地理学报 ›› 2021, Vol. 76 ›› Issue (5): 1163-1176.doi: 10.11821/dlxb202105009
孔凡彪1,2(), 陈海涛2,3, 徐树建2,3(
), 苗晓东2
收稿日期:
2019-12-16
修回日期:
2021-03-25
出版日期:
2021-05-25
发布日期:
2021-07-25
通讯作者:
徐树建(1967-), 男, 山东沂水人, 教授, 主要从事地貌与环境演变研究。E-mail: xushujian1967@163.com作者简介:
孔凡彪(1992-), 男, 山东济南人, 博士生, 主要从事地貌与环境演变研究。E-mail: kongfanbiao92@163.com
基金资助:
KONG Fanbiao1,2(), CHEN Haitao2,3, XU Shujian2,3(
), MIAO Xiaodong2
Received:
2019-12-16
Revised:
2021-03-25
Published:
2021-05-25
Online:
2021-07-25
Supported by:
摘要:
山东黄土堆积过程记录了中国东部季风区大气环流的变化信息,对揭示东亚季风变化规律与古气候环境演变具有重要价值。本文采用参数化粒度端元分析方法探讨山东章丘剖面沉积物的沉积特征、沉积动力及其环境意义。结果表明:① 章丘剖面光释光年代(OSL)介于42.24—0.26 ka之间,为晚更新世以来的沉积物。② 章丘剖面沉积物粒度组分分为5个端元,EM1代表成壤作用产生和携带搬运的粘土组分;EM2代表高空西风远距离搬运的细粉砂组分;EM3代表以浮尘形式存在的沉降组分;EM4是该剖面的主要粉尘来源,代表地方风系作用下低空悬浮搬运的粉砂组分;EM5代表以尘暴形式近地悬移搬运的砂粒组分。EM5组分含量变化对冬季风强度变化具有较好的指示意义,并记录了晚更新世以来的气候波动事件。③ 根据各端元组分含量、低频磁化率(χlf)、土壤颜色(a*)等指标,结合OSL结果,有效指示了晚更新世以来章丘剖面沉积环境的阶段性变化,体现了全球气候环境变化的区域响应,但也存在差异性。
孔凡彪, 陈海涛, 徐树建, 苗晓东. 山东章丘黄土粒度指示的粉尘堆积过程及古气候意义[J]. 地理学报, 2021, 76(5): 1163-1176.
KONG Fanbiao, CHEN Haitao, XU Shujian, MIAO Xiaodong. Dust accumulation processes and palaeoenvironmental significance of loess indicated by grain size in Zhangqiu, Shandong Province[J]. Acta Geographica Sinica, 2021, 76(5): 1163-1176.
表1
章丘剖面OSL测年结果
实验 编号 | 野外 编号 | 埋深 (cm) | U (Bq/kg) | Th (Bq/kg) | K (Bq/kg) | 实测含 水量(%) | 环境剂量率(Gy/ka) | 等效剂量 (Gy) | 年龄 (ka) |
---|---|---|---|---|---|---|---|---|---|
16-OSL-523 | HY01 | 100 | 28.1±1.9 | 48.5±0.5 | 659±10 | 11±5 | 3.42±0.14 | 0.90±0.04 | 0.264±0.017 |
16-OSL-524 | HY02 | 250 | 28.7±2.6 | 46.0±0.5 | 656±10 | 18±5 | 3.13±0.12 | 49.1±1.1 | 15.7±0.7 |
16-OSL-525 | HY03 | 370 | 26.5±1.7 | 45.4±0.5 | 654±10 | 12±5 | 3.27±0.13 | 67±3 | 20.4±1.4 |
16-OSL-526 | HY04 | 470 | 27.4±2.6 | 45.0±0.5 | 653±10 | 17±5 | 3.10±0.12 | 73±3 | 23.6±1.4 |
16-OSL-521 | HY05 | 717 | 31.3±2.1 | 48.3±0.5 | 602±10 | 10±5 | 3.22±0.13 | 101±5 | 32.0±2.0 |
16-OSL-522 | HY06 | 1260 | 31.1±1.6 | 47.2±0.5 | 617±10 | 9±5 | 3.23±0.14 | 126±5 | 39.0±2.0 |
[1] | Liu Tungsheng.. Loess and Environment. Beijing:Science Press, 1985. |
[ 刘东生. 黄土与环境. 北京:科学出版社, 1985.] | |
[2] | Zhang Yuzhu, Huang Chunchang, Chen Yinglu, et al. Age and provenance of Younger Dryas paleo-aeolian sand layers in the Jin-Shaan Gorges of the Yellow River. Acta Geographica Sinica, 2017,72(5):790-803. |
[ 张玉柱, 黄春长, 陈莹璐, 等. 新仙女木期黄河晋陕峡谷古风成沙层年代及其物质来源. 地理学报, 2017,72(5):790-803.] | |
[3] |
Liu X X, Vandenberghe J, An Z S, et al. Grain size of Lake Qinghai sediments: Implications for riverine input and Holocene monsoon variability. Palaeogeography, Palaeoclimatology,Palaeoecology, 2016,449:41-51.
