地理学报 ›› 2021, Vol. 76 ›› Issue (5): 1206-1217.doi: 10.11821/dlxb202105012
收稿日期:
2019-12-18
修回日期:
2020-12-22
出版日期:
2021-05-25
发布日期:
2021-07-25
作者简介:
高海东(1983-), 男, 内蒙古乌审旗人, 博士, 副教授, 中国地理学会会员(S110010718M), 研究方向为土壤侵蚀与水土保持。E-mail: hdgao@msn.cn
基金资助:
Received:
2019-12-18
Revised:
2020-12-22
Published:
2021-05-25
Online:
2021-07-25
Supported by:
摘要:
黄河头道拐—潼关区间是黄河泥沙的主要来源区,也是中国植被恢复最快的地区。植被的快速恢复对径流和输沙过程产生了深远影响。本文基于250 m分辨率的归一化植被指数数据(MOD13Q1 NDVI),使用统计分析和趋势分析技术,分析了头道拐—潼关区间不同景观单元植被恢复特点、影响因素以及其对水沙过程的影响,并对头道拐—潼关区间植被未来发展趋势进行了预测。研究结果显示:头道拐—潼关区间82.87%区域的植被呈显著增加趋势(p < 0.05),且植被恢复速度最快的区域为半湿润的黄土丘陵沟壑区,坡度和降水量在不同景观单元下对植被恢复的影响不同。随着降水量的增加,头道拐—潼关区间NDVI和年降水量的相关性降低。在植被恢复背景下,黄河中游主要河流径流的主要影响因素仍然是降水量,输沙量同时受到降水量和植被恢复的影响,含沙量与NDVI呈现出较强的负相关关系,而与降水量的相关性较弱。随着植被覆盖度的增加,流域土壤侵蚀量降低,河流输沙量也呈降低趋势,土壤侵蚀量对河流输沙量的贡献率变化于39%~88%之间。基于植被恢复潜力和恢复速度,本文预测头道拐—潼关区间2020年、2030年、2040年以及2050年的NDVI平均值将分别达到0.68、0.75、0.79以及0.80。
高海东, 吴曌. 黄河头道拐—潼关区间植被恢复及其对水沙过程影响[J]. 地理学报, 2021, 76(5): 1206-1217.
GAO Haidong, WU Zhao. Vegetation restoration and its effect on runoff and sediment processes in the Toudaoguai-Tongguan section of the Yellow River[J]. Acta Geographica Sinica, 2021, 76(5): 1206-1217.
表1
研究区Theil Sen斜率值变化面积统计
景观单元 | 气候带 | Theil Sen斜率值 | 趋势 | 占比(%) |
---|---|---|---|---|
黄土丘陵沟壑区 | 半干旱 | 0.0115 | 降低 | 0.06 |
增加 | 90.72 | |||
不显著 | 9.22 | |||
半湿润 | 0.0124 | 降低 | 0.13 | |
增加 | 95.55 | |||
不显著 | 4.32 | |||
土石山区 | 半干旱 | 0.0078 | 降低 | 0.06 |
增加 | 85.72 | |||
不显著 | 14.22 | |||
半湿润 | 0.0056 | 降低 | 0.19 | |
增加 | 89.28 | |||
不显著 | 10.53 | |||
黄土高塬沟壑区 | 半干旱 | 0.0085 | 降低 | 0.20 |
增加 | 74.52 | |||
不显著 | 25.28 | |||
半湿润 | 0.0088 | 降低 | 2.20 | |
增加 | 73.62 | |||
不显著 | 24.18 | |||
平原区 | 0.0021 | 降低 | 13.93 | |
增加 | 34.37 | |||
不显著 | 51.70 | |||
风沙区 | 0.0086 | 降低 | 0.22 | |
增加 | 88.29 | |||
不显著 | 11.49 | |||
头道拐—潼关区间 | 0.0086 | 降低 | 1.66 | |
增加 | 82.87 | |||
不显著 | 15.47 |
表3
2000—2015年研究区土地利用转移及Theil Sen斜率值变化
景观单元 | 土地利用变化 | 占比(%) | Theil Sen斜率值 |
---|---|---|---|
风沙区 | 草地→草地 | 46.10 | 0.0086 |
沙地→沙地 | 26.81 | 0.0086 | |
耕地→耕地 | 9.51 | 0.0092 | |
平原区 | 耕地→耕地 | 67.99 | 0.0024 |
建筑用地→建筑用地 | 10.54 | 0.0011 | |
耕地→建筑用地 | 6.81 | -0.0031 | |
黄土高塬沟壑区 | 耕地→耕地 | 54.96 | 0.0081 |
