地理学报 ›› 2021, Vol. 76 ›› Issue (3): 713-725.doi: 10.11821/dlxb202103015
收稿日期:
2020-03-14
修回日期:
2021-02-28
出版日期:
2021-03-25
发布日期:
2021-05-25
作者简介:
吕建树(1986-), 男, 山东莱芜人, 博士, 副教授, 主要从事重金属环境地球化学和地质统计学等研究。E-mail: lvjianshu@126.com
基金资助:
Received:
2020-03-14
Revised:
2021-02-28
Published:
2021-03-25
Online:
2021-05-25
Supported by:
摘要:
定量解析土壤重金属污染来源并绘制空间分布图是土壤重金属调查评价的核心,可为区域土壤环境管理和修复提供科学参考。以中国北方名优农产品生产基地烟台海岸带为研究区,系统开展表层土壤样品采集和重金属分析测试;利用正定矩阵因子分解定量解析土壤重金属的来源贡献;基于独立成分分析和序贯高斯模拟构建多元地统计模拟技术,实现土壤重金属的空间预测及潜在污染区域划定。结果表明:① 研究区表层土壤中 As、Co、Cr、Mn和Ni主要为自然来源,且空间分布受成土母质的控制;② 工业和交通排放是土壤中Cd、Pb和Zn的重要来源,三者在金、铜矿的尾矿区以及烟台市区呈现出污染热点;③ 土壤中Cu主要来自铜基杀菌剂和有机肥施用等农业活动,高值区主要分布在果园土壤;④ 土壤中Hg主要来源于煤炭燃烧和混汞法炼金所排放Hg的大气沉降,高值区主要分布在金矿以及龙口、蓬莱市区周边;⑤ Cu、Hg和Cd的潜在污染区域面积占研究区总面积的37.5%、14.3%和8.6%,应给予重点关注。
吕建树. 烟台海岸带土壤重金属定量源解析及空间预测[J]. 地理学报, 2021, 76(3): 713-725.
LYU Jianshu. Source apportionment and spatial prediction of heavy metals in soils of Yantai coastal zone[J]. Acta Geographica Sinica, 2021, 76(3): 713-725.
表1
烟台海岸带土壤重金属描述性统计(mg kg-1)
As | Cd | Co | Cr | Cu | Hg | Mn | Ni | Pb | Zn | pH | |
---|---|---|---|---|---|---|---|---|---|---|---|
最小值 | 2.2 | 0.01 | 0.6 | 7.2 | 1.1 | 0.006 | 63 | 3.6 | 16.1 | 6.9 | 4.66 |
最大值 | 99.0 | 8.27 | 45.2 | 206.6 | 302.1 | 3.210 | 1634 | 144.9 | 917.6 | 493.9 | 9.35 |
平均值 | 7.8 | 0.17 | 11.2 | 58.8 | 32.3 | 0.078 | 491 | 25.3 | 34.7 | 68.0 | 6.76 |
标准差 | 6.33 | 0.28 | 4.67 | 23.41 | 23.91 | 0.17 | 153.90 | 11.87 | 38.83 | 26.60 | 0.95 |
变异系数 | 0.82 | 1.66 | 0.42 | 0.40 | 0.74 | 2.23 | 0.31 | 0.47 | 1.12 | 0.39 | 0.14 |
偏度 | 7.69 | 23.13 | 1.17 | 1.40 | 3.56 | 9.50 | 1.61 | 2.43 | 19.05 | 4.85 | -0.05 |
峰度 | 90.04 | 647.80 | 3.94 | 5.74 | 25.28 | 126.58 | 8.22 | 16.28 | 408.44 | 64.44 | -1.07 |
K-S检验(P) | 0.000 | 0.000 | 0.002 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
山东东部土壤 重金属背景值[ | 6.3 | 0.108 | 11.0 | 56.2 | 19.6 | 0.029 | 552 | 23.5 | 25.4 | 56.1 | - |
农用地土壤污染 风险筛选值* | 30 | 0.3 | - | 200 | 100 | 2.4 | - | 100 | 120 | 250 | - |
第一类建设用地土壤污染风险筛选值 | 20 | 20 | 20 | -** | 2000 | 8 | - | 150 | 400 | - | - |
表1
烟台海岸带土壤重金属描述性统计(mg kg-1)
As | Cd | Co | Cr | Cu | Hg | Mn | Ni | Pb | Zn | pH | |
---|---|---|---|---|---|---|---|---|---|---|---|
最小值 | 2.2 | 0.01 | 0.6 | 7.2 | 1.1 | 0.006 | 63 | 3.6 | 16.1 | 6.9 | 4.66 |
最大值 | 99.0 | 8.27 | 45.2 | 206.6 | 302.1 | 3.210 | 1634 | 144.9 | 917.6 | 493.9 | 9.35 |
平均值 | 7.8 | 0.17 | 11.2 | 58.8 | 32.3 | 0.078 | 491 | 25.3 | 34.7 | 68.0 | 6.76 |
标准差 | 6.33 | 0.28 | 4.67 | 23.41 | 23.91 | 0.17 | 153.90 | 11.87 | 38.83 | 26.60 | 0.95 |
变异系数 | 0.82 | 1.66 | 0.42 | 0.40 | 0.74 | 2.23 | 0.31 | 0.47 | 1.12 | 0.39 | 0.14 |
偏度 | 7.69 | 23.13 | 1.17 | 1.40 | 3.56 | 9.50 | 1.61 | 2.43 | 19.05 | 4.85 | -0.05 |
峰度 | 90.04 | 647.80 | 3.94 | 5.74 | 25.28 | 126.58 | 8.22 | 16.28 | 408.44 | 64.44 | -1.07 |
K-S检验(P) | 0.000 | 0.000 | 0.002 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
山东东部土壤 重金属背景值[ | 6.3 | 0.108 | 11.0 | 56.2 | 19.6 | 0.029 | 552 | 23.5 | 25.4 | 56.1 | - |
农用地土壤污染 风险筛选值* | 30 | 0.3 | - | 200 | 100 | 2.4 | - | 100 | 120 | 250 | - |
第一类建设用地土壤污染风险筛选值 | 20 | 20 | 20 | -** | 2000 | 8 | - | 150 | 400 | - | - |
表2
烟台海岸带土壤重金属PMF源解析结果
