地理学报 ›› 2021, Vol. 76 ›› Issue (5): 1231-1244.doi: 10.11821/dlxb202105014
收稿日期:
2020-08-09
修回日期:
2021-04-18
出版日期:
2021-05-25
发布日期:
2021-07-25
通讯作者:
陈斌(1981-), 男, 福建福州人, 助理研究员, 主要从事生态系统生态学相关研究。E-mail: chenbin@igsnrr.ac.cn作者简介:
刘侦海(1996-), 男, 山东菏泽人, 硕士生, 主要从事生态系统变化与生态模拟相关研究。E-mail: lzhzlw@cug.edu.cn
基金资助:
LIU Zhenhai1(), WANG Shaoqiang1,2,3, CHEN Bin2(
)
Received:
2020-08-09
Revised:
2021-04-18
Published:
2021-05-25
Online:
2021-07-25
Supported by:
摘要:
中蒙俄经济走廊东段位于欧亚大陆多年冻土区东南缘及森林线南界接近区,冻土及生态环境脆弱。本文基于MERRA-Land陆面模式离线运行产品分析了中蒙俄经济走廊东段2000—2015年间冻土冻融的时空变化模式,以及冻土变化对返青期和全年不同阶段植被生长状态的影响。研究表明:2000—2015年间研究区多年冻土及季节冻土均持续退化,时间上主要表现为冻土提前解冻、延迟冻结;空间上主要表现为多年冻土南界的多年冻土退化和季节冻土下限抬升,及连续多年冻土南界的活动层加厚。解冻始日是森林地区植被返青的主控要素,林下冻土解冻对土壤含水量的增加及沼泽湿地的隔热蓄水功能影响了森林地区植被的生长。但随着多年冻土南界森林及林下泥炭地演替为草甸和农田,多年冻土退化,进一步促进林下沼泽湿地的消失。探讨冻土退化与生态环境之间的协同关系,有助于识别气候变暖和人类活动叠加影响下的冻土退化脆弱区以及生态环境敏感区。
刘侦海, 王绍强, 陈斌. 2000—2015年中蒙俄经济走廊东段冻土时空变化及植被响应[J]. 地理学报, 2021, 76(5): 1231-1244.
LIU Zhenhai, WANG Shaoqiang, CHEN Bin. Spatial and temporal variations of frozen ground and its vegetation response in the eastern segment of China-Mongolia-Russia economic corridor from 2000 to 2015[J]. Acta Geographica Sinica, 2021, 76(5): 1231-1244.
表1
用于验证MERRA-Land土壤温度数据集精度的站点
站点 | 时段/年份 | 深度(m) | 经纬度 | 海拔高度 (m) | 来源 | MERRA-Land土壤温度数据 多层平均精度 | ||
---|---|---|---|---|---|---|---|---|
RMSE | MAE | R2 | ||||||
SW2 | 2010 | 0.1 | 111.9°E, 41.79°N | 1457 | FLUXNET[ | 4.73 | 4.04 | 0.96 |
DU3 | 2009—2010 | 0.1 | 116.28°E, 42.06°N | 1293 | FLUXNET[ | 4.39 | 3.81 | 0.89 |
CNG | 2007—2010 | 0.05 | 123.51°E, 44.59°N | 140 | FLUXNET[ | 2.6 | 2.02 | 0.98 |
DXF | 2003—2005 | 0, 0.05, 0.4, 1 | 121.51°E, 50.96°N | 832 | 国家生态系统观 测研究网络[ | 6.71 | 5.31 | 0.87 |
HLA | 2014 | 0, 0.1, 0.15, 0.2, 0.4, 0.6, 1 | 126.93°E, 47.45°N | 206 | 国家生态系统观 测研究网络[ | 4.91 | 4.09 | 0.91 |
CHB | 2003—2005 | 0.1 | 128.1°E, 42.4°N | 738 | 国家生态系统观 测研究网络[ | 3.03 | 2.23 | 0.95 |
SKT | 2003—2006 | 0.1 | 108.65°E, 48.35°N | 1630 | AsiaFlux[ | 4.3 | 3.11 | 0.98 |
KBU | 2004—2005 | 0.1 | 108.74°E, 47.21°N | 1235 | AsiaFlux[ | 4.29 | 3.43 | 0.92 |
Olkhon | 2012 | 0.5, 1, 1.5, 3.65 | 107.45°E, 53.22°N | 649 | GTN-P[ | 3.28 | 2.52 | 0.95 |
Azarova | 2008—2009 | 0.5, 1 | 117.58°E, 56.9°N | 2142 | GTN-P[ | 2.82 | 2.24 | 0.91 |
