地理学报 ›› 2021, Vol. 76 ›› Issue (7): 1579-1590.doi: 10.11821/dlxb202107001
• 研究综述 • 下一篇
高培超1,2,3(), 程昌秀3,4(
), 叶思菁3, 沈石3, 张红5,6
收稿日期:
2020-03-31
修回日期:
2021-03-25
出版日期:
2021-07-25
发布日期:
2021-09-25
通讯作者:
程昌秀(1973-), 女, 新疆人, 教授, 主要从事地理时空数据分析等研究。E-mail: chengcx@bnu.edu.cn作者简介:
高培超(1991-), 男, 河南人, 讲师, 中国地理学会会员(S110014357M), 主要从事信息地理学研究。E-mail: gaopc@bnu.edu.cn
基金资助:
GAO Peichao1,2,3(), CHENG Changxiu3,4(
), YE Sijing3, SHEN Shi3, ZHANG Hong5,6
Received:
2020-03-31
Revised:
2021-03-25
Published:
2021-07-25
Online:
2021-09-25
Supported by:
摘要:
区域性、综合性、复杂性是新时代地理学的三大特征,其中复杂性研究是地理学飞跃的新路径。熵作为系统复杂性的核心指标,其研究、推广和应用对新时代的地理学有着重要意义。近年来地理学中熵的研究热点为玻尔兹曼熵(玻熵)。玻熵的概念最早提出于1872年,是著名的热力学第二定律的核心,但玻熵在地学的应用长期停滞在探讨层面。其瓶颈在于缺乏针对空间数据计算玻熵的模型和方法,但该瓶颈在近5年得以突破。本文从玻熵的热力学概念与地理学推广难题、空间数据的玻熵计算模型、计算方法、实际应用4个方面进行及时且系统地综述。主要结论有:① 目前的研究热点集中在空间栅格数据的玻熵,已研发出针对定性和定量型栅格数据的计算模型;② 算法百家齐放,已呈现出基于边缘总长度、基于Wasserstein距离、基于多尺度层次的三大类算法;③ 已形成景观生态学和遥感图像处理两类应用;④ 未来研究需重视针对更多类型的空间数据的算法、使用玻熵替代香农熵验证先前研究中的结论、拓展玻熵应用等。
高培超, 程昌秀, 叶思菁, 沈石, 张红. 空间玻尔兹曼熵的研究进展与应用[J]. 地理学报, 2021, 76(7): 1579-1590.
GAO Peichao, CHENG Changxiu, YE Sijing, SHEN Shi, ZHANG Hong. The review and applications of spatial Boltzmann entropy[J]. Acta Geographica Sinica, 2021, 76(7): 1579-1590.
[1] |
Bonnett A. Geography as the world discipline: Connecting popular and academic geographical imaginations. Area, 2003,35(1):55-63.
doi: 10.1111/area.2003.35.issue-1 |
[2] |
Uhlenwinkel A. Factual knowledge and conceptual understanding. Geography, 2014,99(1):28-35.
doi: 10.1080/00167487.2014.12094388 |
[3] |
Zhu Yongguan, Li Gang, Zhang Ganlin, et al. Soil security: From earth's critical zone to ecosystem services. Acta Geographica Sinica, 2015,70(12):1859-1869.
doi: 10.11821/dlxb201512001 |
[ 朱永官, 李刚, 张甘霖, 等. 土壤安全:从地球关键带到生态系统服务. 地理学报, 2015,70(12):1859-1869.] | |
[4] |
Song Changqing, Zhang Guoyou, Cheng Changxiu, et al. Nature and basic issues of geography. Scientia Geographica Sinica, 2020,40(1):6-11.
doi: 10.13249/j.cnki.sgs.2020.01.002 |
[ 宋长青, 张国友, 程昌秀, 等. 论地理学的特性与基本问题. 地理科学, 2020,40(1):6-11.] | |
[5] |
Fu Bojie, Leng Shuying, Song Changqing. The characteristics and tasks of geography in the new era. Scientia Geographica Sinica, 2015,35(8):939-945.
doi: 10.13249/j.cnki.sgs.2015.08.939 |
[ 傅伯杰, 冷疏影, 宋长青. 新时期地理学的特征与任务. 地理科学, 2015,35(8):939-945.] | |
[6] |
Song Changqing. On paradigms of geographical research. Progress in Geography, 2016,35(1):1-3.