doi: 10.1016/j.palaeo.2016.02.005 |
[4] |
Wang Zhaoduo, Huang Chunchang, Yang Hongjin, et al. Loess provenance characteristics and evolution indicated by grain size since late Pleistocene at the eastern foot of Liupan Mountains, China. Scientia Geographica Sinica, 2018,38(5):818-826.
doi: 10.13249/j.cnki.sgs.2018.05.020 |
[ 王兆夺, 黄春长, 杨红瑾, 等. 六盘山东麓晚更新世以来黄土粒度指示的物源特征及演变. 地理科学, 2018,38(5):818-826.] | |
[5] |
Weltje G J. End-member modeling of compositional data: Numerical-statistical algorithms for solving the explicit mixing problem. Mathematical Geology, 1997,29(4):503-549.
doi: 10.1007/BF02775085 |
[6] |
Liang X L, Niu Q H, Qu J J, et al. Applying end-member modeling to extricate the sedimentary environment of yardang strata in the Dunhuang Yardang National Geopark, northwestern China. CATENA, 2019,180:238-251.
doi: 10.1016/j.catena.2019.04.029 |
[7] |
Dietze E, Kai H, Diekmann B, et al. An end-member algorithm for deciphering modern detrital processes from lake sediments of Lake Donggi Cona, NE Tibetan Plateau, China. Sedimentary Geology, 2012,243/244:169-180.
doi: 10.1016/j.sedgeo.2011.09.014 |
[8] |
Yu S Y, Colman S M, Li L X. BEMMA: A hierarchical Bayesian end-member modeling analysis of sediment grain-size distributions. Mathematical Geosciences, 2016,48(6):723-741.
doi: 10.1007/s11004-015-9611-0 |
[9] |
Sun D H, Bloemendal J, Rea D K, et al. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments and numerical partitioning of the sedimentary components. Sedimentary Geology, 2002,152:263-277.
doi: 10.1016/S0037-0738(02)00082-9 |
[10] |
Prins M A, Vriend M, Nugteren G, et al. Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: Inferences from unmixing of loess grain-size records. Quaternary Science Reviews, 2007,26:230-242.
doi: 10.1016/j.quascirev.2006.07.002 |
[11] | Li Shuai, Yang Shengli, Liang Minhao, et al. The end member model analysis on grain size of loess in the eastern Tibetan Plateau. Earth and Environment, 2018,46(4):331-338. |
[ 李帅, 杨胜利, 梁敏豪, 等. 青藏高原东部黄土粒度分布的端元模型研究. 地球与环境, 2018,46(4):331-338.] | |
[12] | Cheng Liangqing, Song Yougui, Li Yue, et al. Preliminary application of grain size end member model for dust source tracing of Xinjiang loess and paleoclimate reconstruction. Acta Sedimentologica Sinica, 2018,36(6):1148-1156. |
[ 程良清, 宋友桂, 李越, 等. 粒度端元模型在新疆黄土粉尘来源与古气候研究中的初步应用. 沉积学报, 2018,36(6):1148-1156.] | |
[13] | Li Yue, Song Yougui, Zong Xiulan, et al. Dust accumulation processes of piedmont loess indicated by grain-size end members in northern Ili Basin. Acta Geographica Sinica, 2019,74(1):162-177. |
[ 李越, 宋友桂, 宗秀兰, 等. 伊犁盆地北部山麓黄土粒度端元指示的粉尘堆积过程. 地理学报, 2019,74(1):162-177.] | |
[14] |
Wen Y L, Wu Y Q, Tan L H, et al. End-member modeling of the grain size record of loess in the Mu Us Desert and implications for dust sources. Quaternary International, 2019,532:87-97.