模型验证 | 源成分谱(mg kg-1) | 源贡献率(%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | 预测值/实际值 | 因子1 | 因子2 | 因子3 | 因子4 | 因子1 | 因子2 | 因子3 | 因子4 | |||
As | 1.00 | 1.00 | 6.1 | 1.0 | 0.5 | 0.1 | 79.2 | 12.6 | 6.6 | 1.5 | ||
Cd | 0.79 | 0.96 | 0.06 | 0.01 | 0.10 | 0.00 | 33.8 | 58.3 | 5.7 | 2.1 | ||
Co | 0.93 | 0.98 | 9.3 | 0.7 | 0.8 | 0.2 | 85.0 | 6.2 | 6.9 | 1.9 | ||
Cr | 0.83 | 0.98 | 47.9 | 4.6 | 3.6 | 1.3 | 83.4 | 8.1 | 6.4 | 2.2 | ||
Cu | 1.00 | 1.00 | 9.9 | 5.7 | 16.3 | 0.4 | 30.7 | 17.6 | 50.5 | 1.2 | ||
Hg | 1.00 | 0.98 | 0.010 | 0.006 | 0.003 | 0.059 | 12.7 | 8.1 | 3.5 | 75.7 | ||
Mn | 0.88 | 0.96 | 369 | 66 | 29 | 8 | 78.2 | 14.0 | 6.2 | 1.6 | ||
Ni | 0.85 | 0.96 | 20.8 | 1.3 | 1.7 | 0.5 | 85.3 | 5.5 | 6.9 | 2.3 | ||
Pb | 0.83 | 0.93 | 15.5 | 13.1 | 2.8 | 1.1 | 47.7 | 40.3 | 8.5 | 3.5 | ||
Zn | 0.63 | 0.94 | 32.6 | 23.0 | 6.8 | 1.8 | 50.8 | 35.8 | 10.6 | 2.8 |
表2
烟台海岸带土壤重金属PMF源解析结果
模型验证 | 源成分谱(mg kg-1) | 源贡献率(%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R2 | 预测值/实际值 | 因子1 | 因子2 | 因子3 | 因子4 | 因子1 | 因子2 | 因子3 | 因子4 | |||
As | 1.00 | 1.00 | 6.1 | 1.0 | 0.5 | 0.1 | 79.2 | 12.6 | 6.6 | 1.5 | ||
Cd | 0.79 | 0.96 | 0.06 | 0.01 | 0.10 | 0.00 | 33.8 | 58.3 | 5.7 | 2.1 | ||
Co | 0.93 | 0.98 | 9.3 | 0.7 | 0.8 | 0.2 | 85.0 | 6.2 | 6.9 | 1.9 | ||
Cr | 0.83 | 0.98 | 47.9 | 4.6 | 3.6 | 1.3 | 83.4 | 8.1 | 6.4 | 2.2 | ||
Cu | 1.00 | 1.00 | 9.9 | 5.7 | 16.3 | 0.4 | 30.7 | 17.6 | 50.5 | 1.2 | ||
Hg | 1.00 | 0.98 | 0.010 | 0.006 | 0.003 | 0.059 | 12.7 | 8.1 | 3.5 | 75.7 | ||
Mn | 0.88 | 0.96 | 369 | 66 | 29 | 8 | 78.2 | 14.0 | 6.2 | 1.6 | ||
Ni | 0.85 | 0.96 | 20.8 | 1.3 | 1.7 | 0.5 | 85.3 | 5.5 | 6.9 | 2.3 | ||
Pb | 0.83 | 0.93 | 15.5 | 13.1 | 2.8 | 1.1 | 47.7 | 40.3 | 8.5 | 3.5 | ||
Zn | 0.63 | 0.94 | 32.6 | 23.0 | 6.8 | 1.8 | 50.8 | 35.8 | 10.6 | 2.8 |
表3
独立成分的理论变异函数拟合参数
变量 | 模型结构 | 块金值 | 结构1 | 结构2 | 块金值/总方差 | |||
---|---|---|---|---|---|---|---|---|
基台值 | 变程(m) | 基台值 | 变程(m) | |||||
IC1 | Nugget+Spherical+Spherical | 0.31 | 0.26 | 7195 | 0.46 | 29307 | 0.30 | |
IC2 | Nugget+Spherical+Spherical | 0.38 | 0.10 | 8299 | 0.47 | 29457 | 0.40 | |
IC3 | Nugget+Spherical+Spherical | 0.46 | 0.32 | 13513 | 0.35 | 37496 | 0.41 | |
IC4 | Nugget+Spherical+Spherical | 0.25 | 0.59 | 8674 | 10.08 | 1661216 | 0.02 | |
IC5 | Nugget+Spherical | 0.68 | 0.25 | 18673 | 0.73 | |||
IC6 | Nugget+Spherical+Spherical | 0.38 | 0.30 | 7733 | 0.28 | 25534 | 0.40 | |
IC7 | Nugget+Spherical | 0.65 | 2.73 | 548386 | 0.19 | |||
IC8 | Nugget+Spherical | 0.26 | 0.88 | 19044 | 0.23 | |||
IC9 | Nugget+Spherical+Spherical | 0.50 | 0.22 | 4317 | 0.30 | 20506 | 0.49 | |
IC10 | Nugget+Spherical+Spherical | 0.55 | 0.27 | 7141 | 0.30 | 61258 | 0.49 |
表3
独立成分的理论变异函数拟合参数
变量 | 模型结构 | 块金值 | 结构1 | 结构2 | 块金值/总方差 | |||
---|---|---|---|---|---|---|---|---|
基台值 | 变程(m) | 基台值 | 变程(m) | |||||
IC1 | Nugget+Spherical+Spherical | 0.31 | 0.26 | 7195 | 0.46 | 29307 | 0.30 | |
IC2 | Nugget+Spherical+Spherical | 0.38 | 0.10 | 8299 | 0.47 | 29457 | 0.40 | |
IC3 | Nugget+Spherical+Spherical | 0.46 | 0.32 | 13513 | 0.35 | 37496 | 0.41 | |
IC4 | Nugget+Spherical+Spherical | 0.25 | 0.59 | 8674 | 10.08 | 1661216 | 0.02 | |
IC5 | Nugget+Spherical | 0.68 | 0.25 | 18673 | 0.73 | |||