doi: 10.18306/dlkxjz.2016.01.001 |
[ 宋长青. 地理学研究范式的思考. 地理科学进展, 2016,35(1):1-3.] | |
[7] |
Fu Bojie. Geography: From knowledge, science to decision making support. Acta Geographica Sinica, 2017,72(11):1923-1932.
doi: 10.11821/dlxb201711001 |
[ 傅伯杰. 地理学: 从知识, 科学到决策. 地理学报, 2017,72(11):1923-1932.] | |
[8] |
Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective. Acta Geographica Sinica, 2017,72(1):116-134.
doi: 10.11821/dlxb201701010 |
[ 王劲峰, 徐成东. 地理探测器: 原理与展望. 地理学报, 2017,72(1):116-134.] | |
[9] |
Song Changqing, Cheng Changxiu, Shi Peijun. Geography complexity: New connotations of geography in the new era. Acta Geographica Sinica, 2018,73(7):1204-1213.
doi: 10.11821/dlxb201807002 |
[ 宋长青, 程昌秀, 史培军. 新时代地理复杂性的内涵. 地理学报, 2018,73(7):1204-1213.] | |
[10] |
Cheng Changxiu, Shi Peijun, Song Changqing, et al. Geographic big-data: A new opportunity for geography complexity study. Acta Geographica Sinica, 2018,73(8):1397-1406.
doi: 10.11821/dlxb201808001 |
[ 程昌秀, 史培军, 宋长青, 等. 地理大数据为地理复杂性研究提供新机遇. 地理学报, 2018,73(8):1397-1406.] | |
[11] |
Vranken I, Baudry J, Aubinet M, et al. A review on the use of entropy in landscape ecology: Heterogeneity, unpredictability, scale dependence and their links with thermodynamics. Landscape Ecology, 2015,30(1):51-65.
doi: 10.1007/s10980-014-0105-0 |
[12] |
Fang Chuanglin, Wang Zhenbo, Liu Haimeng. Exploration on the theoretical basis and evaluation plan of Beautiful China construction. Acta Geographica Sinica, 2019,74(4):619-632.
doi: 10.11821/dlxb201904001 |
[ 方创琳, 王振波, 刘海猛. 美丽中国建设的理论基础与评估方案探索. 地理学报, 2019,74(4):619-632.] | |
[13] |
Pelorosso R, Gobattoni F, Leone A. The low-entropy city: A thermodynamic approach to reconnect urban systems with nature. Landscape and Urban Planning, 2017,168:22-30.
doi: 10.1016/j.landurbplan.2017.10.002 |
[14] |
Li Z L, Huang P Z. Quantitative measures for spatial information of maps. International Journal of Geographical Information Science, 2002,16(7):699-709.
doi: 10.1080/13658810210149416 |
[15] | Cheng Xiaoqiang, Yang Min, Gui Zhipeng, et al. An algorithm creating thumbnail for web map services based on information entropy and trans-scale similarity. Acta Geodaetica et Cartographica Sinica, 2017,46(11):1891-1898. |
[ 成晓强, 杨敏, 桂志鹏, 等. 信息量与相似度约束下的网络地图服务缩略图自动生成算法. 测绘学报, 2017,46(11):1891-1898.] | |
[16] | Li Zhilin, Liu Qiliang, Gao Peichao. Entropy-based cartographic communication models: Evolution from special to general cartographic information theory. Acta Geodaetica et Cartographica Sinica, 2016,45(7):757-767. |
[ 李志林, 刘启亮, 高培超. 地图信息论: 从狭义到广义的发展回顾. 测绘学报, 2016,45(7):757-767.] | |
[17] | Zhang Ying, Zhang Jingxiong. Measure of information content of remotely sensed images accounting for spatial correlation. Acta Geodaetica et Cartographica Sinica, 2015,44(10):1117-1124. |
[ 张盈, 张景雄. 顾及空间相关性的遥感影像信息量的度量方法. 测绘学报, 2015,44(10):1117-1124.] | |
[18] | Gao P C, Zhang H, Jia D, et al. Efficient approach for computing the discrimination ratio-based variant of information entropy for image processing. IEEE Access, 2020,8(1):92552-92564. |
[19] | Sahu D K, Parsai M. Different image fusion techniques: A critical review. International Journal of Modern Engineering Research, 2012,2(5):4298-4301. |
[20] |
Razlighi Q R, Kehtarnavaz N. Spatial mutual information as similarity measure for 3-D brain image registration. IEEE Journal of Translational Engineering in Health and Medicine, 2014,2:27-34.