草地→草地 | 24.36 | 0.0109 | |
土石山区 | 林地→林地 | 47.68 | 0.0046 |
草地→草地 | 23.57 | 0.0081 | |
耕地→耕地 | 12.90 | 0.0091 | |
草地→林地 | 9.38 | 0.0042 | |
黄土丘陵沟壑区 | 草地→草地 | 40.69 | 0.0121 |
耕地→耕地 | 36.22 | 0.0123 | |
林地→林地 | 7.83 | 0.0103 | |
耕地→草地 | 5.38 | 0.0135 |
表4
水文因子与植被和降水量的偏相关系数
流域/站点 | 水文因子 | NDVI | 年降水量 | 流域/站点 | 水文因子 | NDVI | 年降水量 |
---|---|---|---|---|---|---|---|
皇甫川/ 皇甫 | 径流量 | -0.35 | 0.73** | 清涧河/ 延川 | 径流量 | -0.30 | 0.35 |
输沙量 | -0.55* | 0.62* | 输沙量 | -0.31 | 0.07 | ||
含沙量 | -0.68** | -0.02 | 含沙量 | -0.48 | 0.12 | ||
县川河/ 旧县 | 径流量 | -0.41 | 0.36 | 昕水河/ 大宁 | 径流量 | -0.13 | 0.77** |
输沙量 | -0.33 | 0.24 | 输沙量 | -0.82** | 0.50 | ||
含沙量 | -0.39 | 0.16 | 含沙量 | -0.86** | 0.05 | ||
孤山川/ 高石崖 | 径流量 | -0.58* | 0.86** | 延河/ 甘谷驿 | 径流量 | -0.29 | 0.73** |
输沙量 | -0.80** | 0.66** | 输沙量 | -0.46 | 0.27 | ||
含沙量 | -0.88** | 0.36 | 含沙量 | -0.54* | 0.07 | ||
朱家川/ 桥头 | 径流量 | -0.30 | 0.63* | 仕望川/ 大村 | 径流量 | 0.65* | 0.81** |
输沙量 | -0.43 | 0.53* | 输沙量 | 0.19 | 0.26 | ||
含沙量 | -0.36 | 0.25 | 含沙量 | -0.06 | 0.15 | ||
窟野河/ 温家川 | 径流量 | -0.15 | 0.72** | 洛河/ 刘家河 | 径流量 | -0.60* | 0.90** |
输沙量 | -0.90** | 0.80** | 输沙量 | -0.52* | 0.85** | ||
含沙量 | -0.88** | 0.61* | 含沙量 | -0.40 | 0.75** | ||
秃尾河/ 高家川 | 径流量 | -0.56* | 0.34 | 葫芦河/ 张村驿 | 径流量 | 0.70* | 0.56* |
输沙量 | -0.53* | 0.17 | 输沙量 | 0.64* | 0.84** | ||
含沙量 | -0.51* | 0.15 | 含沙量 | -0.39 | 0.48 | ||
汾河/ 静乐 | 径流量 | 0.86** | 0.12 | 马莲河/ 雨落坪 | 径流量 | -0.42 | 0.75** |
输沙量 | -0.73** | 0.60* | 输沙量 | -0.59* | 0.67** | ||
含沙量 | -0.77** | 0.51 | 含沙量 | -0.43 | 0.27 | ||
佳芦河/ 申家湾 | 径流量 | -0.06 | 0.74** | 泾河/ 杨家坪 | 径流量 | -0.09 | 0.59* |
输沙量 | -0.50* | 0.79** | 输沙量 | -0.72** | 0.62* | ||
含沙量 | -0.72** | 0.79** | 含沙量 | -0.61* | 0.18 | ||
湫水河/ 林家坪 | 径流量 | -0.11 | 0.54* | 渭河/ 秦安 | 径流量 | 0.50** | 0.91** |
输沙量 | -0.20 | 0.27 | 输沙量 | -0.76** | 0.73** | ||
含沙量 | -0.33 | 0.23 | 含沙量 | -0.68** | 0.06 | ||
大理河/ 绥德 | 径流量 | -0.44 | 0.68** | 渭河/ 武山 | 径流量 | 0.66** | 0.92** |
输沙量 | -0.59* | 0.61* | 输沙量 | -0.25 | 0.45 | ||
含沙量 | -0.62* | 0.56* | 含沙量 | -0.50 | 0.07 |
[1] |
Fu B J, Wang S, Liu Y, et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annual Review of Earth and Planetary Sciences, 2017,45(1):223-243.
