地理学报 ›› 2021, Vol. 76 ›› Issue (5): 1065-1077.doi: 10.11821/dlxb202105002
刘诗奇1(), 王平1,2(
), 王田野3, 黄其威1,2, 于静洁1,2
收稿日期:
2020-03-05
修回日期:
2020-12-02
出版日期:
2021-05-25
发布日期:
2021-07-25
通讯作者:
王平(1979-), 男, 安徽人, 博士, 副研究员, 主要从事水文水资源研究。E-mail: wangping@igsnrr.ac.cn作者简介:
刘诗奇(1990-), 女, 黑龙江人, 博士后, 主要从事地质环境与气候变化研究。E-mail: liusq@igsnrr.ac.cn
基金资助:
LIU Shiqi1(), WANG Ping1,2(
), WANG Tianye3, HUANG Qiwei1,2, YU Jingjie1,2
Received:
2020-03-05
Revised:
2020-12-02
Published:
2021-05-25
Online:
2021-07-25
Supported by:
摘要:
河流有机碳输出是北极碳循环的重要组分,对气候变化十分敏感。本文利用ArcticGRO的径流及有机碳数据,通过数理统计分析等方法,对2004—2017年间俄罗斯西伯利亚地区的鄂毕河、叶尼塞河和勒拿河有机碳输出进行研究。结果显示:西伯利亚3大河流的年均有机碳输出总量约23 Tg,其中溶解有机碳(DOC)输出约18.55 Tg,占北极地区50%以上,接近颗粒有机碳(POC)输出的4倍。2009—2017年间的年均DOC输出量较1999—2008年存在较大差异,鄂毕河增加18%,叶尼塞河下降13%,而勒拿河增加了近70%。春、夏两季有机碳输出总量占全年85%以上,春季为有机碳输出高峰期,而在鄂毕河流域春、夏季贡献率相当。各流域河流有机碳输出特征不同且具有季节性变化,主要受径流、冻土及人类活动等的影响。其中,DOC输出总量在年际与季节性变化特征上均与径流变化呈显著正相关,随径流增加DOC浓度也相应增大;而多年冻土也因类型及分布差异对河流DOC与POC具有不同程度的影响。研究气候变化下的北极河流有机碳输出特征及影响要素,有助于深入理解北极河流有机碳输出对气候及环境变化的综合响应,为揭示气候变化下的北极碳循环过程奠定基础。
刘诗奇, 王平, 王田野, 黄其威, 于静洁. 西伯利亚北极河流有机碳输出特征及影响要素[J]. 地理学报, 2021, 76(5): 1065-1077.
LIU Shiqi, WANG Ping, WANG Tianye, HUANG Qiwei, YU Jingjie. Characteristic analysis of organic carbon output and its affecting factors of Arctic rivers in Siberia[J]. Acta Geographica Sinica, 2021, 76(5): 1065-1077.