doi: 10.1016/j.quaint.2019.10.005 |
[15] | Xu Shujian, Ding Xinchao, Ni Zhichao. The sedimentary characteristics of Buxi loess profile in Shandong Province and their paleoclimatic and palaeoenvironment significance. Acta Geographica Sinica, 2014,69(11):1707-1717. |
[ 徐树建, 丁新潮, 倪志超. 山东埠西黄土剖面沉积特征及古气候环境意义. 地理学报, 2014,69(11):1707-1717.] | |
[16] | Cao Jiaxin, Li Peiying, Shi Ning. Loess of Miaodao Island in Shandong Province. Science in China: Series B, 1987(10):1116-1123. |
[ 曹家欣, 李培英, 石宁. 山东庙岛群岛的黄土. 中国科学: B辑, 1987(10):1116-1123.] | |
[17] |
Tian S C, Sun J M, Lu L X, et al. Optically stimulated luminescence dating of late Quaternary loess deposits in the coastal region of North China: Provenance and paleoclimatic implications. Quaternary Science Reviews, 2019,218:160-177.
doi: 10.1016/j.quascirev.2019.06.022 |
[18] |
Xu S J, Kong F B, Jia G J, et al. An integrated OSL chronology, sedimentology and geochemical approach to loess deposits from Tuoji Island, Shandong Province: Implications for the late Quaternary paleoenvironment in East China. Aeolian Research, 2018,31:105-116.
doi: 10.1016/j.aeolia.2017.07.007 |
[19] |
Xu S J, Ding X C, Yu L P, et al. Palaeoclimatic implications of aeolian sediments on the Miaodao Islands, Bohai Sea, East China, based on OSL dating and proxies. Aeolian Research, 2015,19:259-266.
doi: 10.1016/j.aeolia.2015.02.001 |
[20] | Liu Lejun, Li Peiying, Wang Yongji. The grain-size properties and genesis of the loess in central Shandong Province. Marine Geology & Quaternary Geology, 2000,20(1):81-86. |
[ 刘乐军, 李培英, 王永吉. 鲁中黄土粒度特征及其成因探讨. 海洋地质与第四纪地质, 2000,20(1):81-86.] | |
[21] | Li Wubiao, Li Zhiwen, Wang Zhigang, et al. Climatic environment changes during the last interglacial-glacial cycle in Zhifu loess section: Revealed by grain-size end-member algorithm. Marine Geology & Quaternary Geology, 2019,39(2):177-187. |
[ 黎武标, 李志文, 王志刚, 等. 粒度端元揭示的芝罘剖面末次间冰期: 末次冰期气候环境变化特征. 海洋地质与第四纪地质, 2019,39(2):177-187.] | |
[22] | Chen Hui, Yang Shengli, Cheng Ting, et al. The magnetic susceptibility of top soil in the eastern Tibetan Plateau: Features and environmental implications. Journal of Glaciology and Geocryology, 2018,40(6):1187-1194. |
[ 陈慧, 杨胜利, 成婷, 等. 青藏高原东部表土磁化率特征与环境意义. 冰川冻土, 2018,40(6):1187-1194.] | |
[23] |
Song Y G, Fang X M, King J W, et al. Magnetic parameter variations in the Chaona loess/paleosol sequences in the central Chinese Loess Plateau, and their significance for the middle Pleistocene climate transition. Quaternary Research, 2014,81(3):433-444.
doi: 10.1016/j.yqres.2013.10.002 |
[24] |
Baumann K, Schoning L, Schrumpf M, et al. Rapid assessment of soil organic matter: Soil color analysis and Fourier transform infrared spectroscopy. Geoderma, 2016,278:49-57.