doi: 10.1109/JTEHM.2014.2299280 |
[21] | Feixas M, Bardera A, Rigau J, et al. Information Theory Tools for Image Processing. San Rafael, CA: Morgan & Claypool Publishers, 2014. |
[22] | Swati B K, Venkanna B V. Basic Thermodynamics. Delhi, India: PHI Learning, 2010. |
[23] | Boltzmann L. Further studies on the thermal equilibrium of gas molecules. Sitzungsberichte Akademie der Wissenschaften, 1872,66:275-370. |
[24] |
Shannon C E. A mathematical theory of communication. The Bell System Technical Journal, 1948,27(3):379-423.
doi: 10.1002/bltj.1948.27.issue-3 |
[25] |
Bekenstein J D. Information in the holographic universe. Scientific American, 2003,289(2):58-65.
pmid: 12884539 |
[26] |
Cushman S A. Thermodynamics in landscape ecology: The importance of integrating measurement and modeling of landscape entropy. Landscape Ecology, 2015,30(1):7-10.
doi: 10.1007/s10980-014-0108-x |
[27] |
Gao P C, Li Z L, Zhang H. Thermodynamics-based evaluation of various improved Shannon entropies for configurational information of gray-level images. Entropy, 2018,20(1):19. DOI: 10.3390/e20010019.
doi: 10.3390/e20010019 |
[28] | Naveh Z, Lieberman A S. Landscape Ecology: Theory and Application. New York: Springer, 1990. |
[29] |
Longo G, Miquel P A, Sonnenschein C, et al. Is information a proper observable for biological organization?. Progress in Biophysics and Molecular Biology, 2012,109(3):108-114.
doi: 10.1016/j.pbiomolbio.2012.06.004 pmid: 22796169 |
[30] | Atkins P W. The Second Law. New York: Scientific American Library, 1994. |
[31] |
Batty M. Space, scale, and scaling in entropy maximizing. Geographical Analysis, 2010,42(4):395-421.
doi: 10.1111/j.1538-4632.2010.00800.x |
[32] | Spinnangr S F. Energy, entropy and sustainable development with focus on nuclear fusion[D]. The University of Bergen, 2017. |
[33] | Hobbie R K, Roth B J. Intermediate physics for medicine and biology. Cham: Springer Science & Business Media, 2015. |
[34] | Bailey K D. Entropy systems theory. Systems Science and Cybernetics. Oxford: Eolss Publishers, 2009: 149-166. |
[35] | Dalarsson N, Dalarsson M, Golubovic L. Introductory Statistical Thermodynamics. Amsterdam: Academic Press, 2011. |
[36] |
Gao P C, Cushman S A, Liu G, et al. FracL: A tool for characterizing the fractality of landscape gradients from a new perspective. ISPRS International Journal of Geo-Information, 2019,8(10):466. DOI: 10.3390/ijgi8100466.
doi: 10.3390/ijgi8100466 |
[37] |
Cushman S A. Calculating the configurational entropy of a landscape mosaic. Landscape Ecology, 2016,31(3):481-489.
doi: 10.1007/s10980-015-0305-2 |
[38] |
Zhao Y, Zhang X C. Calculating spatial configurational entropy of a landscape mosaic based on the Wasserstein metric. Landscape Ecology, 2019,34(8):1849-1858.
doi: 10.1007/s10980-019-00876-x |
[39] | Gao P C, Zhang H, Li Z L. A hierarchy-based solution to calculate the configurational entropy of landscape gradients. Landscape Ecology, 2017,32(6):1133-1146. |
[40] |
Cushman S A. Calculation of configurational entropy in complex landscapes. Entropy, 2018,20(4):298.