Most | 2012—2015 | 5 | 118.28°E, 56.91°N | 708 | GTN-P[ | 3.79 | 3.61 | 0.78 |
Chara | 2007—2009, 2013—2015 | 3.6, 5 | 118.36°E, 56.67°N | 1244 | GTN-P[ | 3.09 | 2.71 | 0.7 |
Ushelistiy | 2009—2015 | 0.3 | 118.48°E, 56.54°N | 1967 | GTN-P[ | 7.08 | 6.21 | 0.95 |
[1] |
Guo W C, Liu H Y, Anenkhonov O A, et al. Vegetation can strongly regulate permafrost degradation at its southern edge through changing surface freeze-thaw processes. Agricultural and Forest Meteorology, 2018,252(23):10-17.
doi: 10.1016/j.agrformet.2018.01.010 |
[2] | Jin Huijun, Li Shuxun, Wang Shaoling, et al. Impacts of climatic change on permafrost and cold regions environments in China. Acta Geographica Sinica, 2000,55(2):161-173. |
[ 金会军, 李述训, 王绍令, 等. 气候变化对中国多年冻土和寒区环境的影响. 地理学报, 2000,55(2):161-173.] | |
[3] |
Zhao L, Cheng G D, Ding Y J. Studies on frozen ground of China. Journal of Geographical Sciences, 2004,14(4):411-416.
doi: 10.1007/BF02837484 |
[4] | Fan Zemeng, Li Saibo. Spatio-temporal pattern change of desertification and its driving factors analysis in China-Mongolia-Russia economic corridor. Acta Ecologica Sinica, 2020,40(13):4252-4263. |
[ 范泽孟, 李赛博. 中蒙俄经济走廊荒漠化时空格局变化及其驱动因子. 生态学报, 2020,40(13):4252-4263.] | |
[5] |
Qin Y, Lei H M, Yang D W, et al. Long-term change in the depth of seasonally frozen ground and its ecohydrological impacts in the Qilian Mountains, northeastern Tibetan Plateau. Journal of Hydrology, 2016,542:204-221.
doi: 10.1016/j.jhydrol.2016.09.008 |
[6] |
Jin H J, He R X, Cheng G D, et al. Changes in frozen ground in the source area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environmental Research Letters, 2009,4(4):45206. DOI: 10.1088/1748-9326/4/4/045206.
doi: 10.1088/1748-9326/4/4/045206 |
[7] | Ma Shuai, Sheng Yu, Cao Wei, et al. Numerical simulation of spatial distribution and change of permafrost in the source area of the Yellow River. Acta Geographica Sinica, 2017,72(9):1621-1633. |
[ 马帅, 盛煜, 曹伟, 等. 黄河源区多年冻土空间分布变化特征数值模拟. 地理学报, 2017,72(9):1621-1633.] | |
[8] |
Jin X Y, Jin H J, Iwahana G, et al. Impacts of climate-induced permafrost degradation on vegetation: A review. Advances in Climate Change Research, 2021,12(1):29-47.