IC6 | Nugget+Spherical+Spherical | 0.38 | 0.30 | 7733 | 0.28 | 25534 | 0.40 | |
IC7 | Nugget+Spherical | 0.65 | 2.73 | 548386 | 0.19 | |||
IC8 | Nugget+Spherical | 0.26 | 0.88 | 19044 | 0.23 | |||
IC9 | Nugget+Spherical+Spherical | 0.50 | 0.22 | 4317 | 0.30 | 20506 | 0.49 | |
IC10 | Nugget+Spherical+Spherical | 0.55 | 0.27 | 7141 | 0.30 | 61258 | 0.49 |
[1] | Alloway B. Heavy Metals in Soils. Dordrecht: Springer, 2013. |
[2] | Gao Xing, Kang Shichang, Liu Qingsong, et al. Magnetic characteristics of Qiangyong Co Lake sediments, southern Tibetan Plateau and its environmental significance during 1899-2011. Acta Geographica Sinica, 2020,75(1):68-81. |
[ 高星, 康世昌, 刘青松, 等. 1899—2011年青藏高原南部枪勇错沉积物磁性矿物的环境意义. 地理学报, 2020,75(1):68-81.] | |
[ 高星, 康世昌, 刘青松, 等. 1899—2011年青藏高原南部枪勇错沉积物磁性矿物的环境意义. 地理学报, 2020,75(1):68-81.] | |
[3] | Fang Bin, Ye Zijun. Comparative analysis on spatial variation of copper in typical tea garden soils of Jiangsu and Zhejiang provinces. Geographical Research, 2016,35(3):525-533. |
Fang Bin, Ye Zijun. Comparative analysis on spatial variation of copper in typical tea garden soils of Jiangsu and Zhejiang provinces. Geographical Research, 2016,35(3):525-533. | |
[ 方斌, 叶子君. 江浙典型茶园土壤铜含量的空间分异对比分析. 地理研究, 2016,35(3):525-533.] | |
[ 方斌, 叶子君. 江浙典型茶园土壤铜含量的空间分异对比分析. 地理研究, 2016,35(3):525-533.] | |
[4] | Chen H, Teng Y, Lu S, et al. Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 2015,512/513:143-153. |
Chen H, Teng Y, Lu S, et al. Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 2015,512/513:143-153. | |
[5] | Lv Jianshu, Zhang Zulu, Liu Yang, et al. Sources identification and hazardous risk delineation of heavy metals contamination in Rizhao City. Acta Geographica Sinica, 2012,67(7):971-984. |
Lv Jianshu, Zhang Zulu, Liu Yang, et al. Sources identification and hazardous risk delineation of heavy metals contamination in Rizhao City. Acta Geographica Sinica, 2012,67(7):971-984. | |
[ 吕建树, 张祖陆, 刘洋, 等. 日照市土壤重金属来源解析及环境风险评价. 地理学报, 2012,67(7):971-984.] | |
[ 吕建树, 张祖陆, 刘洋, 等. 日照市土壤重金属来源解析及环境风险评价. 地理学报, 2012,67(7):971-984.] | |
[6] | Dong Likuan, Fang Bin. Analysis of spatial heterogeneity of soil heavy metals in tea plantation: Case study of high quality tea garden in Jiangsu and Zhejiang. Geographical Research, 2017,36(2):391-404. |
Dong Likuan, Fang Bin. Analysis of spatial heterogeneity of soil heavy metals in tea plantation: Case study of high quality tea garden in Jiangsu and Zhejiang. Geographical Research, 2017,36(2):391-404. | |
[ 董立宽, 方斌. 茶园土壤重金属乡镇尺度下空间异质性分析: 以江浙优质名茶种植园为例. 地理研究, 2017,36(2):391-404.] | |
[ 董立宽, 方斌. 茶园土壤重金属乡镇尺度下空间异质性分析: 以江浙优质名茶种植园为例. 地理研究, 2017,36(2):391-404.] | |
[7] | Cai Limei, Ma Jin, Zhou Yongzhang, et al. Heavy metal concentrations of agricultural soils and vegetables from Dongguan, Guangdong Province, China. Acta Geographica Sinica, 2008,63(9):994-1003. |
Cai Limei, Ma Jin, Zhou Yongzhang, et al. Heavy metal concentrations of agricultural soils and vegetables from Dongguan, Guangdong Province, China. Acta Geographica Sinica, 2008,63(9):994-1003. | |
[ 蔡立梅, 马瑾, 周永章, 等. 东莞市农田土壤和蔬菜重金属的含量特征分析. 地理学报, 2008,63(9):994-1003.] | |
[ 蔡立梅, 马瑾, 周永章, 等. 东莞市农田土壤和蔬菜重金属的含量特征分析. 地理学报, 2008,63(9):994-1003.] | |
[8] |