doi: 10.1016/j.geoderma.2016.05.012 |
[25] | Wang Qiansuo, Song Yougui, Li Jijun, et al. Characteristics of color in Chaona section and its paleoclimatic significance during the Last Glacial-Interglacial cycle. Scientia Geographica Sinica, 2015,35(11):1489-1494. |
[ 王千锁, 宋友桂, 李吉均, 等. 末次冰期—间冰期旋回朝那黄土颜色特征及古气候意义. 地理科学, 2015,35(11):1489-1494.] | |
[26] | Chen Jie, Yang Taibao, Zeng Biao, et al. Chroma characteristics and its paleoclimatic significance in Pamir loess section, China. Acta Sedimentologica Sinica, 2018,36(2):333-342. |
[ 陈杰, 杨太保, 曾彪, 等. 中国帕米尔地区黄土上部色度变化特征及古气候意义. 沉积学报, 2018,36(2):333-342.] | |
[27] |
Liu X X, Sun Y B, Vandenberghe J, et al. Palaeoenvironmental implication of grain-size compositions of terrace deposits on the western Chinese Loess Plateau. Aeolian Research, 2018,32:202-209.
doi: 10.1016/j.aeolia.2018.03.008 |
[28] |
Paterson G A, Heslop D. New methods for unmixing sediment grain size data. Geochemistry Geophysics Geosystems, 2015,16:4494-4506.
doi: 10.1002/ggge.v16.12 |
[29] |
Konert M, Vandenberghe J. Comparison of laser grain size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction. Sedimentology, 1997,44:523-535.
doi: 10.1046/j.1365-3091.1997.d01-38.x |
[30] |
Song Y G, Chen X L, Qian L B, et al. Distribution and composition of loess sediments in the Ili Basin, Central Asia. Quaternary International, 2014,334/335(12):61-73.
doi: 10.1016/j.quaint.2013.12.053 |
[31] |
Bronger A, Heinkele T. Mineralogical and clay mineralogical aspects of loess research. Quaternary International, 1990,7/8:37-51.
doi: 10.1016/1040-6182(90)90037-5 |
[32] | Shi Zhengtao, Fang Xiaomin, Song Yougui, et al. Loess sediments in the north slope of Tianshan Mountains and its indication of desertification since middle Pleistocene. Marine Geology & Quaternary Geology, 2006,26(3):109-114. |
[ 史正涛, 方小敏, 宋友桂, 等. 天山北坡黄土记录的中更新世以来干旱化过程. 海洋地质与第四纪地质, 2006,26(3):109-114.] | |
[33] |
Sun D H, Su R X, Li Z J, et al. The ultrafine component in Chinese loess and its variation over the past 7-6 Ma: Implications for the history of pedogenesis. Sedimentology, 2011,58:916-935.
doi: 10.1111/sed.2011.58.issue-4 |
[34] | Liu Hao, Jia Jia, Lu Caichen, et al. Multi-components separation of loess grain size in Zeketai and the recorded climate fluctuation during the last glacial period. Arid Land Geography, 2018,41(6):1260-1269. |
[ 刘浩, 贾佳, 路彩晨, 等. 则克台黄土粒度组分分离及其记录的末次冰期气候波动. 干旱区地理, 2018,41(6):1260-1269.] | |
[35] |
Qiang M R, Lang L L, Wang Z T. Do fine-grained components of loess indicate westerlies: Insights from observations of dust storm deposits at Lenghu (Qaidam Basin, China). Journal of Arid Environments, 2010,74:1232-1239.
doi: 10.1016/j.jaridenv.2010.06.002 |
[36] |
Újvári G, Kok J F, Varga G, et al. The physics of wind-blown loess: Implications for grain size proxy interpretations in Quaternary paleoclimate studies. Earth-Science Reviews, 2016,154:247-278.
doi: 10.1016/j.earscirev.2016.01.006 |
[37] |
Li Y, Song Y G, Fitzsimmons K E, et al. Eolian dust dispersal patterns since the last glacial period in eastern Central Asia: insights from a loess-paleosol sequence in the Ili Basin. Climate of the Past, 2018,14(3):271-286.