doi: 10.1016/j.accre.2020.07.002 |
[9] | Nan Zhuotong, Huang Peipei, Zhao Lin. Permafrost distribution modeling and depth estimation in the Western Qinghai-Tibet Plateau. Acta Geographica Sinica, 2013,68(3):318-327. |
[ 南卓铜, 黄培培, 赵林. 青藏高原西部区域多年冻土分布模拟及其下限估算. 地理学报, 2013,68(3):318-327.] | |
[10] | Ge Jun, Xu Yongfei, An Xueyang, et al. Analysis and research on ecologically sensitive area of China-Mongolia-Russia economic corridor the background of "Belt and Road". Acta Ecologica Sinica, 2019,39(14):5051-5057. |
[ 葛君, 徐永飞, 安雪洋, 等. “一带一路”背景下中蒙俄经济走廊生态敏感区分析. 生态学报, 2019,39(14):5051-5057.] | |
[11] |
Kalnay E, Kanamitsu M, Kistler R, et al. The NCEP/NCAR reanalysis 40-year project. Bulletin of the American Meteorological Society, 1996,77:437-471.
doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 |
[12] | Kobayashi T, Tateishi R, Alsaaideh B, et al. Production of global land cover data: GLCNMO2013. Journal of Geography and Geology, 2017,9(3):1-15. |
[13] | Wu Lizong. Circum-Arctic map of permafrost and ground ice conditions (v2). National Cryosphere Desert Data Center(www.ncdc.ac.cn), 2019. |
[ 吴立宗. 环北极地区多年冻土和地下冰状态图(v2). 国家冰川冻土沙漠科学数据中心 (www.ncdc.ac.cn), 2019.] | |
[14] | Reichle R H. The MERRA-Land data product. GMAO Office Note 3 (Version 1.2), 2012: 38. http://gmao.gsfc.nasa.gov/pubs/docs/Reichle541.pdf. |
[15] | Yu Zhongda, Zhou Guangqing, Zhou Yunjun. Evaluation and analysis of soil temperature data over middle and high latitudes of East Asia. Chinese Journal of Atmospheric Sciences, 2017,41(1):147-166. |
[ 于忠达, 周广庆, 周筠珺. 东亚中高纬土壤温度资料评估与分析. 大气科学, 2017,41(1):147-166.] | |
[16] | Shao C. FLUXNET2015. CN-Sw2 Siziwang Grazed (SZWG). FLUXNET, 2016. DOI: 10.18140/flx/1440212. |
[17] | Shao C. FLUXNET2015 CN-Du3 Duolun Degraded Meadow. FLUXNET, 2016. DOI: 10.18140/flx/1440210. |
[18] | Dong G. FLUXNET2015 CN-Cng Changling. FLUXNET, 2016. DOI: 10.18140/flx/1440209. |
[19] | Chinese National Ecosystem Research Network/Chinese Ecosystem Research Network. Science and Technology Resources' Service System of Chinese National Ecosystem Research Network, 2015. http://www.cnern.org.cn. |
[ 国家生态系统观测研究网络/中国生态系统研究网络. 国家生态系统观测研究网络科技资源服务系统, 2015. http://www.cnern.org.cn..] | |
[20] | Li S G, Asanuma J, Kotani A, et al. Year-round measurements of net ecosystem CO2 flux over a montane larch forest in Mongolia. Journal of Geophysical Research: Atmospheres, 2005,110:D09303. DOI: 10.1029/2004JD005453. |
[21] | Li S G, Asanuma J, Eugster W, et al. Net ecosystem carbon dioxide exchange over grazed steppe in central Mongolia. Global Change Biology, 2005,11(11):1941-1955. |
[22] | Kozireva E. TSP Russia Baical. GTN-P, 2014. http://gtnpdatabase.org/boreholes/view/1118. |
[23] | Sergueev D. TSP Russia Chara IEG RAS. GTN-P, 2013. http://gtnpdatabase.org/boreholes. |
[24] | IPCC. Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013. |
[25] | Friedl M, Gray J, Sulla-Menashe D. MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC, 2019. DOI: 10.5067/MODIS/MCD12Q2.006. |
[26] | Li Dengke, Wang Zhao. Spatiotemporal variation of vegetation phenology and its response to climate in Qinling Mountains based on MCD12Q2. Ecology and Environmental Sciences, 2020,29(1):11-22. |
[ 李登科, 王钊. 基于MCD12Q2的秦岭植被物候时空变化及对气候的响应. 生态环境学报, 2020,29(1):11-22.] | |
[27] |
Peng D L, Zhang X Y, Wu C Y, et al. Intercomparison and evaluation of spring phenology products using National Phenology Network and AmeriFlux observations in the contiguous United States. Agricultural and Forest Meteorology, 2017,242:33-46.