Rodríguez Martín J A, Arias M L, Grau Corbí J M. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geostatistical methods to study spatial variations. Environmental Pollution, 2006,144:1001-1012.
doi: 10.1016/j.envpol.2006.01.045 pmid: 16580763 |
Rodríguez Martín J A, Arias M L, Grau Corbí J M. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geostatistical methods to study spatial variations. Environmental Pollution, 2006,144:1001-1012.
doi: 10.1016/j.envpol.2006.01.045 pmid: 16580763 |
|
[9] | Facchinelli A, Sacchi E, Mallen L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 2001,114(3):313-324. |
Facchinelli A, Sacchi E, Mallen L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution, 2001,114(3):313-324. | |
[10] | Chen Xiuduan, Lu Xinwei, Zhao Caifeng, et al. The spatial distribution of heavy metals in the urban topsoil collected from the interior area of the Second Ring Road, Xi'an. Acta Geographica Sinica, 2011,66(9):1281-1288. |
Chen Xiuduan, Lu Xinwei, Zhao Caifeng, et al. The spatial distribution of heavy metals in the urban topsoil collected from the interior area of the Second Ring Road, Xi'an. Acta Geographica Sinica, 2011,66(9):1281-1288. | |
[ 陈秀端, 卢新卫, 赵彩凤, 等. 西安市二环内表层土壤重金属空间分布特征. 地理学报, 2011,66(9):1281-1288.] | |
[ 陈秀端, 卢新卫, 赵彩凤, 等. 西安市二环内表层土壤重金属空间分布特征. 地理学报, 2011,66(9):1281-1288.] | |
[11] |
Lv J. Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils. Environmental Pollution, 2019,244:72-83.
doi: 10.1016/j.envpol.2018.09.147 pmid: 30321714 |
Lv J. Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils. Environmental Pollution, 2019,244:72-83.
doi: 10.1016/j.envpol.2018.09.147 pmid: 30321714 |
|
[12] |
Guan Q Y, Wang F F, Xu C Q, et al. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, Northwest China. Chemosphere, 2018,193:189-197.
doi: 10.1016/j.chemosphere.2017.10.151 pmid: 29131977 |
Guan Q Y, Wang F F, Xu C Q, et al. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, Northwest China. Chemosphere, 2018,193:189-197.
doi: 10.1016/j.chemosphere.2017.10.151 pmid: 29131977 |
|
[13] |
Luo X S, Xue Y, Wang Y L, et al. Source identification and apportionment of heavy metals in urban soil profiles. Chemosphere, 2015,127:152-157.
doi: 10.1016/j.chemosphere.2015.01.048 pmid: 25698100 |
Luo X S, Xue Y, Wang Y L, et al. Source identification and apportionment of heavy metals in urban soil profiles. Chemosphere, 2015,127:152-157.
doi: 10.1016/j.chemosphere.2015.01.048 pmid: 25698100 |
|
[14] | Paatero P, Tapper U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 1994,5(2):111-126. |
Paatero P, Tapper U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 1994,5(2):111-126. | |
[15] | Wackernagel H. Multivariate Geostatistics. Berlin: Springer Verlag, 2003. |
Wackernagel H. Multivariate Geostatistics. Berlin: Springer Verlag, 2003. | |
[16] | Webster R, Oliver M A. Geostatistics for Environmental Scientists. Chichester: Wiley, 2007. |
Webster R, Oliver M A. Geostatistics for Environmental Scientists. Chichester: Wiley, 2007. | |
[17] |
Lv J, Liu Y, Zhang Z, et al. Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils. Journal of Hazardous Materials, 2013,261:387-397.