表1
西伯利亚三大流域基本地理环境特征及人口数据统计
鄂毕河 | 叶尼塞河 | 勒拿河 | 来源文献 | |
---|---|---|---|---|
汇入海域 | 喀拉海 | 拉普捷夫海 | [ | |
海域面积(104 km2) | 661.5 | 363.2 | ||
海域DOC汇入(Tg/a) | 11.1 | 8.26 | ||
流域面积(104 km2) | 311 | 257 | 247 | [ |
257 | 258 | 242 | [ | |
299 | 254 | 246 | [ | |
295 | 244 | 243 | [ | |
流域平均海拔(m) | 305 | 769 | 608 | [ |
流域平均坡度(°) | 1.98 | 4.90 | 4.91 | |
平均土壤厚度(cm) | 216 | 93 | 49 | |
年均降水量(mm) | 393 | 356 | 337 | |
年均气温(℃) | -0.6 | -4.5 | -8.6 | |
土壤有机碳(kg/m3) | 20 | 12.6 | 12.9 | |
年径流量(km3) | 404~419 | 562~577 | 524~533 | [ |
405 | 626 | 525 | [ | |
427 | 673 | 588 | [ | |
410 | 610 | 540 | [ | |
多年冻土覆盖率(%) | 4~18 | 36~66 | 78~94 | [ |
4 | 42 | 90 | [ | |
连续多年冻土占比(%) | 1 | 31 | 77 | [ |
人口密度(人/km2) | 8 | 3 | 0.4 | |
7 | 2 | 1 | [ |
表3
1999—2008年及2009—2017年西伯利亚北极河流季节性DOC输出
河流 | 鄂毕河 | 叶尼塞河 | 勒拿河 | 总输出 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
时段 | 1999—2008 | 2009—2017 | 1999—2008 | 2009—2017 | 1999—2008 | 2009—2017 | 1999—2008 | 2009—2017 | ||||
DOC春(Tg/a) | 1.34 | 1.82↑ | 2.92 | 2.52↓ | 2.82 | 7.36↑ | 7.09 | 11.69↑ | ||||
DOC夏(Tg/a) | 2.17 | 2.31↑ | 1.18 | 1.05↓ | 2.35 | 1.92↓ | 5.70 | 5.28↓ | ||||
DOC冬(Tg/a) | 0.61 | 0.73↑ | 0.54 | 0.46↓ | 0.51 | 0.39↓ | 1.65 | 1.58↓ | ||||
DOC总(Tg/a) | 4.12 | 4.86↑ | 4.64 | 4.02↓ | 5.68 | 9.67↑ | 14.44 | 18.55↑ | ||||
DOC春/DOC冬 | 2.20 | 2.47↑ | 5.45 | 5.49↑ | 5.56 | 18.86↑ | 4.28 | 7.39↑ | ||||
DOC春占比(%) | 32.49 | 37.36↑ | 62.96 | 62.59↓ | 49.69 | 76.11↑ | 49.06 | 63.03↑ |
[1] |
Ludwig W, Probst J L, Kempe S. Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles, 1996,10(1):23-41.
doi: 10.1029/95GB02925 |
[2] |
Stuecker M F, Bitz C M, Armour K C, et al. Polar amplification dominated by local forcing and feedbacks. Nature Climate Change, 2018,8(12):1076-1081.
doi: 10.1038/s41558-018-0339-y |
[3] |
Screen J A, Simmonds I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 2010,464(7293):1334-1337.
doi: 10.1038/nature09051 pmid: 20428168 |
[4] |
Turetsky M R, Abbott B W, Jones M C, et al. Carbon release through abrupt permafrost thaw. Nature Geoscience, 2020,13(2):138-143.
doi: 10.1038/s41561-019-0526-0 |
[5] |
Wild B, Andersson A, Bröder L, et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. PNAS, 2019,116(21):10280-10285.
doi: 10.1073/pnas.1811797116 |
[6] |
Kutscher L, Mörth C M, Porcelli D, et al. Spatial variation in concentration and sources of organic carbon in the Lena River, Siberia. Journal of Geophysical Research: Biogeosciences, 2017,122(8):1999-2016.
doi: 10.1002/jgrg.v122.8 |
[7] |
Fabre C, Sauvage S, Tananaev N, et al. Assessment of sediment and organic carbon exports into the Arctic ocean: The case of the Yenisei River basin. Water Research, 2019,158:118-135.
doi: S0043-1354(19)30326-4 pmid: 31022529 |
[8] |
Schlesinger W H, Melack J M. Transport of organic carbon in the world's rivers. Tellus, 2016,33(4):172-187.
doi: 10.3402/tellusa.v33i2.10706 |
[9] |
Holmes R M, McClelland J W, Peterson B J , et al. Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuaries and Coasts, 2012,35(2):369-382.