doi: 10.1146/annurev-earth-063016-020552 |
[2] | Smith T M, Shugart H H, Bonan G B, et al. Modeling the potential response of vegetation to global climate change. Advances in Ecological Research, 1992,22:93-116. |
[3] |
Beerling D J. Long-term responses of boreal vegetation to global change: An experimental and modelling investigation. Global Change Biology, 1999,5(1):55-74.
doi: 10.1046/j.1365-2486.1998.00209.x |
[4] |
Gonsamo A, Chen J M. Circumpolar vegetation dynamics product for global change study. Remote Sensing of Environment, 2016,182:13-26.
doi: 10.1016/j.rse.2016.04.022 |
[5] |
Zeppel M J B, Wilks J V, Lewis J D. Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences, 2014,11(11):3083-3093.
doi: 10.5194/bg-11-3083-2014 |
[6] |
Seddon A, Macias-Fauria M, Long P, et al. Sensitivity of global terrestrial ecosystems to climate variability. Nature, 2016,531(7593):229-232.
doi: 10.1038/nature16986 |
[7] |
Chen C, Park T, Wang X H, et al. China and India lead in greening of the world through land-use management. Nature Sustainability, 2019,2:122-129.
doi: 10.1038/s41893-019-0220-7 pmid: 30778399 |
[8] |
Murray S J, Foster P N, Prentice I C . Future global water resources with respect to climate change and water withdrawals as estimated by a dynamic global vegetation model. Journal of Hydrology, 2012,448/449:14-29.
doi: 10.1016/j.jhydrol.2012.02.044 |
[9] |
Xin Z B, Yu X X. Impact of vegetation restoration on hydrological processes in the middle reaches of the Yellow River, China. Forestry Studies in China, 2009,11(4):209-218.
doi: 10.1007/s11632-009-0037-y |
[10] |
Ouyang W, Hao F H, Skidmore A K, et al. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River. Science of the Total Environment, 2010,409(2):396-403.
doi: 10.1016/j.scitotenv.2010.10.020 |
[11] |
Wang S, Fu B J, Piao S L, et al. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nature Geoscience, 2016,9(1):38-41.
doi: 10.1038/ngeo2602 |
[12] |
Hao Z X, Zheng J Y, Ge Q S. Precipitation cycles in the middle and lower reaches of the Yellow River (1736-2000). Journal of Geographical Sciences, 2008,18(1):17-25.
doi: 10.1007/s11442-008-0017-5 |
[13] | Wang Jianbang, Zhao Jun, Li Chuanhua, et al. The spatial-temporal patterns of the impact of human activities on vegetation coverage in China from 2001 to 2015. Acta Geographica Sinica, 2019,74(3):504-519. |
[ 王建邦, 赵军, 李传华, 等. 2001—2015年中国植被覆盖人为影响的时空格局. 地理学报, 2019,74(3):504-519.] | |
[14] | Zheng Jingyun, Yin Yunhe, Li Bingyuan. A new scheme for climate regionalization in China. Acta Geographica Sinica, 2010,65(1):3-12. |
[ 郑景云, 尹云鹤, 李炳元. 中国气候区划新方案. 地理学报, 2010,65(1):3-12.] | |
[15] | Didan K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid V006 [Dataset]. NASA EOSDIS LP DAAC. 2015. DOI: 10.5067/MODIS/MOD13Q1.006. |
[16] |
Liu J Y, Kuang W H, Zhang Z X, et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. Journal of Geographical Sciences, 2014,24(2):195-210.
