[1] |
IPCC. Climate Change 2013: The Physical Science Basis, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: Cambridge University Press.
|
[2] |
Liu Shiyin, Yao Xiaojun, Guo Wanqin, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory. Acta Geographica Sinica, 2015,70(1):3-16.
|
|
[ 刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状. 地理学报, 2015,70(1):3-16.]
|
[3] |
Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change, 2012,2(9):663-667.
doi: 10.1038/nclimate1580
|
[4] |
Zhang Y, Hirabayashi Y, Liu S Y. Catchment-scale reconstruction of glacier mass balance using observations and global climate data: Case study of the Hailuogou catchment, south-eastern Tibetan Plateau. Journal of Hydrology, 2012,444/445:146-160.
doi: 10.1016/j.jhydrol.2012.04.014
|
[5] |
Yang W, Yao T D, Guo X F, et al. Mass balance of a maritime glacier on the southeast Tibetan Plateau and its climatic sensitivity. Journal of Geophysical Research: Atmospheres, 2013,118(17):9579-9594.
doi: 10.1002/jgrd.50760
|
[6] |
Zhu M, Yao T, Yang W, et al. Differences in mass balance behavior for three glaciers from different climatic regions on the Tibetan Plateau. Climate Dynamics, 2018,50(9/10):3457-3484.
doi: 10.1007/s00382-017-3817-4
|
[7] |
Brun F, Berthier E, Wagnon P, et al. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nature Geoscience, 2017,10(9):668-673.
doi: 10.1038/ngeo2999
|
[8] |
Bolch T, Kulkarni A, Kääb A, et al. The state and fate of Himalayan glaciers. Science, 2012,336(6079):310-314.
doi: 10.1126/science.1215828
|
[9] |
Altena B, Scambos T, Fahnestock M, et al. Extracting recent short-term glacier velocity evolution over southern Alaska and the Yukon from a large collection of Landsat data. The Cryosphere, 2019,13(3):795-814.
doi: 10.5194/tc-13-795-2019
|
[10] |
Scherler D, Leprince S, Strecker M R. Glacier-surface velocities in alpine terrain from optical satellite imagery:Accuracy improvement and quality assessment. Remote Sensing of Environment, 2008,112(10):3806-3819.
doi: 10.1016/j.rse.2008.05.018
|
[11] |
Dehecq A, Gourmelen N, Trouvé E. Deriving large-scale glacier velocities from a complete satellite archive: Application to the Pamir-Karakoram-Himalaya. Remote Sensing of Environment, 2015,162:55-66.
doi: 10.1016/j.rse.2015.01.031
|
[12] |
Liu Guoxiang, Zhang Bo, Zhang Rui, et al. Monitoring dynamics of Hailuogou Glacier and the secondary landslide disasters based on combination of satellite SAR and ground-based SAR. Geomatics and Information Science of Wuhan University, 2019,44(7):980-995.
|
|
[ 刘国祥, 张波, 张瑞, 等. 联合卫星SAR和地基SAR的海螺沟冰川动态变化及次生滑坡灾害监测. 武汉大学学报: 信息科学版, 2019,44(7):980-995.]
|
[13] |
Bhardwaj A, Sam L, Martín-Torres F J, et al. UAVs as remote sensing platform in glaciology: Present applications and future prospects. Remote Sensing of Environment, 2016,175:196-204.
doi: 10.1016/j.rse.2015.12.029
|
[14] |
Hugenholtz C H, Whitehead K, Brown O W, et al. Geomorphological mapping with a small unmanned aircraft system (sUAS): Feature detection and accuracy assessment of a photogrammetrically-derived digital terrain model. Geomorphology, 2013,194:16-24.
doi: 10.1016/j.geomorph.2013.03.023
|
[15] |
Benoit L, Gourdon A, Vallat R, et al. A high-resolution image time series of the Gorner Glacier-Swiss Alps-derived from repeated unmanned aerial vehicle surveys. Earth System Science Data, 2019,11(2):579-588.
doi: 10.5194/essd-11-579-2019
|
[16] |
Wigmore O, Mark B G. Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru. The Cryosphere, 2017,11:2463-2480.
doi: 10.5194/tc-11-2463-2017
|
[17] |
Dall'Asta E, Forlani G, Roncella R, et al. Unmanned aerial systems and DSM matching for rock glacier monitoring. ISPRS Journal of Photogrammetry and Remote Sensing, 2017,127:102-114.