doi: 10.1007/s12237-011-9386-6 |
[10] | Raymond P A, McClelland J W, Holmes R M, et al. Flux and age of dissolved organic carbon exported to the Arctic Ocean: A carbon isotopic study of the five largest arctic rivers. Global Biogeochemical Cycles, 2007,21(4): GB4011. DOI: 10.1029/2007GB002934. |
[11] | Manizza M, Follows M J, Dutkiewicz S, et al. Modeling transport and fate of riverine dissolved organic carbon in the Arctic Ocean. Global Biogeochemical Cycles, 2009, 23(4): GB4006. DOI: 10.1029/2008GB003396. |
[12] | Wang Ping, Wang Tianye, Wang Guan, et al. Spatial distribution and potential exploration of water resources in Siberia. Resources Science, 2018,40(11):2186-2195. |
[ 王平, 王田野, 王冠, 等. 西伯利亚淡水资源格局与合作开发潜力分析. 资源科学, 2018,40(11):2186-2195.] | |
[13] |
Teufel B, Sushama L. Abrupt changes across the Arctic permafrost region endanger northern development. Nature Climate Change, 2019,9(11):858-862.
doi: 10.1038/s41558-019-0614-6 |
[14] |
Song C L, Wang G X, Mao T X, et al. Linkage between permafrost distribution and river runoff changes across the Arctic and the Tibetan Plateau. Science China (Earth Sciences), 2020,63(2):292-302.
doi: 10.1007/s11430-018-9383-6 |
[15] |
Murphy M J, Porcelli D, Strandmann P, et al. Tracing silicate weathering processes in the permafrost-dominated Lena River watershed using lithium isotopes. Geochimica et Cosmochimica Acta, 2019,245:154-171.
doi: 10.1016/j.gca.2018.10.024 |
[16] |
Menard H W, Smith S M. Hypsometry of ocean basin provinces. Journal of Geophysical Research, 1966,71(18):4305-4325.
doi: 10.1029/JZ071i018p04305 |
[17] | Aagaard K, Carmack E C. The role of sea ice and other fresh water in the Arctic circulation. Journal of Geophysical Research: Oceans, 1989,94(C10):14485-14498. |
[18] |
Prowse T, Alfredsen K, Beltaos S, et al. Arctic freshwater ice and its climatic role. AMBIO, 2011,40(Suppl.1):46-52.
doi: 10.1007/s13280-011-0214-9 |
[19] |
Carmack E C, Yamamoto-Kawai M, Haine T W N, et al. Freshwater and its role in the Arctic Marine System: Sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. Journal of Geophysical Research: Biogeosciences, 2016,121(3):675-717.
doi: 10.1002/jgrg.v121.3 |
[20] |
Obu J, Westermann S, Bartsch A, et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000-2016 at 1km2 scale . Earth-Science Reviews, 2019,193:299-316.
doi: 10.1016/j.earscirev.2019.04.023 |
[21] |
Yang D Q, Ye B S, Shiklomanov A. Discharge characteristics and changes over the Ob river watershed in Siberia. Journal of Hydrometeorology, 2004,5(4):595-610.
doi: 10.1175/1525-7541(2004)005<0595:DCACOT>2.0.CO;2 |
[22] |
Chadburn S E, Burke E J, Cox P M, et al. An observation-based constraint on permafrost loss as a function of global warming. Nature Climate Change, 2017,7(5):340-344.
doi: 10.1038/NCLIMATE3262 |
[23] | Grabs W E, Portmann F, Couet T. Discharge observation networks in arctic regions: Computation of the river runoff into the Arctic Ocean, its seasonality and variability//Lewis E L, Jones E P, Lemke P, et al. The Freshwater Budget of the Arctic Ocean. Dordrecht: Springer Netherlands, 2000. |
[24] |
Zhang T, Barry R G, Knowles K, et al. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geography, 1999,23(2):132-154.
doi: 10.1080/10889379909377670 |
[25] |
Alexandrov G A, Brovkin V A, Kleinen T. The influence of climate on peatland extent in Western Siberia since the Last Glacial Maximum. Scientific Reports, 2016,6:24784. DOI: 10.1038/srep24784.