doi: 10.3390/e20040298 |
[41] |
Zhang H, Wu Z W, Lan T, et al. Calculating the Wasserstein metric-based Boltzmann entropy of a landscape mosaic. Entropy, 2020,22(4):381. DOI: 10.3390/e22040381.
doi: 10.3390/e22040381 |
[42] |
Gao P C, Zhang H, Li Z L. An efficient analytical method for computing the Boltzmann entropy of a landscape gradient. Transactions in GIS, 2018,22(5):1046-1063.
doi: 10.1111/tgis.v22.5 |
[43] |
Gao P C, Li Z L. Computation of the Boltzmann entropy of a landscape: A review and a generalization. Landscape Ecology, 2019,34(9):2183-2196.
doi: 10.1007/s10980-019-00814-x |
[44] |
Gao P C, Li Z L. Aggregation-based method for computing absolute Boltzmann entropy of landscape gradient with full thermodynamic consistency. Landscape Ecology, 2019,34(8):1837-1847.
doi: 10.1007/s10980-019-00854-3 |
[45] | Nowosad J. Boltzmann entropy of a landscape gradient. R package version 0.2.3. 2018. https://cran.r-project.org/web/packages/belg/index.html . |
[46] | Vaserstein L N. Markov processes over denumerable products of spaces, describing large systems of automata. Problemy Peredachi Informatsii, 1969,5(3):64-72. |
[47] | He Chunyang, Chen Jin, Shi Peijun, et al. City expansion model of metropolitan area in china: A case study of Beijing. Acta Geographica Sinica, 2003,58(2):294-304. |
[ 何春阳, 陈晋, 史培军, 等. 大都市区城市扩展模型. 地理学报, 2003,58(2):294-304.] | |
[48] | Long Ying, Shen Zhenjiang, Mao Qizhi, et al. Form scenario analysis using constrained cellular automata. Acta Geographica Sinica, 2010,65(6):643-655. |
[ 龙瀛, 沈振江, 毛其智, 等. 基于约束性 CA 方法的北京城市形态情景分析. 地理学报, 2010,65(6):643-655.] | |
[49] |
Zhang H, Wu Z W. A head/tail breaks-based method for efficiently estimating the absolute Boltzmann entropy of numerical raster data. ISPRS International Journal of Geo-Information, 2020,9(2):103. DOI: 10.3390/ijgi9020103.
doi: 10.3390/ijgi9020103 |
[50] |
Jiang Bin. Head/tail breaks: A new classification scheme for data with a heavy-tailed distribution. The Professional Geographer, 2013,65(3):482-494.
doi: 10.1080/00330124.2012.700499 |
[51] |
Gao P C, Liu Z, Liu G, et al. Unified metrics for characterizing the fractal nature of geographic features. Annals of the American Association of Geographers, 2017,107(6):1315-1331.
doi: 10.1080/24694452.2017.1310022 |
[52] |
Gao P C, Wang J C, Zhang H, et al. Boltzmann entropy-based unsupervised band selection for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 2019,16(3):462-466.
doi: 10.1109/LGRS.2018.2872358 |
[53] |
Sawant S S, Manoharan P. Unsupervised band selection based on weighted information entropy and 3D discrete cosine transform for hyperspectral image classification. International Journal of Remote Sensing, 2020,41(10):3948-3969.
doi: 10.1080/01431161.2019.1711242 |
[54] |
Liu B J, Deng M, Liu H M, et al. A multilevel visual feature-based approach for measuring the spatial information in remote sensing images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019,12(10):4110-4122.
doi: 10.1109/JSTARS.4609443 |
[55] |
Liang X Y, Jia H, Chen H, et al. Landscape sustainability in the loess hilly gully region of the Loess Plateau: A case study of Mizhi County in Shanxi Province, China. Sustainability, 2018,10(9):3300. DOI: 10.3390/su10093300.
doi: 10.3390/su10093300 |
[56] |
Liu Q, Yang Z P, Wang C R, et al. Temporal-spatial variations and influencing factor of land use change in Xinjiang, Central Asia, from 1995 to 2015. Sustainability, 2019,11(3):696. DOI: 10.3390/su11030696.
