-Smith D M, Lambin E F, et al. Global desertification: Building a science for dryland development. Science, 2007,316(5826):847-851.
pmid: 17495163 |
[32] | Fu Congbin, Ma Zhuguo. Global change and regional aridification. Chinese Journal of Atmospheric Sciences, 2008,32(4):752-760. |
[ 符淙斌, 马柱国. 全球变化与区域干旱化. 大气科学, 2008,32(4):752-760.] | |
[33] |
Yin Y H, Ma D Y, Wu S H. Nonlinear changes in aridity due to precipitation and evapotranspiration in China from 1961 to 2015. Climate Research, 2018,74(3):263-281.
doi: 10.3354/cr01500 |
[34] |
Wu S H, Yin Y H, Zheng D, et al. Aridity/humidity status of land surface in China during the last three decades. Science in China Series D: Earth Sciences, 2005,48(9):1510-1518.
doi: 10.1360/04yd0009 |
[35] |
Taylor K E, Stouffer R J, Meehl G A. An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 2012,93(4):485-498.
doi: 10.1175/BAMS-D-11-00094.1 |
[36] |
Warszawski L, Frieler K, Huber V, et al. The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): Project framework. PNAS, 2014,111(9):3228-3232.
doi: 10.1073/pnas.1312330110 pmid: 24344316 |
[37] |
Pierce D W, Barnett T P, Santer B D, et al. Selecting global climate models for regional climate change studies. PNAS, 2009,106(21):8441-8446.
doi: 10.1073/pnas.0900094106 pmid: 19439652 |
[38] | Zhao Tianbao, Chen Liang, Ma Zhuguo. Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models. Chinese Science Bulletin, 2014,59(12):1148-1163. |
[ 赵天保, 陈亮, 马柱国. CMIP5多模式对全球典型干旱半干旱区气候变化的模拟与预估. 科学通报, 2014,59(12):1148-1163.] | |
[39] |
Yin Y H, Ma D Y, Wu S H, et al. Projections of aridity and its regional variability over China in the mid-21st century. International Journal of Climatology, 2015,35(14):4387-4398.
doi: 10.1002/joc.4295 |
[40] |
Thibeault J M, Seth A. Changing climate extremes in the Northeast United States: Observations and projections from CMIP5. Climatic Change, 2014,127(2):273-287.
doi: 10.1007/s10584-014-1257-2 |
[41] |
Moss R H, Edmonds J A, Hibbard K A, et al. The next generation of scenarios for climate change research and assessment. Nature, 2010,463(7282):747-756.
doi: 10.1038/nature08823 |
[42] |
Lorenzoni I, Pidgeon N F, O'Connor R E. Dangerous climate change: The role for risk research. Risk Analysis, 2005,25(6):1387-1398.
pmid: 16506969 |
[43] |
Dessai S, Adger W N, Hulme M, et al. Defining and experiencing dangerous climate change. Climatic Change, 2004,64(1-2):11-25.
doi: 10.1023/B:CLIM.0000024781.48904.45 |
[44] |
Scholze M, Knorr W, Arnell N W, et al. A climate-change risk analysis for world ecosystems. PNAS, 2006,103(35):13116-13120.
pmid: 16924112 |
[45] |
Shi X L, Zhao D S, Wu S H, et al. Climate change risks for net primary production of ecosystems in China. Human and Ecological Risk Assessment, 2016,22(4):1091-1105.
doi: 10.1080/10807039.2015.1138090 |
[46] | Wu Shaohong. Integrated Risk Governance. Beijing: Science Press, 2011. |
[ 吴绍洪. 综合风险防范. 北京: 科学出版社, 2011.] | |
[47] |
Sneyers R. On the statistical analysis of series of observations. Journal of Biological Chemistry, 1990,258(22):13680-13684.
doi: 10.1016/S0021-9258(17)43970-6 |
[48] |
Sitch S, Smith B, Prentice I C, et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ Dynamic Global Vegetation Model. Global Change Biology, 2003,9(2):161-185.