doi: 10.1038/srep24784 pmid: 27095029 |
[26] |
Dynesius M, Nilsson C J S . Fragmentation and flow regulation of river systems in the northern third of the world. Science, 1994,266(5186):753-762.
doi: 10.1126/science.266.5186.753 |
[27] |
Amon R M W, Rinehart A J, Duan S, et al. Dissolved organic matter sources in large Arctic rivers. Geochimica Et Cosmochimica Acta, 2012,94:217-237.
doi: 10.1016/j.gca.2012.07.015 |
[28] |
Hindshaw R S, Teisserenc R, Dantec T L, et al. Seasonal change of geochemical sources and processes in the Yenisei River: A Sr, Mg and Li isotope study. Geochimica et Cosmochimica Acta, 2019,255:222-236.
doi: 10.1016/j.gca.2019.04.015 |
[29] |
McClelland W, Holmes R M, Peterson B J, et al. Increasing river discharge in the Eurasian Arctic: Consideration of dams, permafrost thaw, and fires as potential agents of change. Journal of Geophysical Research: Atmospheres, 2004,109(D18):D18102. DOI: 10.1029/2004JD004583.
doi: 10.1029/2004JD004583 |
[30] |
Fedorov A N, Ivanova R N, Park H, et al. Recent air temperature changes in the permafrost landscapes of northeastern Eurasia. Polar Science, 2014,8(2):114-128.
doi: 10.1016/j.polar.2014.02.001 |
[31] | Ye B S, Yang D Q, Kane D L. Changes in Lena River streamflow hydrology: Human impacts versus natural variations. Water Resources Research, 2003,39(7):1200. DOI: 10.1029/2003WR001991. |
[32] |
Durand F, Piecuch C G, Becker M, et al. Impact of continental freshwater runoff on coastal sea level. Surveys in Geophysics, 2019,40(6):1437-1466.
doi: 10.1007/s10712-019-09536-w |
[33] |
Schuur E A G, McGuire A D, Schädel C, et al. Climate change and the permafrost carbon feedback. Nature, 2015,520(7546):171-179.
doi: 10.1038/nature14338 pmid: 25855454 |
[34] | An Zhihong, Sun Ziyong, Hu Yalu, et al. Export of dissolved organic carbon in streams draining permafrost-dominated areas: A review. Geological Science and Technology Information, 2018,37(1):204-211. |
[ 安志宏, 孙自永, 胡雅璐, 等. 多年冻土区河流溶解性有机碳输出的研究进展. 地质科技情报, 2018,37(1):204-211.] | |
[35] | Cooper L W, Benner R, McClelland J W, et al. Linkages among runoff, dissolved organic carbon, and the stable oxygen isotope composition of seawater and other water mass indicators in the Arctic Ocean. Journal of Geophysical Research: Biogeosciences, 2005,110(G2):G02013. DOI: 10.1029/2005JG000031. |
[36] |
Trumbore S. Radiocarbon and soil carbon dynamics. Annual Review of Earth and Planetary Sciences, 2009,37(1):47-66.
doi: 10.1146/annurev.earth.36.031207.124300 |
[37] |
McClelland J W, Holmes R M, Peterson B J, et al. Particulate organic carbon and nitrogen export from major Arctic rivers. Global Biogeochemical Cycles, 2016,30(5):629-643.
doi: 10.1002/2015GB005351 |
[38] | Seitzinger S P, Mayorga E, Bouwman A F, et al. Global river nutrient export: A scenario analysis of past and future trends. Global Biogeochemical Cycles, 2010,24(4): GB0A08. DOI: 10.1029/2009GB003587. |
[39] |
Dittmar T, Kattner G. The biogeochemistry of the river and shelf ecosystem of the Arctic Ocean: A review. Marine Chemistry, 2003,83(3-4):103-120.
doi: 10.1016/S0304-4203(03)00105-1 |
[40] |
Lobbes J M, Fitznar H P, Kattner G. Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean. Geochimica et Cosmochimica Acta, 2000,64(17):2973-2983.