doi: 10.1007/s11442-014-1082-6 |
[17] |
Hensel D, Frans L. Regional Kendall test for trend. Environmental Science and Technology, 2006,40(13):4066-4073.
doi: 10.1021/es051650b |
[18] |
Sen P K. Estimates of regression coefficient based on Kendall's tau. Journal of the American Statistical Association. 1968,63(324):1379-1389.
doi: 10.1080/01621459.1968.10480934 |
[19] | Zhang Wenbo, Xie Yun, Liu Baoyuan. Rainfall erosivity estimation using daily rainfall amounts. Scientia Geographica Sinica, 2002,22(6):705-711. |
[ 章文波, 谢云, 刘宝元. 利用日雨量计算降雨侵蚀力的方法研究. 地理科学, 2002,22(6):705-711.] | |
[20] | Liu Baoyuan, Liang Yin, Cao Longxi, et al. Grid data on soil erodibility in China. National Earth System Science Data Center,National Science & Technology Infrastructure of China, 2018. |
[ 刘宝元, 梁音, 曹龙熹, 等. 中国土壤可蚀性因子K栅格数据集. 国家科技基础条件平台: 国家地球系统科学数据中心, 2018.] | |
[21] |
Zhang H M, Yang Q K, Li R, et al. Extension of a GIS procedure for calculating the RUSLE equation LS factor. Computers & Geosciences, 2013,52:177-188.
doi: 10.1016/j.cageo.2012.09.027 |
[22] | Jiang Zhongshan, Wang Zhiqiang, Liu Zhi. Quantitative study on spatial variation of soil erosion in a small watershed in the loess hilly region. Journal of Soil and Water Conservation, 1996,1:1-9. |
[ 江忠善, 王志强, 刘志. 黄土丘陵区小流域土壤侵蚀空间变化定量研究. 土壤侵蚀与水土保持学报, 1996,1:1-9.] | |
[23] |
Miao C Y, Ni J R, Borthwick A G L, et al. A preliminary estimate of human and natural contributions to the changes in water discharge and sediment load in the Yellow River. Global and Planetary Change, 2011,76(3/4):196-205.
doi: 10.1016/j.gloplacha.2011.01.008 |
[24] |
Wang S, Fu B J, Liang W, et al. Driving forces of changes in the water and sediment relationship in the Yellow River. Science of the Total Environment, 2017,576:453-461.
doi: 10.1016/j.scitotenv.2016.10.124 |
[25] |
Wei Y H, Jiao J Y, Zhao G J, et al. Spatial-temporal variation and periodic change in streamflow and suspended sediment discharge along the mainstream of the Yellow River during 1950-2013. Catena, 2016,140:105-115.
doi: 10.1016/j.catena.2016.01.016 |
[26] |
Xu G C, Zhang J X, Li P, et al. Vegetation restoration projects and their influence on runoff and sediment in China. Ecological Indicators, 2018,95(1):233-241.
doi: 10.1016/j.ecolind.2018.07.047 |
[27] |
Sun G, Zhou G Y, Zhang Z Q, et al. Potential water yield reduction due to forestation across China. Journal of Hydrology, 2006,328(3/4):548-558.
doi: 10.1016/j.jhydrol.2005.12.013 |
[28] |
Chen L D, Wang J P, Wei W, et al. Effects of landscape restoration on soil water storage and water use in the Loess Plateau region, China. Forest Ecology and Management, 2010,259(7):1291-1298.
doi: 10.1016/j.foreco.2009.10.025 |
[29] |
Gao G Y, Zhang J J, Liu Y, et al. Spatio-temporal patterns of the effects of precipitation variability and land use/cover changes on long-term changes in sediment yield in the Loess Plateau, China. Hydrology and Earth System Sciences, 2017,21(9):4363-4378.
doi: 10.5194/hess-21-4363-2017 |
[30] |
Zhang J J, Gao G Y, Fu B J, et al. Formulating an elasticity approach to quantify the effects of climate variability and ecological restoration on sediment discharge change in the Loess Plateau, China. Water Resources Research, 2019,55(11):9604-9622.