doi: 10.1016/j.agrformet.2017.04.009 |
[28] | Wang Cong, Li Jing, Liu Qinhuo, et al. Validation and analysis of remote sensing phenology products in the Heihe River Basin. Journal of Remote Sensing, 2017,21(3):442-457. |
[ 王聪, 李静, 柳钦火, 等. 黑河流域遥感物候产品验证与分析. 遥感学报, 2017,21(3):442-457.] | |
[29] | Liu Y, Liu R G, Chen J M. Retrospective retrieval of long-term consistent global leaf area index (1981-2011) from combined AVHRR and MODIS data. Journal of Geophysical Research: Biogeosciences, 2012,117:4003. DOI: 10.1029/2012JG002084. |
[30] |
Smith N V, Saatchi S S, Randerson J T. Trends in high northern latitude soil freeze and thaw cycles from 1988 to 2002. Journal of Geophysical Research: Atmospheres, 2004,109:D12101. DOI: 10.1029/2003JD004472.
doi: 10.1029/2003JD004472 |
[31] |
Frauenfeld O W, Zhang T, Barry R G, et al. Interdecadal changes in seasonal freeze and thaw depths in Russia. Journal of Geophysical Research: Atmospheres, 2004,109:D5101. DOI: 10.1029/2003JD004245.
doi: 10.1029/2003JD004245 |
[32] |
Deng J. Control problems of grey systems. Systems and Control Letters, 1982,1(5):288-294.
doi: 10.1016/S0167-6911(82)80025-X |
[33] |
Pai T, Hanaki K, Chiou R. Forecasting hourly roadside particulate matter in Taipei County of Taiwan based on first-order and one-variable grey model. Clean Soil Air Water, 2013,41(8):737-742.
doi: 10.1002/clen.v41.8 |
[34] |
Wang J, Wu P T, Zhao X N. Soil infiltration based on bp neural network and grey relational analysis. Revista Brasileira De Ciencia Do Solo, 2013,37(1):97-105.
doi: 10.1590/S0100-06832013000100010 |
[35] |
Han F L, Yu W B, Zhang X F, et al. Parameter sensitivity analyses of influence on thermal regime of embankment in permafrost regions along the Qinghai-Tibet Engineering Corridor. Cold Regions Science and Technology, 2019,166:102817. DOI: 10.1016/j.coldregions.2019.102817.
doi: 10.1016/j.coldregions.2019.102817 |
[36] |
Wang Q, Lv W, Li B W, et al. Annual ecosystem respiration is resistant to changes in freeze-thaw periods in semi-arid permafrost. Global Change Biology, 2020,26(4):2630-2641.
doi: 10.1111/gcb.v26.4 |
[37] |
Chang Xiaoli, Jin Huijun, Wang Yongping, et al. Influences of vegetation on permafrost: A review. Acta Ecologica Sinica, 2012,32(24):7981-7990.