doi: 10.1046/j.1365-2486.2003.00569.x |
[49] |
Collatz G J, Ball J T, Grivet C, et al. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agricultural and Forest Meteorology, 1991,54(2-4):107-136.
doi: 10.1016/0168-1923(91)90002-8 |
[50] |
Collatz G J, Ribas-Carbo M, Berry J A. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Functional Plant Biology, 1992,19(5):519-538.
doi: 10.1071/PP9920519 |
[51] |
Yin Y H, Ma D Y, Wu S H. Climate change risk to forests in China associated with warming. Scientific Reports, 2018,8(1):493. DOI: 10.1038/s41598-017-18798-6.
doi: 10.1038/s41598-017-18798-6 |
[52] | Allen R G, Pereira L S, Raes D, et al. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No.56. Rome: United Nations Food and Agriculture Organization, 1998. |
[53] |
Yin Y H, Wu S H, Zheng D, et al. Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China. Agricultural Water Management, 2008,95(1):77-84.
doi: 10.1016/j.agwat.2007.09.002 |
[54] | Arora V K, Boer G J. Fire as an interactive component of dynamic vegetation models. Journal of Geophysical Research Biogeosciences, 2005,110(G2):149-167. |
[55] |
Mao J F, Dan L, Wang B, et al. Simulation and evaluation of terrestrial ecosystem NPP with M-SDGVM over continental China. Advances in Atmospheric Sciences, 2010,27(2):427-442.
doi: 10.1007/s00376-009-9006-6 |
[56] |
Yuan Q Z, Wu S H, Zhao D S, et al. Modeling net primary productivity of the terrestrial ecosystem in China from 1961 to 2005. Journal of Geographical Sciences, 2014,24(1):3-17.
doi: 10.1007/s11442-014-1069-3 |
[57] |
Pan S F, Tian H Q, Lu C Q, et al. Net primary production of major plant functional types in China: Vegetation classification and ecosystem simulation. Acta Ecologica Sinica, 2015,35(2):28-36.
doi: 10.1016/j.chnaes.2015.03.001 |
[58] | Olson R J, Scurlock J M O, Prince S D, et al. NPP Multi-Biome: Global Primary Production Data Initiative Products, R2. Oak Ridge: ORNL Distributed Active Archive Center, 2013. |
[59] |
Nielsen U N, Ball B A. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Global Change Biology, 2015,21(4):1407-1421.
doi: 10.1111/gcb.12789 pmid: 25363193 |
[60] |
Wang C, Wang X B, Liu D W, et al. Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nature Communications, 2014,5:4799. DOI: 10.1038/ncomms5799.
doi: 10.1038/ncomms5799 |
[61] |
Huang L, He B, Chen A F, et al. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems. Scientific Reports, 2016,6:24639. DOI: 10.1038/srep24639.
doi: 10.1038/srep24639 pmid: 27091439 |
[62] |
Loreau M, De Mazancourt C, Duffy E. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecology Letters, 2013,16(Suppl.1):106-115.
doi: 10.1111/ele.2013.16.issue-s1 |
[63] |
Che Mingliang, Chen Baozhang, Wang Ying, et al. Review of dynamic global vegetation models (DGVMs). Chinese Journal of Applied Ecology, 2014,25(1):263-271.
pmid: 24765870 |
[ 车明亮, 陈报章, 王瑛, 等. 全球植被动力学模型研究综述. 应用生态学报, 2014,25(1):263-271.]
pmid: 24765870 |
|
[64] |
Warszawski L, Friend A, Ostberg S, et al. A multi-model analysis of risk of ecosystem shifts under climate change. Environmental Research Letters, 2013,8(4):044018. DOI: 10.1088/1748-9326/8/4/044018.
doi: 10.1088/1748-9326/8/4/044018 |
[65] |
Piontek F, Müller C, Pugh T A M, et al. Multisectoral climate impact hotspots in a warming world. PNAS, 2014,111(9):3233-3238.