pmid: 23973471 |
Lv J, Liu Y, Zhang Z, et al. Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils. Journal of Hazardous Materials, 2013,261:387-397.
pmid: 23973471 |
|
[18] | Deutsch C V, Journel A G. GSLIB: Geostatistical Software Library and User's Guide. New York: Oxford University Press, 1998. |
Deutsch C V, Journel A G. GSLIB: Geostatistical Software Library and User's Guide. New York: Oxford University Press, 1998. | |
[19] | Lv J, Wang Y. PMF receptor models and sequential Gaussian simulation to determine the quantitative sources and hazardous areas of potentially toxic elements in soils. Geoderma, 2019,353:347-358. |
Lv J, Wang Y. PMF receptor models and sequential Gaussian simulation to determine the quantitative sources and hazardous areas of potentially toxic elements in soils. Geoderma, 2019,353:347-358. | |
[20] | Kim H R, Kim K H, Yu S, et al. Better assessment of the distribution of As and Pb in soils in a former smelting area, using ordinary co-kriging and sequential Gaussian co-simulation of portable X-ray fluorescence (PXRF) and ICP-AES data. Geoderma, 2019,341:26-38. |
Kim H R, Kim K H, Yu S, et al. Better assessment of the distribution of As and Pb in soils in a former smelting area, using ordinary co-kriging and sequential Gaussian co-simulation of portable X-ray fluorescence (PXRF) and ICP-AES data. Geoderma, 2019,341:26-38. | |
[21] |
Lin W C, Lin Y P, Wang Y C. A decision-making approach for delineating sites which are potentially contaminated by heavy metals via joint simulation. Environmental Pollution, 2016,211:98-110.
doi: 10.1016/j.envpol.2015.12.030 pmid: 26745395 |
Lin W C, Lin Y P, Wang Y C. A decision-making approach for delineating sites which are potentially contaminated by heavy metals via joint simulation. Environmental Pollution, 2016,211:98-110.
doi: 10.1016/j.envpol.2015.12.030 pmid: 26745395 |
|
[22] | Hyvärinen A, Karhunen J, Oja E . Independent Component Analysis. New York: John Wiley & Sons, 2001. |
Hyvärinen A, Karhunen J, Oja E . Independent Component Analysis. New York: John Wiley & Sons, 2001. | |
[23] | Langlois D, Chartier S, Gosselin D. An introduction to independent component analysis: InfoMax and FastICA algorithms. Tutorials in Quantitative Methods for Psychology, 2010,6(1):31-38. |
Langlois D, Chartier S, Gosselin D. An introduction to independent component analysis: InfoMax and FastICA algorithms. Tutorials in Quantitative Methods for Psychology, 2010,6(1):31-38. | |
[24] | US Environmental Protection Agency. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. Washington, 2014. |
US Environmental Protection Agency. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. Washington, 2014. | |
[25] | Zhao Y C, Xu X H, Huang B, et al. Using robust kriging and sequential Gaussian simulation to delineate the copper- and lead-contaminated areas of a rapidly industrialized city in Yangtze River Delta, China. Environmental Geology, 2007,52(7):1423-1433. |
Zhao Y C, Xu X H, Huang B, et al. Using robust kriging and sequential Gaussian simulation to delineate the copper- and lead-contaminated areas of a rapidly industrialized city in Yangtze River Delta, China. Environmental Geology, 2007,52(7):1423-1433. | |
[26] |
Juang K W, Chen Y S, Lee D Y. Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils. Environmental Pollution, 2004,127(2):229-238.
doi: 10.1016/j.envpol.2003.07.001 pmid: 14568722 |
Juang K W, Chen Y S, Lee D Y. Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils. Environmental Pollution, 2004,127(2):229-238.
doi: 10.1016/j.envpol.2003.07.001 pmid: 14568722 |
|
[27] | Dai Jierui, Pang Xugui, Yu Chao, et al. Geochemical baselines and background values and element enrichment characteristics in soils in eastern Shandong Province. Geochimica, 2011,40(6):577-587. |
Dai Jierui, Pang Xugui, Yu Chao, et al. Geochemical baselines and background values and element enrichment characteristics in soils in eastern Shandong Province. Geochimica, 2011,40(6):577-587. | |
[ 代杰瑞, 庞绪贵, 喻超, 等. 山东省东部地区土壤地球化学基准值与背景值及元素富集特征研究. 地球化学, 2011,40(6):577-587.] | |
[ 代杰瑞, 庞绪贵, 喻超, 等. 山东省东部地区土壤地球化学基准值与背景值及元素富集特征研究. 地球化学, 2011,40(6):577-587.] | |
[28] | Salmanighabeshi S, Palomo-Marín M R, Bernalte E, et al. Long-term assessment of ecological risk from deposition of elemental pollutants in the vicinity of the industrial area of Puchuncaví-Ventanas,central Chile. Science of the Total Environment, 2015,527/528:335-343. |
Salmanighabeshi S, Palomo-Marín M R, Bernalte E, et al. Long-term assessment of ecological risk from deposition of elemental pollutants in the vicinity of the industrial area of Puchuncaví-Ventanas,central Chile. Science of the Total Environment, 2015,527/528:335-343. | |
[29] | Wang Yujun, Wu Tongliang, Zhou Dongmei, et al. Advances in soil heavy metal pollution evaluation based on bibliometrics analysis. Journal of Agro-Environment Science, 2017,36(12):2365-2378. |
Wang Yujun, Wu Tongliang, Zhou Dongmei, et al. Advances in soil heavy metal pollution evaluation based on bibliometrics analysis. Journal of Agro-Environment Science, 2017,36(12):2365-2378. | |
[ 王玉军, 吴同亮, 周东美, 等. 农田土壤重金属污染评价研究进展. 农业环境科学学报, 2017,36(12):2365-2378.] | |
[ 王玉军, 吴同亮, 周东美, 等. 农田土壤重金属污染评价研究进展. 农业环境科学学报, 2017,36(12):2365-2378.] | |
[30] |
Wu J, Lu J, Li L M, et al. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau. Chemosphere, 2018,201:234-242.