doi: 10.1016/j.isprsjprs.2016.10.003
|
[18] |
Ye Y X, Bruzzone L, Shan J, et al. Fast and robust matching for multimodal remote sensing image registration. IEEE Transactions on Geoscience and Remote Sensing, 2019,57(11):9059-9070.
doi: 10.1109/TGRS.36
|
[19] |
Harris C G, Stephens M. A combined corner and edge detector. Manchester: Proceedings of Fourth Alvey Vision Conference, 1988.
|
[20] |
Toet A, van Ruyven L J, Valeton J M. Merging thermal and visual images by a contrast pyramid. Optical Engineering, 1989,28(7):287789. DOI: 10.1117/12.7977034.
|
[21] |
Gruen A. Adaptive least squares correlation: A powerful image matching technique. South African Journal of Photogrammetry,Remote Sensing and Cartography, 1985,14(3):175-187.
|
[22] |
Su Zhen, Shi Yafeng, Zheng Benxing. Quaternary glacial remains on the Gongga Mountain and the division of glacial period. Advance in Earth Sciences, 2002,17(5):639-647.
|
|
[ 苏珍, 施雅风, 郑本兴. 贡嘎山第四纪冰川遗迹及冰期划分. 地球科学进展, 2002,17(5):639-647.]
|
[23] |
Zhang Ningning, He Yuanqing, Duan Keqin, et al. Changes of Gongba Glacier in the west slope of Mt. Gongga during the past 25 years. Journal of Glaciology and Geocryology, 2008,30(3):380-382.
|
|
[ 张宁宁, 何元庆, 段克勤, 等. 贡嘎山西坡贡巴冰川25a的变化情况, 冰川冻土, 2008,30(3):380-382.]
|
[24] |
Zhang Bo, Zhang Rui, Liu Guoxiang, et al. Monitoring of interannual variabilities and outburst regularities analysis of glacial lakes at the end of Gongba Glacier utilizing SAR images. Geomatics and Information Science of Wuhan University, 2019,44(7):1054-1064.
|
|
[ 张波, 张瑞, 刘国祥, 等. 基于SAR影像的贡巴冰川末端冰湖年际变化监测及溃决规律分析. 武汉大学学报(信息科学版), 2019,44(7):1054-1064.]
|
[25] |
Zhang Guoliang. The study of glacier changes in the Gongga Mountains[D]. Lanzhou: Lanzhou University, 2012.
|
|
[ 张国梁. 贡嘎山地区现代冰川变化研究[D]. 兰州: 兰州大学, 2012.]
|
[26] |
Liu Qiao, Liu Shiyin, Zhang Yong, et al. Surface ablation features and recent variation of the lower ablation area of the Hailuogou Glacier, Mt. Gongga. Journal of Glaciology and Geocryology, 2011,33(2):227-236.
|
|
[ 刘巧, 刘时银, 张勇, 等. 贡嘎山海螺沟冰川消融区表面消融特征及其近期变化. 冰川冻土, 2011,33(2):227-236.]
|
[27] |
Li Jijun, Su Zhen. Glaciers in Hengduan Mountains. Beijing:Science Press, 1996.
|
|
[ 李吉均, 苏珍. 横断山冰川. 北京:科学出版社, 1996.]
|
[28] |
Cao Zhentang. The hydrologic characteristics of the Gongba Glacier in the Mount Gongga area. Journal of Glaciology and Geocryology, 1988,10(1):57-65.
|
|
[ 曹真堂. 贡嘎山贡巴冰川水文特征. 冰川冻土, 1988,10(1):57-65.]
|
[29] |
Liu Qiao, Zhang Yong. Studies on the dynamics of monsoonal temperate glaciers in Mt. Gongga: A review. Mountain Research, 2017,35(5):717-726.
|
|
[ 刘巧, 张勇. 贡嘎山海洋型冰川监测与研究: 历史、现状与展望. 山地学报, 2017,35(5):717-726.]
|
[30] |
Su Zhen, Song Guoping, Cao Zhentang. Maritime characteristics of Hailuogou Glacier in the Gongga Mountains. Journal of Glaciology and Geocryology, 1996,18(Suppl.1) : 51-59.
|
|
[ 苏珍, 宋国平, 曹真堂. 贡嘎山海螺沟冰川的海洋性特征. 冰川冻土, 1996,18(Suppl.1):51-59.]
|
[31] |
Kraaijenbrink P, Meijer S W, Shea J M, et al. Seasonal surface velocities of a Himalayan glacier derived by automated correlation of unmanned aerial vehicle imagery. Annals of Glaciology, 2016,57(71):103-113.
doi: 10.3189/2016AoG71A072
|