doi: 10.1073/pnas.1222471110 |
[66] |
Jones R N, Preston B L. Adaptation and risk management. Wiley Interdisciplinary Reviews: Climate Change, 2011,2(2):296-308.
doi: 10.1002/wcc.v2.2 |
[67] | van Minnen J G, Onigkeit J, Alcamo J. Critical climate change as an approach to assess climate change impacts in Europe: Development and application. Environmental Science & Policy, 2002,5(4):335-347. |
[68] |
Xu M J, Wen X F, Wang H M, et al. Effects of climatic factors and ecosystem responses on the inter-annual variability of evapotranspiration in a coniferous plantation in subtropical China. PLOS ONE, 2014,9(1):e85593. DOI: 10.1371/journal.pone.0085593.
doi: 10.1371/journal.pone.0085593 |
[1] | 李程, 庄大方, 何剑锋, 文可戈. 东西伯利亚苔原—泰加林过渡带植被遥感物候时空特征及其对气温变化的响应[J]. 地理学报, 2021, 76(7): 1634-1648. |
[2] | 王可逸, 刘晓宏, 曾小敏, 徐国保, 张凌楠, 李春越. 树轮稳定氮同位素记录的进展与展望[J]. 地理学报, 2021, 76(5): 1193-1205. |
[3] | 崔耀平, 李楠, 付一鸣, 陈良雨. 中美俄加陆域碳汇对人为增温的消减贡献[J]. 地理学报, 2021, 76(1): 167-177. |
[4] | 李哲, 丁永建, 陈艾姣, 张智华, 张世强. 1960—2019年西北地区气候变化中的Hiatus现象及特征[J]. 地理学报, 2020, 75(9): 1845-1859. |
[5] | 张琨, 吕一河, 傅伯杰, 尹礼唱, 于丹丹. 黄土高原植被覆盖变化对生态系统服务影响及其阈值[J]. 地理学报, 2020, 75(5): 949-960. |
[6] | 金凯, 王飞, 韩剑桥, 史尚渝, 丁文斌. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5): 961-974. |
[7] | 张静静, 朱文博, 朱连奇, 李艳红. 伏牛山地区森林生态系统服务权衡/协同效应多尺度分析[J]. 地理学报, 2020, 75(5): 975-988. |
[8] | 李双双, 汪成博, 延军平, 刘宪锋. 面向事件过程的秦岭南北极端降水时空变化特征[J]. 地理学报, 2020, 75(5): 989-1007. |
[9] | 于贵瑞, 李文华, 邵明安, 张扬建, 王绍强, 牛书丽, 何洪林, 戴尔阜, 李发东, 马泽清. 生态系统科学研究与生态系统管理[J]. 地理学报, 2020, 75(12): 2620-2635. |
[10] | 田晶, 郭生练, 刘德地, 陈启会, 王强, 尹家波, 吴旭树, 何绍坤. 气候与土地利用变化对汉江流域径流的影响[J]. 地理学报, 2020, 75(11): 2307-2318. |
[11] | 李睿倩, 李永富, 胡恒. 生态系统服务对国土空间规划体系的理论与实践支撑[J]. 地理学报, 2020, 75(11): 2417-2430. |
[12] | 萧凌波, 闫军辉. 基于地方志的1736-1911年华北秋粮丰歉指数序列重建及其与气候变化的关系[J]. 地理学报, 2019, 74(9): 1777-1788. |
[13] | 李双双, 延军平, 武亚群, 汪成博. 秦岭—淮河南北供暖格局变化及其影响因素[J]. 地理学报, 2019, 74(9): 1866-1877. |
[14] | 刘立程, 刘春芳, 王川, 李鹏杰. 黄土丘陵区生态系统服务供需匹配研究——以兰州市为例[J]. 地理学报, 2019, 74(9): 1921-1937. |
[15] | 佟彪, 党安荣, 许剑. 300 BC-1900 AD无定河流域城镇时空格局演变[J]. 地理学报, 2019, 74(8): 1508-1524. |