doi: 10.1016/j.chemosphere.2018.02.122 pmid: 29524824 |
Wu J, Lu J, Li L M, et al. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau. Chemosphere, 2018,201:234-242.
doi: 10.1016/j.chemosphere.2018.02.122 pmid: 29524824 |
|
[31] |
Mao L, Ye H, Li F, et al. Enrichment assessment of Sb and trace metals in sediments with significant variability of background concentration in detailed scale. Environmental Science and Pollution Research, 2019,26:2794-2805.
doi: 10.1007/s11356-018-3836-7 pmid: 30488244 |
Mao L, Ye H, Li F, et al. Enrichment assessment of Sb and trace metals in sediments with significant variability of background concentration in detailed scale. Environmental Science and Pollution Research, 2019,26:2794-2805.
doi: 10.1007/s11356-018-3836-7 pmid: 30488244 |
|
[32] | Xu S, Tao S. Coregionalization analysis of heavy metals in the surface soil of Inner Mongolia. Science of the Total Environment, 2004,320:73-87. |
Xu S, Tao S. Coregionalization analysis of heavy metals in the surface soil of Inner Mongolia. Science of the Total Environment, 2004,320:73-87. | |
[33] | Kabata-Pendias A, Pendias H. Trace Elements in Soils and Plants. London: CSC Press, 2001. |
Kabata-Pendias A, Pendias H. Trace Elements in Soils and Plants. London: CSC Press, 2001. | |
[34] | Nanos N, Rodríguez Martín J A . Multiscale analysis of heavy metal contents in soils: Spatial variability in the Duero river basin (Spain). Geoderma, 2012,189:554-562. |
Nanos N, Rodríguez Martín J A . Multiscale analysis of heavy metal contents in soils: Spatial variability in the Duero river basin (Spain). Geoderma, 2012,189:554-562. | |
[35] | Cai L M, Xu Z C, Bao P, et al. Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. Journal of Geochemical Exploration, 2015,148:189-195. |
Cai L M, Xu Z C, Bao P, et al. Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. Journal of Geochemical Exploration, 2015,148:189-195. | |
[36] | Dong B, Zhang R, Gan Y, et al. Multiple methods for the identification of heavy metal sources in cropland soils from a resource-based region. Science of the Total Environment, 2019,651:3127-3138. |
Dong B, Zhang R, Gan Y, et al. Multiple methods for the identification of heavy metal sources in cropland soils from a resource-based region. Science of the Total Environment, 2019,651:3127-3138. | |
[37] |
Xiao R, Guo D, Ali A, et al. Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils: A case study in Hanzhong, Shaanxi, China. Environmental Pollution, 2019,248:349-357.
doi: 10.1016/j.envpol.2019.02.045 pmid: 30818114 |
Xiao R, Guo D, Ali A, et al. Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils: A case study in Hanzhong, Shaanxi, China. Environmental Pollution, 2019,248:349-357.