doi: 10.5194/cp-14-271-2018 |
[38] | Pye K. Aeolian Dust and Dust Deposits. London: Academic Press, 1987. |
[39] |
Rea D K, Leinen M, Janecek T R. Geologic approach to the long-term history of atmospheric circulation. Science, 1985,227:721-725.
doi: 10.1126/science.227.4688.721 |
[40] |
Vandenberghe J. Grain size of fine-grained windblown sediment: A powerful proxy for process identification. Earth-Science Reviews, 2013,121:18-30.
doi: 10.1016/j.earscirev.2013.03.001 |
[41] |
Nottebaum V, Stauch G, Hartmann K, et al. Unmixed loess grain size populations along the northern Qilian Shan (China): Relationships between geomorphologic, sedimentologic and climatic controls. Quaternary International, 2015,372:151-166.
doi: 10.1016/j.quaint.2014.12.071 |
[42] |
Sun D H, Bloemendal J, Rea D K, et al. Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications. CATENA, 2004,55:325-340.
doi: 10.1016/S0341-8162(03)00109-7 |
[43] |
Crouvi O, Amit R, Enzel Y, et al. Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev Desert, Israel. Quaternary Research, 2008,70:275-282.
doi: 10.1016/j.yqres.2008.04.011 |
[44] |
Lin Y C, Mu G J, Xu L S, et al. The origin of bimodal grain-size distribution for aeolian deposits. Aeolian Research, 2016,20:80-88.
doi: 10.1016/j.aeolia.2015.12.001 |
[45] |
Vriend M, Prins M A, Buylaert J P, et al. Contrasting dust supply patterns across the north-western Chinese Loess Plateau during the last glacial-interglacial cycle. Quaternary International, 2011,240:167-180.
doi: 10.1016/j.quaint.2010.11.009 |
[46] | Lu Huayu, An Zhisheng. Grain-size composition of Luochuan loess and paleoclimate implication. Chinese Science Bulletin, 1997,42(1):66-69. |
[ 鹿化煜, 安芷生. 洛川黄土粒度组成的古气候意义. 科学通报, 1997,42(1):66-69.] | |
[47] |
Rasmussen S O, Bigler M, Blockley S P, et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews, 2014,106:14-28.
doi: 10.1016/j.quascirev.2014.09.007 |
[48] |
Sweeney M R, Mason J A. Mechanisms of dust emission from Pleistocene loess deposits, Nebraska, USA. Journal of Geophysical Research: Earth Surface, 2013,118:1460-1471.
doi: 10.1002/jgrf.20101 |
[49] | Wang Yongjin, Wu Jiangying, Wu Jinquan, et al. Comparison of stalagmite high resolution climate records in Nanjing with GRIP ice core during the last glacial period. Science in China: Series D, 2000,30(5):533-539. |
[ 汪永进, 吴江滢, 吴金全, 等. 末次冰期南京石笋高分辨率气候记录与GRIP冰芯对比. 中国科学: D辑, 2000,30(5):533-539.] | |
[50] |
Hu Chunsheng, Wu Li, Yang Lihui. Gravel fabric and sedimentary environment of terrace gravel layers of the upper Qingyijiang river at Jingxian county. Scientia Geographica Sinica, 2016,36(6):951-958.