doi: 10.1016/S0016-7037(00)00409-9 |
[41] | Striegl R G, Dornblaser M M, Aiken G R, et al. Carbon export and cycling by the Yukon, Tanana, and Porcupine rivers, Alaska, 2001-2005. Water Resources Research, 2007,43(2):W02411. DOI: 10.1029/2006WR005201. |
[42] |
Mu C C, Zhang F, Chen X, et al. Carbon and mercury export from the Arctic rivers and response to permafrost degradation. Water Research, 2019,161:54-60.
doi: 10.1016/j.watres.2019.05.082 |
[43] |
Schuster P F, Striegl R G, Aiken G R, et al. Mercury export from the Yukon river basin and potential response to a changing climate. Environmental Science & Technology, 2011,45(21):9262-9267.
doi: 10.1021/es202068b |
[44] |
Prokushkin A S, Pokrovsky O S, Korets M A, et al. Sources of dissolved organic carbon in rivers of the Yenisei River basin. Doklady Earth Sciences, 2018,480(2):763-766.
doi: 10.1134/S1028334X18060077 |
[45] |
Ma X L, Liu G M, Wu X D, et al. Influence of land cover on riverine dissolved organic carbon concentrations and export in the Three Rivers Headwater Region of the Qinghai-Tibetan Plateau. Science of the Total Environment, 2018,630:314-322.
doi: 10.1016/j.scitotenv.2018.02.152 |
[46] |
Hugelius G, Strauss J, Zubrzycki S, et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 2014,11(23):6573-6593.
doi: 10.5194/bg-11-6573-2014 |
[47] |
MacDonald R W, Harner T, Fyfe J. Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Science of the Total Environment, 2005,342(1-3):5-86.
doi: 10.1016/j.scitotenv.2004.12.059 |
[48] |
Frey K E, McClelland J W . Impacts of permafrost degradation on arctic river biogeochemistry. Hydrological Processes, 2009,23(1):169-182.
doi: 10.1002/hyp.v23:1 |
[49] |
Schuster P F, Schaefer K M, Aiken G R, et al. Permafrost stores a globally significant amount of mercury. Geophysical Research Letters, 2018,45(3):1463-1471.
doi: 10.1002/grl.v45.3 |
[50] |
Rydberg J, Klaminder J, Rosén P, et al. Climate driven release of carbon and mercury from permafrost mires increases mercury loading to sub-arctic lakes. Science of the Total Environment, 2010,408(20):4778-4783.
doi: 10.1016/j.scitotenv.2010.06.056 |
[51] | Wang Tianye. Assess the spatial distribution of permafrost and its changes under the scenario of climatic warming on the Qinghai-Tibet Plateau and the Mongolian Plateau[D]. Beijing: University of Chinese Academy of Sciences, 2016. |
[ 王田野. 气候变暖背景下青藏高原和蒙古高原多年冻土分布及变化研究[D]. 北京: 中国科学院大学, 2016.] | |
[52] |
Vaks A, Mason A J, Breitenbach S F M, et al. Palaeoclimate evidence of vulnerable permafrost during times of low sea ice. Nature, 2020,577(7789):221-225.
doi: 10.1038/s41586-019-1880-1 pmid: 31915398 |
[53] | Shiklomanov I A, Shiklomanov A I, Lammers R B, et al. The Dynamics of River Water Inflow to the Arctic Ocean. Dordrecht: Springer Netherlands, 2000. |
[54] |
Callaghan T V, Johansson M, Key J, et al. Feedbacks and interactions: From the arctic cryosphere to the climate system. AMBIO, 2011,40(1):75-86.