doi: 10.1016/j.envpol.2019.02.045 pmid: 30818114 |
|
[38] | Lv J, Liu Y. An integrated approach to identify quantitative sources and hazardous areas of heavy metals in soils. Science of the Total Environment, 2019,646:19-28. |
Lv J, Liu Y. An integrated approach to identify quantitative sources and hazardous areas of heavy metals in soils. Science of the Total Environment, 2019,646:19-28. | |
[39] | Xu Youning, Zhang Jianghua. Contents of heavy metals in bottom sediments of the Taiyu River in the Tongguan gold mining area, Shaanxi, China, and contamination assessments. Geological Bulletin of China, 2008,27(8):1263-1671. |
Xu Youning, Zhang Jianghua. Contents of heavy metals in bottom sediments of the Taiyu River in the Tongguan gold mining area, Shaanxi, China, and contamination assessments. Geological Bulletin of China, 2008,27(8):1263-1671. | |
[ 徐友宁, 张江华. 陕西潼关金矿区太峪河底泥重金属元素的含量及污染评价. 地质通报, 2008,27(8):1263-1671.] | |
[ 徐友宁, 张江华. 陕西潼关金矿区太峪河底泥重金属元素的含量及污染评价. 地质通报, 2008,27(8):1263-1671.] | |
[40] | Li Yimeng, Ma Jianhua, Liu Dexin, et al. Assessment of heavy metal pollution and potential ecological risks of urban soils in Kaifeng city, China. Environmental Science, 2015,36(3):1037-1044. |
Li Yimeng, Ma Jianhua, Liu Dexin, et al. Assessment of heavy metal pollution and potential ecological risks of urban soils in Kaifeng city, China. Environmental Science, 2015,36(3):1037-1044. | |
[ 李一蒙, 马建华, 刘德新, 等. 开封城市土壤重金属污染及潜在生态风险评价. 环境科学, 2015,36(3):1037-1044.] | |
[ 李一蒙, 马建华, 刘德新, 等. 开封城市土壤重金属污染及潜在生态风险评价. 环境科学, 2015,36(3):1037-1044.] | |
[41] | Zhou Xu, Lv Jianshu. Sources, distribution and ecological risk of soil heavy metals in Guangrao county, Shandong province. Geographical Research, 2019,38(2):414-426. |
Zhou Xu, Lv Jianshu. Sources, distribution and ecological risk of soil heavy metals in Guangrao county, Shandong province. Geographical Research, 2019,38(2):414-426. | |
[ 周旭, 吕建树. 山东省广饶县土壤重金属来源、分布及生态风险. 地理研究, 2019,38(2):414-426.] | |
[ 周旭, 吕建树. 山东省广饶县土壤重金属来源、分布及生态风险. 地理研究, 2019,38(2):414-426.] | |
[42] |
Hu Y, He K, Sun Z, et al. Quantitative source apportionment of heavy metal(loid)s in the agricultural soils of an industrializing region and associated model uncertainty. Journal of Hazardous Materials, 2020,391:122244. DOI: 10.1016/j.jhazmat.2020.122244.
pmid: 32058225 |
Hu Y, He K, Sun Z, et al. Quantitative source apportionment of heavy metal(loid)s in the agricultural soils of an industrializing region and associated model uncertainty. Journal of Hazardous Materials, 2020,391:122244. DOI: 10.1016/j.jhazmat.2020.122244.
pmid: 32058225 |
|
[43] |
Yang S, He M, Zhi Y, et al. An integrated analysis on source-exposure risk of heavy metals in agricultural soils near intense electronic waste recycling activities. Environment International, 2019,133:105239. DOI: 10.1016/j.envint.2019.105239.
doi: 10.1016/j.envint.2019.105239 pmid: 31639603 |
Yang S, He M, Zhi Y, et al. An integrated analysis on source-exposure risk of heavy metals in agricultural soils near intense electronic waste recycling activities. Environment International, 2019,133:105239. DOI: 10.1016/j.envint.2019.105239.
doi: 10.1016/j.envint.2019.105239 pmid: 31639603 |
|
[44] | Soil and Fertilizer Station of Shandong Province. Cultivated Land in Shandong. Beijing: Agriculture Press, 2018. |
Soil and Fertilizer Station of Shandong Province. Cultivated Land in Shandong. Beijing: Agriculture Press, 2018. | |
[ 山东省土壤肥料总站. 山东耕地. 北京:中国农业出版社, 2018.] | |
[ 山东省土壤肥料总站. 山东耕地. 北京:中国农业出版社, 2018.] | |
[45] | Zhu Yijun, Zheng Yuanming, He Jizheng, et al. Risk assessment of pig manure Cu-contamination of black soil in Northeast China. Chinese Journal of Applied Ecology, 2008,19(12):2751-2756. |
Zhu Yijun, Zheng Yuanming, He Jizheng, et al. Risk assessment of pig manure Cu-contamination of black soil in Northeast China. Chinese Journal of Applied Ecology, 2008,19(12):2751-2756. | |
[ 朱亦君, 郑袁明, 贺纪正, 等. 猪粪中铜对东北黑土的污染风险评价. 应用生态学报, 2008,19(12):2751-2756.] | |
[ 朱亦君, 郑袁明, 贺纪正, 等. 猪粪中铜对东北黑土的污染风险评价. 应用生态学报, 2008,19(12):2751-2756.] | |
[46] | Jiang Ping, Jin Shengyang, Hao Xiuzhen, et al. Distribution characteristics of heavy metals in feeds, pig manures, soils and vegetables. Journal of Agro-Environment Science, 2010,29(5):942-947. |
Jiang Ping, Jin Shengyang, Hao Xiuzhen, et al. Distribution characteristics of heavy metals in feeds, pig manures, soils and vegetables. Journal of Agro-Environment Science, 2010,29(5):942-947. | |
[ 姜萍, 金盛杨, 郝秀珍, 等. 重金属在猪饲料—粪便—土壤—蔬菜中的分布特征研究. 农业环境科学学报, 2010,29(5):942-947.] | |
[ 姜萍, 金盛杨, 郝秀珍, 等. 重金属在猪饲料—粪便—土壤—蔬菜中的分布特征研究. 农业环境科学学报, 2010,29(5):942-947.] | |
[47] | Wang Fei, Zhao Lixin, Shen Yujun, et al. Analysis of heavy metal contents and source tracing in organic fertilizer from livestock manure in North China. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(19):202-208. |
Wang Fei, Zhao Lixin, Shen Yujun, et al. Analysis of heavy metal contents and source tracing in organic fertilizer from livestock manure in North China. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(19):202-208. | |
[ 王飞, 赵立欣, 沈玉君, 等. 华北地区畜禽粪便有机肥中重金属含量及溯源分析. 农业工程学报, 2013,29(19):202-208.] | |
[ 王飞, 赵立欣, 沈玉君, 等. 华北地区畜禽粪便有机肥中重金属含量及溯源分析. 农业工程学报, 2013,29(19):202-208.] | |
[48] |
Lu A X, Wang J H, Qin X Y, et al. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Science of the Total Environment, 2012,425:66-74.