doi: 10.13249/j.cnki.sgs.2016.06.019 |
[ 胡春生, 吴立, 杨立辉. 青弋江上游泾县段阶地砾石层砾组结构及其沉积环境研究. 地理科学, 2016,36(6):951-958.] | |
[51] | Cui Zhiqiang, Liu Dengzhong, Meng Qingmin. The origin of the Pleistocene gravel in western Sichuan depression. Geology in China, 2009,36(5):1065-1078. |
[ 崔志强, 刘登忠, 孟庆敏. 川西凹陷地区更新统砾石层沉积成因探讨. 中国地质, 2009,36(5):1065-1078.] | |
[52] | Zhou Jiaxing, Yu Juan, Yang Lijun, et al. Sedimentary characteristics of the early and middle Holocene loess in Tongchuan area and their implications for paleoclimate. Marine Geology & Quaternary Geology, 2020,40(1):160-166. |
[ 周家兴, 于娟, 杨丽君, 等. 铜川地区早中全新世黄土沉积特征及其古气候意义. 海洋地质与第四纪地质, 2020,40(1):160-166.] | |
[53] | Cheng Liangqing, Song Yougui, Sun Huanyu, et al. Spatio-temporal distribution of dust sedimentation rate of Tianshan loess since MIS3 and its implications. Marine Geology and Quaternary Geology, 2019,39(1):143-153. |
[ 程良清, 宋友桂, 孙焕宇, 等. MIS3以来天山黄土沉积速率时空分布规律及其意义. 海洋地质与第四纪地质, 2019,39(1):143-153.] |
[1] | 梁潇, 杨萍果, 姚娇, 张鹏, 张建辉, 孙鹏飞, 敖红. 16 ka以来黄土高原东亚夏季风变化的环境磁学记录[J]. 地理学报, 2021, 76(3): 539-549. |
[2] | 张琨, 吕一河, 傅伯杰, 尹礼唱, 于丹丹. 黄土高原植被覆盖变化对生态系统服务影响及其阈值[J]. 地理学报, 2020, 75(5): 949-960. |
[3] | 赵成双苹, 莫多闻. 长江中游江汉—洞庭盆地全新世以来水文环境演变与人类活动[J]. 地理学报, 2020, 75(3): 529-543. |
[4] | 鲁大铭, 杨新军, 石育中, 王子侨. 黄土高原乡村体制转换与转型发展[J]. 地理学报, 2020, 75(2): 348-364. |
[5] | 刘彦随, 冯巍仑, 李裕瑞. 现代农业地理工程与农业高质量发展——以黄土丘陵沟壑区为例[J]. 地理学报, 2020, 75(10): 2029-2046. |
[6] | 刘晓燕, 刘昌明, 党素珍. 黄土丘陵区雨强对水流含沙量的影响[J]. 地理学报, 2019, 74(9): 1723-1732. |
[7] | 刘立程, 刘春芳, 王川, 李鹏杰. 黄土丘陵区生态系统服务供需匹配研究——以兰州市为例[J]. 地理学报, 2019, 74(9): 1921-1937. |
[8] | 李越,宋友桂,宗秀兰,张治平,程良清. 伊犁盆地北部山麓黄土粒度端元指示的粉尘堆积过程[J]. 地理学报, 2019, 74(1): 162-177. |
[9] | 肖国峰,朱秀芳,侯陈瑶,夏兴生. 撂荒耕地的提取与分析——以山东省庆云县和无棣县为例[J]. 地理学报, 2018, 73(9): 1658-1673. |
[10] | 文琦,施琳娜,马彩虹,王永生. 黄土高原村域多维贫困空间异质性研究——以宁夏彭阳县为例[J]. 地理学报, 2018, 73(10): 1850-1864. |
[11] | 胡小猛, 周天航, 蔡顺, 陈硕, 刘毓阳, 陈美君. 大同火山活动在区域沉积中的记录和阶段性历史研究[J]. 地理学报, 2017, 72(9): 1669-1679. |
[12] | 高海东, 庞国伟, 李占斌, 程圣东. 黄土高原植被恢复潜力研究[J]. 地理学报, 2017, 72(5): 863-874. |
[13] | 钟莉娜, 王军, 赵文武. 多流域降雨和土地利用格局对土壤侵蚀影响的比较分析——以陕北黄土丘陵沟壑区为例[J]. 地理学报, 2017, 72(3): 432-443. |
[14] | 毛沛妮, 庞奖励, 黄春长, 查小春, 周亚利, 郭永强, 胡慧, 刘涛. 汉江上游黄土常量元素地球化学特征及区域对比[J]. 地理学报, 2017, 72(2): 279-291. |
[15] | 曲衍波, 姜广辉, 张佰林, 李慧燕, 魏淑文. 山东省农村居民点转型的空间特征及其经济梯度分异[J]. 地理学报, 2017, 72(10): 1845-1858. |