doi: 10.5846/stxb |
[ 常晓丽, 金会军, 王永平, 等. 植被对多年冻土的影响研究进展. 生态学报, 2012,32(24):7981-7990.] | |
[38] | Guo Dongxin, Huang Yizhi, Wang Jiacheng, et al. Function of geologic structure in the formation of permafrost conditions in Huola River Basin, north Da Hinggan Ling. Journal of Glaciology and Geocryology, 1989,11(3):215-222. |
[ 郭东信, 黄以职, 王家澄, 等. 大兴安岭北部霍拉河盆地地质构造在冻土形成中的作用. 冰川冻土, 1989,11(3):215-222.] | |
[39] | Wang Xin, Jin Rui, Du Peijun, et al. Trend of surface freeze-thaw cycles and vegetation green-up date and their response to climate change on the Qinghai-Tibet Plateau. Journal of Remote Sensing, 2018,22(3):508-520. |
[ 王欣, 晋锐, 杜培军, 等. 青藏高原地表冻融循环与植被返青期的变化趋势及其气候响应特征. 遥感学报, 2018,22(3):508-520.] | |
[40] | Jin Huijun, Wang Shaoling, Lü Lanzhi, et al. Features of permafrost degradation in Hinggan Mountains, Northeastern China. Scientia Geographica Sinica, 2009,29(2):223-228. |
[ 金会军, 王绍令, 吕兰芝, 等. 兴安岭多年冻土退化特征. 地理科学, 2009,29(2):223-228.] | |
[41] | Jin Huijun, Yu Shaopeng, Lü Lanzhi, et al. Degradation of permafrost in the Da and Xiao Hinggan Mountains, Northeast China, and preliminary assessment of its trend. Journal of Glaciology and Geocryology, 2006,28(4):467-476. |
[ 金会军, 于少鹏, 吕兰芝, 等. 大小兴安岭多年冻土退化及其趋势初步评估. 冰川冻土, 2006,28(4):467-476.] | |
[42] | He Ruixia, Jin Huijun, Wang Shaoling, et al. Analysis on the current situation of ecological environment in the cold area along the China-Russia pipeline//Genuine Chinese Society for Environmental Sciences Annual Conference Proceedings. Shanghai:China Environmental Science Press, 2010: 863-868. |
[ 何瑞霞, 金会军, 王绍令, 等. 中俄管道沿线寒区生态环境现状分析//中国环境科学学会学术年会论文集. 上海:中国环境科学出版社, 2010: 863-868.] | |
[43] |
Bartalev S A, Belward A S, Erchov D V, et al. A new SPOT4-VEGETATION derived land cover map of Northern Eurasia. International Journal of Remote Sensing, 2003,24(9):1977-1982.
doi: 10.1080/0143116031000066297 |
[44] |
Luo D L, Wu Q B, Jin H J, et al. Recent changes in the active layer thickness across the northern hemisphere. Environmental Earth Sciences, 2016,75(7):555. DOI: 10.1007/s12665-015-5229-2.
doi: 10.1007/s12665-015-5229-2 |
[45] | Jiang Fengqing, Hu Ruji, Li Zhen. Variation trends of the freezing and thawing index along the Qinghai-Xizang Railway for the period 1966-2004. Acta Geographica Sinica, 2007,62(9):935-945. |
[ 姜逢清, 胡汝骥, 李珍. 青藏铁路沿线1966—2004年冻结与融化指数的变化趋势. 地理学报, 2007,62(9):935-945.] | |
[46] | Wang Genxu, Wu Qingbai, Wang Yibo, et al. The impacts of railroad engineering on the alpine grassland ecosystem in the Qinghai-Tibet Plateau. Science and Technology Review, 2005,23(1):8-13. |
[ 王根绪, 吴青柏, 王一博, 等. 青藏铁路工程对高寒草地生态系统的影响. 科技导报, 2005,23(1):8-13.] |
[1] | 胡凯衡, 魏丽, 刘双, 李秀珍. 横断山区泥石流空间格局和激发雨量分异性研究[J]. 地理学报, 2019, 74(11): 2303-2313. |
[2] | 王晓梦,刘晨,程杨,王锦,陈雅薇,周尧. 避难国政策影响下的欧洲难民危机时空格局及迁移优化[J]. 地理学报, 2018, 73(10): 2031-2049. |
[3] | 陈效逑, 喻蓉. 1982~1999 年我国东部暖温带植被 生长季节的时空变化[J]. 地理学报, 2007, 62(1): 41-51. |
[4] | 孙燕瓷, 张学雷, 程训强, 王辉, 檀满枝, 陈杰. 城市化对南京地区土壤多样性影响的灰色关联分析[J]. 地理学报, 2006, 61(3): 311-318. |
[5] | 刘耀彬, 李仁东, 宋学锋. 中国区域城市化与生态环境耦合的关联分析[J]. 地理学报, 2005, 60(2): 237-247. |
[6] | 罗先香,邓伟,何岩,栾兆擎. 三江平原沼泽性河流径流演变的驱动力分析[J]. 地理学报, 2002, 57(5): 603-610. |