地理学报 ›› 2021, Vol. 76 ›› Issue (5): 1177-1192.doi: 10.11821/dlxb202105010

• 气候变化与地表过程 • 上一篇    下一篇

1960—2017年艾比湖流域实际蒸散量与气象要素的变化特征

尼格娜热·阿曼太1,2(), 丁建丽1,2(), 葛翔宇1,2, 包青岭1,2   

  1. 1.新疆大学资源与环境科学学院,乌鲁木齐 830046
    2.新疆大学绿洲生态教育部重点实验室,乌鲁木齐 830046
  • 收稿日期:2020-03-12 修回日期:2021-01-20 出版日期:2021-05-25 发布日期:2021-07-25
  • 通讯作者: 丁建丽(1974-), 男, 山东菏泽人, 博士, 教授, 博士生导师, 主要从事干旱区资源与环境遥感与建模方面的研究。E-mail: watarid@xju.edu.cn
  • 作者简介:尼格娜热·阿曼太(1994-), 女, 新疆乌鲁木齐人, 硕士生, 主要研究方向为生态水文学。E-mail: ngnr113@163.com
  • 基金资助:
    国家自然科学基金项目(41771470);国家自然科学基金项目(41961059);新疆水专项(2020.B-001)

Variation characteristics of actual evapotranspiration and meteorological elements in the Ebinur Lake basinfrom 1960 to 2017

AMANTAI Nigenare1,2(), DING Jianli1,2(), GE Xiangyu1,2, BAO Qingling1,2   

  1. 1. College of Resources & Environmental Science, Xinjiang University, Urumqi 830046, China
    2. Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China
  • Received:2020-03-12 Revised:2021-01-20 Published:2021-05-25 Online:2021-07-25
  • Supported by:
    National Natural Science Foundation of China(41771470);National Natural Science Foundation of China(41961059);Xinjiang Uygur Autonomous Region's Special Fund for Water Science and Technology(2020.B-001)

摘要:

传统估算蒸散发的方法大都基于局地尺度,而在生态水文发生剧烈变化的资料稀缺流域背景下,充分考虑流域下垫面的空间变异性的陆面过程模型为流域长时序、大尺度及连续模拟实际蒸散量提供了新途径。以艾比湖流域为研究区,应用可变下渗能力模型(VIC)模拟1960—2017年艾比湖流域的水文过程,探讨研究区值实际蒸散发量的年、月、日时空变化规律,并运用小波分析方法对5个气象要素及研究区实际蒸散发量的模拟值进行多尺度特征分析,结果表明:① VIC在温泉和博乐的径流纳什效率系数(NSE)分别为0.09和0.23,模拟效果较为满意;VIC实际蒸散量的模拟值与理论计算值,R2达0.80,均方根误差(RMSE)为31.76 mm a-1,NSE为0.32,模拟效果相对较好;② 时间尺度上,艾比湖流域58 a来年际实际蒸散量呈上升趋势,年均实际蒸散量以1.03 mm a-1的速率递增;月值和日值蒸散量均呈单峰趋势;且年代际变化中5—7月的实际蒸散量在20世纪90年代和21世纪呈现下降趋势,20世纪70年呈现上升趋势,而其余月份无明显变化;③ 空间分布上,艾比湖流域内实际蒸散发量总体上呈现高海拔及其附近地区蒸散强烈,从春季到夏季,强蒸散区由西北向东南转移,年实际蒸散量空间分布与春夏季分布一致;④ 艾比湖流域实际蒸散发量与各气象要素在时频域中均存在1~4个显著性周期,且在一定尺度的周期上,平均风速、平均温度以及日照时数超前于实际蒸散量变化,而年降水量和相对湿度滞后于实际蒸散量变化,受降水影响实际蒸散发1965年和2003年发生1 a周期的“强—弱”转换,受相对湿度影响实际蒸散量在1965年和2008年发生2~4.5 a周期的“强—弱”转换。

关键词: 实际蒸散量, VIC模型, 小波分析, 多尺度分析

Abstract:

Traditional methods for estimating evapotranspiration are mostly based on local scales. For data-scarce basins where ecological hydrology has undergone dramatic changes, a land surface process model that fully considers the spatial variability of the underlying surface of the watershed provides a new method of performing continuous actual evapotranspiration simulations over a long time series and at a large scale. Taking the Ebinur Lake basin as the research area, the variable infiltration capacity (VIC-3L) model was used to simulate the hydrological processes from 1960 to 2017 and explore the spatial and temporal variations in actual evapotranspiration in the study area. Additionally, the wavelet analysis method was used to analyze the multiscale characteristics of the five meteorological elements and the simulated values of actual evapotranspiration in the study area. The following results were obtained: (1) The runoff Nash-Sutcliffe efficiency (NSE) coefficients of the VIC at the Wenquan and Bole stations were 0.09 and 0.23, respectively, and the simulation results were satisfactory. Specifically, the simulated value and theoretical calculated value of the actual evapotranspiration of the VIC had an R2 value of 0.80, an RMSE of 31.76 mm a-1, an NSE of 0.32, and a relatively good simulation effect. (2) Regarding the time scale, the interannual actual evapotranspiration has presented an upward trend over the past 58 years, with the annual average actual evapotranspiration increasing at a rate of 1.03 mm a-1. Furthermore, both monthly and daily evapotranspiration showed a single peak trend. Regarding the interdecadal changes, the actual evapotranspiration from May to July showed a downward trend in the 1990s and in the early 21st century, and an upward trend in the 1970s, while no significant change in tother months. (3) In terms of spatial distribution, the actual evapotranspiration generally showed strong evapotranspiration in high altitude areas and their surroundings. From spring to summer, the area with strong evapotranspiration shifted from the northwest to southeast. The spatial distribution of annual actual evapotranspiration is consistent with that in spring and summer. (4) A wavelet analysis identified 1 to 4 significant periods in the time-frequency domain for the actual evapotranspiration and meteorological elements in the study basin. Over a certain period, the average wind speed, average temperature, and sunshine hours changed ahead of the actual evapotranspiration while the annual precipitation and relative temperature lagged behind the actual evapotranspiration changes. Affected by precipitation, the actual evapotranspiration had a "strong-weak" transition in 1965 and 2003 with a period of 1 a; and affected by relative humidity, the actual evapotranspiration had a "strong-weak" transition in 1965 and 2008 with a period of 2-4.5 a.

Key words: actual evapotranspiration, VIC model, wavelet analysis, multiscale analysis