doi: 10.1007/s13280-011-0215-8 |
[55] | Holmes R M, McClelland J W, Raymond P A, et al. Lability of DOC transported by Alaskan rivers to the Arctic Ocean. Geophysical Research Letters, 2008,35(3):L03402. DOI: 10.1029/2007GL032837. |
[56] | Degens E T, Kempe S, Richey J E. Biogeochemistry of Major World Rivers. Chichester: John Wiley and Sons, 1991. |
[57] |
Clair T A, Pollock T L, Ehrman J M. Exports of carbon and nitrogen from river basins in Canada's Atlantic Provinces. Global Biogeochemical Cycles, 1994,8(4):441-450.
doi: 10.1029/94GB02311 |
[1] | 倪宁淇, 谢佳鑫, 刘小莽, 王恺文, 田巍. 基于径流对气候变化敏感性指标的多源数据质量评估[J]. 地理学报, 2022, 77(9): 2280-2291. |
[2] | 车明轩, 吴强, 方浩, 康成芳, 吕宸, 许蔓菁, 宫渊波. 川西高寒山地土壤有机碳与铁、铝矿物复合体分布特征[J]. 地理学报, 2022, 77(1): 93-105. |
[3] | 张俊华, 朱连奇, 李国栋, 赵芳, 秦静婷. 中国南北过渡带土壤碳氮空间特征及暖温带与亚热带界限[J]. 地理学报, 2021, 76(9): 2269-2282. |
[4] | 李程, 庄大方, 何剑锋, 文可戈. 东西伯利亚苔原—泰加林过渡带植被遥感物候时空特征及其对气温变化的响应[J]. 地理学报, 2021, 76(7): 1634-1648. |
[5] | 马宁, 何丽烨, 梁苏洁, 郭军. 京津冀冬季冷空气过程的低频特征及西伯利亚高压低频变化的影响[J]. 地理学报, 2020, 75(3): 485-496. |
[6] | 张俊华, 李国栋, 王岩松, 朱连奇, 赵文亮, 丁亚鹏. 黄河泥沙冲/沉积区土壤有机碳不同组分空间特征及变异机制[J]. 地理学报, 2020, 75(3): 558-570. |
[7] | 田晶, 郭生练, 刘德地, 陈启会, 王强, 尹家波, 吴旭树, 何绍坤. 气候与土地利用变化对汉江流域径流的影响[J]. 地理学报, 2020, 75(11): 2307-2318. |
[8] | 吴祥文, 臧淑英, 马大龙, 任建华, 李昊, 赵光影. 大兴安岭多年冻土区森林土壤温室气体通量[J]. 地理学报, 2020, 75(11): 2319-2331. |
[9] | 谢林环, 江涛, 曹英杰, 张得胜, 黎坤, 唐常源. 城镇化流域降水径流氢氧同位素特征及洪水径流分割[J]. 地理学报, 2019, 74(9): 1733-1744. |
[10] | 李朝君,王世杰,白晓永,谭秋,李汇文,李琴,邓元红,杨钰杰,田诗琪,胡泽银. 全球主要河流流域碳酸盐岩风化碳汇评估[J]. 地理学报, 2019, 74(7): 1319-1332. |
[11] | 严鑫,孙昭华,谢翠松,夏军强. 基于经验模型的长江口南支上段压咸临界流量[J]. 地理学报, 2019, 74(5): 935-947. |
[12] | 曹晓娟, 谢林妤, 张风宝, 杨明义, 李占斌. 沙层特性对沙盖黄土坡面产流产沙变化贡献的定量分析[J]. 地理学报, 2019, 74(5): 962-974. |
[13] | 潘威, 郑景云, 满志敏. 1766-2000年黄河上中游汛期径流量波动特征及其与PDO关系[J]. 地理学报, 2018, 73(11): 2053-2063. |
[14] | 徐丽, 于贵瑞, 何念鹏. 1980s-2010s中国陆地生态系统土壤碳储量的变化[J]. 地理学报, 2018, 73(11): 2150-2167. |
[15] | 马帅, 盛煜, 曹伟, 吴吉春, 胡晓莹, 王生廷. 黄河源区多年冻土空间分布变化特征数值模拟[J]. 地理学报, 2017, 72(9): 1621-1633. |