doi: 10.1029/2019WR025840 |
[31] | Zhang G H, Tang K M, Ren Z P, et al. Impact of grass root mass density on soil detachment capacity by concentrated flow on steep slopes. American Society of Agricultural and Biological Engineer, 2013,56(3):927-934. |
[32] |
Gao H, Xu X Z, Zhang H W, et al. How effective is vegetation in reducing gravity erosion on loess gully sidewall under intense rainfalls? Land Degradation & Development, 2020: 31(17):2605-2619.
doi: 10.1002/ldr.v31.17 |
[33] | Gao Haidong, Pang Guowei, Li Zhanbin, et al. Evaluating the potential of vegetation restoration in the Loess Plateau. Acta Geographica Sinica, 2017,72(5):863-874. |
[ 高海东, 庞国伟, 李占斌, 等. 黄土高原植被恢复潜力研究. 地理学报, 2017,72(5):863-874.] |
[1] | 孙倩,于坤霞,李占斌,李鹏,张晓明,龚珺夫. 黄河中游多沙粗沙区水沙变化趋势及其主控因素的贡献率[J]. 地理学报, 2018, 73(5): 945-956. |
[2] | 高海东, 庞国伟, 李占斌, 程圣东. 黄土高原植被恢复潜力研究[J]. 地理学报, 2017, 72(5): 863-874. |
[3] | 廖谌婳, 封志明, 李鹏, 张景华. 老挝北部刀耕火种农业变化及植被恢复效应[J]. 地理学报, 2015, 70(4): 591-603. |
[4] | 吴创收, 杨世伦, 黄世昌, 王珊珊. 1954-2011年间珠江入海水沙通量变化的多尺度分析[J]. 地理学报, 2014, 69(3): 422-432. |
[5] | 杨胜天, 周旭, 刘晓燕, 刘昌明, 罗娅, 吴琳娜, 赵海根. 黄河中游多沙粗沙区(渭河段)土地利用对植被盖度的影响[J]. 地理学报, 2014, 69(1): 31-41. |
[6] | 周旭, 杨胜天, 刘晓燕, 刘昌明, 周秋文, 赵海根, 罗娅, 马红斌. 黄河中游多沙粗沙区流域坡面水保措施变化特征[J]. 地理学报, 2014, 69(1): 64-72. |
[7] | 宋文龙, 杨胜天, 路京选, 刘昌明, 王树东. 黄河中游大尺度植被冠层截留降水模拟与分析[J]. 地理学报, 2014, 69(1): 80-89. |
[8] | 朱会义. 土地利用变化的内在动力——新疆地区农业生产要素产出效率的变动趋势分析[J]. 地理学报, 2013, 68(8): 1029-1037. |
[9] | 王尚义, 石瑛, 牛俊杰, 樊兰英. 煤矸石山不同植被恢复模式对土壤养分的影响——以山西省河东矿区1号煤矸石山为例[J]. 地理学报, 2013, 68(3): 372-379. |
[10] | 江聪, 熊立华. 基于GAMLSS 模型的宜昌站年径流序列趋势分析[J]. 地理学报, 2012, 67(11): 1505-1514. |
[11] | 黄春长, 李晓刚, 庞奖励, 查小春, 周亚利. 黄河永和关段全新世古洪水研究[J]. 地理学报, 2012, 67(11): 1493-1504. |
[12] | 孙鹏, 张强, 陈晓宏, 陈永勤. 鄱阳湖流域水沙时空演变特征及其机理[J]. 地理学报, 2010, 65(7): 828-840. |
[13] | 朱旭东1, 2, 何洪林1, 刘敏1, 2, 于贵瑞1, 孙晓敏1, 高彦华1. 近50 年中国光合有效辐射的时空变化特征[J]. 地理学报, 2010, 65(3): 270-280. |
[14] | 马菲,汪亚平,李炎,叶长江,徐志伟,张凡. 地统计法支持的北部湾东部海域沉积物粒径趋势分析[J]. 地理学报, 2008, 63(11): 1207-1217. |
[15] | 张晓萍, 张橹, 穆兴民, 李锐. 黄河中游河口—龙门区间多年平均流域水平衡特征 ———区域蒸散量估算模型验证与下垫面参数校核[J]. 地理学报, 2007, 62(7): 753-763. |