doi: 10.3390/su11030696 |
[57] |
Jiao Y M, Ding Y P, Zha Z Q, et al. Crises of biodiversity and ecosystem services in Satoyama landscape of Japan: A review on the role of management. Sustainability, 2019,11(2):454. DOI: 10.3390/su11020454.
doi: 10.3390/su11020454 |
[58] |
Xu J Y, Liang X Y, Chen H. Landscape sustainability evaluation of ecologically fragile areas based on Boltzmann entropy. ISPRS International Journal of Geo-Information, 2020,9(2):77. DOI: 10.3390/ijgi9020077.
doi: 10.3390/ijgi9020077 |
[59] | Bauman Z. Culture as Praxis. London: SAGE Publications, 1999. |
[60] | Tobler W R. Introductory comments on information theory and cartography. Cartographic Perspectives, 1997,27:4-7. |
[61] | Liu Honglin. The study of the method of measuring map information. Journal of the PLA Institute of Surveying and Mapping, 1992(3):49-55. |
[ 刘宏林. 地图信息度量方法的研究. 解放军测绘学院学报, 1992(3):49-55.] | |
[62] | Prigogine I, Nicolis G, Babloyantz A. Thermodynamics of evolution. Physics Today, 1972,25(11):23-28. |
[63] |
Mandelbrot B B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, 1967,156(3775):636-638.
pmid: 17837158 |
[64] |
Song Changqing, Cheng Changxiu, Yang Xiaofan, et al. Understanding geographic coupling and achieving geographic integration. Acta Geographica Sinica, 2020,75(1):3-13.
doi: 10.11821/dlxb202001001 |
[ 宋长青, 程昌秀, 杨晓帆, 等. 理解地理“耦合”实现地理“集成”. 地理学报, 2020,75(1):3-13.] |
[1] | 刘焱序, 傅伯杰, 王帅, 赵文武, 李琰. 空间恢复力理论支持下的人地系统动态研究进展[J]. 地理学报, 2020, 75(5): 891-903. |
[2] | 史培军,宋长青,程昌秀. 地理协同论——从理解“人—地关系”到设计“人—地协同”[J]. 地理学报, 2019, 74(1): 3-15. |
[3] | 杨文龙, 杜德斌, 刘承良, 马亚华. 中国地缘经济联系的时空演化特征及其内部机制[J]. 地理学报, 2016, 71(6): 956-969. |
[4] | 王靓, 徐新良, 刘洛. 青藏高原草地退化类型空间分布数据集[J]. 地理学报, 2014, 69(s1): 61-64. |
[5] | 范斐, 杜德斌, 李恒, 游小珺. 中国地级以上城市科技资源配置效率的时空格局[J]. 地理学报, 2013, 68(10): 1331-1343. |
[6] | 王伯礼, 张小雷. 新疆公路交通基础设施建设对经济增长的贡献分析[J]. 地理学报, 2010, 65(12): 1522-1533. |
[7] | 许学工,李双成,蔡运龙. 中国综合自然地理学的近今进展与前瞻[J]. 地理学报, 2009, 64(9): 1027-1038. |
[8] | 杨振山, 蔡建明, 高晓路. 利用探索式空间数据解析北京城市空间经济发展模式[J]. 地理学报, 2009, 64(8): 945-955. |
[9] | 李军,庄大方. 地理空间数据的适宜尺度分析[J]. 地理学报, 2002, 57(7s): 52-59. |
[10] | 黄春林,李新. 比较三种不同的因特网空间数据发布方法[J]. 地理学报, 2002, 57(7s): 44-51. |
[11] | 张定祥,史学正,于东升,潘贤章,孙维侠. 中国1:100万土壤数据库建设的基础[J]. 地理学报, 2002, 57(7s): 82-86. |
[12] | 王雷, 池天河, 廖克, 齐清文. 国家自然地图集网络发布的WebGIS解决方案[J]. 地理学报, 2001, 56(7s): 49-55. |
[13] | 王仰麟, 陈传康. 论景观生态学在观光农业规划设计中的应用[J]. 地理学报, 1998, 53(s1): 21-27. |
[14] | 子君. 地球科学数据产品的开发[J]. 地理学报, 1996, 51(s1): 172-172. |
[15] | 陈军. GIS空间数据模型的基本问题和学术前沿[J]. 地理学报, 1995, 50(s1): 24-33. |