doi: 10.1016/j.scitotenv.2012.03.003 |
Lu A X, Wang J H, Qin X Y, et al. Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Science of the Total Environment, 2012,425:66-74.
doi: 10.1016/j.scitotenv.2012.03.003 |
|
[49] |
Sun C Y, Liu J S, Wang Y, et al. Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China. Chemosphere, 2013,92(5):517-523.
doi: 10.1016/j.chemosphere.2013.02.063 |
Sun C Y, Liu J S, Wang Y, et al. Multivariate and geostatistical analyses of the spatial distribution and sources of heavy metals in agricultural soil in Dehui, Northeast China. Chemosphere, 2013,92(5):517-523.
doi: 10.1016/j.chemosphere.2013.02.063 |
|
[50] | Wang S X, Zhang L, Zhao B, et al. Mitigation potential of mercury emissions from coal-fired power plants in China. Energy & Fuels, 2012,26:4635-4642. |
Wang S X, Zhang L, Zhao B, et al. Mitigation potential of mercury emissions from coal-fired power plants in China. Energy & Fuels, 2012,26:4635-4642. | |
[51] | Zhu C Y, Tian H Z, Cheng K, et al. Potentials of whole process control of heavy metals emissions from coal-fired power plants in China. Journal of Cleaner Production, 2016,114:343-351. |
Zhu C Y, Tian H Z, Cheng K, et al. Potentials of whole process control of heavy metals emissions from coal-fired power plants in China. Journal of Cleaner Production, 2016,114:343-351. | |
[52] |
Srivastava R K, Hutson N, Martin B, et al. Control of mercury emissions from coal-fired electric utility boilers. Environmental Science & Technology, 2006,40:1385-1393.
doi: 10.1021/es062639u pmid: 16568746 |
Srivastava R K, Hutson N, Martin B, et al. Control of mercury emissions from coal-fired electric utility boilers. Environmental Science & Technology, 2006,40:1385-1393.
doi: 10.1021/es062639u pmid: 16568746 |
|
[53] | Yang Y F, Huang Q F, Wang Q. Ignoring emissions of Hg from coal ash and desulfurized gypsum will lead to ineffective mercury control in coal-fired power plants in China. Environmental Science & Technology, 2012,46:3058-3059. |
Yang Y F, Huang Q F, Wang Q. Ignoring emissions of Hg from coal ash and desulfurized gypsum will lead to ineffective mercury control in coal-fired power plants in China. Environmental Science & Technology, 2012,46:3058-3059. | |
[54] | Dai Qianjin, Feng Xinbin. Study on progress of mercury contamination to the environment associated with gold extraction by amalgamation. Techniques and Equipment for Environmental Pollution Control, 2004,5(7):13-17. |
Dai Qianjin, Feng Xinbin. Study on progress of mercury contamination to the environment associated with gold extraction by amalgamation. Techniques and Equipment for Environmental Pollution Control, 2004,5(7):13-17. | |
[ 戴前进, 冯新斌. 混汞法采金地区的汞污染研究进展. 环境污染治理技术与设备, 2004,5(7):13-17.] | |
[ 戴前进, 冯新斌. 混汞法采金地区的汞污染研究进展. 环境污染治理技术与设备, 2004,5(7):13-17.] | |
[55] |
Cai L M, Wang Q S, Wen H H, et al. Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution. Ecotoxicology and Environmental Safety, 2019,168:184-191.
doi: 10.1016/j.ecoenv.2018.10.092 pmid: 30388535 |
Cai L M, Wang Q S, Wen H H, et al. Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution. Ecotoxicology and Environmental Safety, 2019,168:184-191.
doi: 10.1016/j.ecoenv.2018.10.092 pmid: 30388535 |
|
[56] |
Wang Y, Zhang L, Wang J, et al. Identifying quantitative sources and spatial distributions of potentially toxic elements in soils by using three receptor models and sequential indicator simulation. Chemosphere, 2020,242:125266. DOI: 10.1016/j.chemosphere.2019.125265.
doi: 10.1016/j.chemosphere.2019.125266 pmid: 31896197 |
Wang Y, Zhang L, Wang J, et al. Identifying quantitative sources and spatial distributions of potentially toxic elements in soils by using three receptor models and sequential indicator simulation. Chemosphere, 2020,242:125266. DOI: 10.1016/j.chemosphere.2019.125265.
doi: 10.1016/j.chemosphere.2019.125266 pmid: 31896197 |
|
[57] |
Rodríguez Martin J A, Nanos N. Soil as an archive of coal-fired power plant mercury deposition. Journal of Hazardous Materials, 2016,308:131-138.
doi: 10.1016/j.jhazmat.2016.01.026 pmid: 26808251 |
Rodríguez Martin J A, Nanos N. Soil as an archive of coal-fired power plant mercury deposition. Journal of Hazardous Materials, 2016,308:131-138.
doi: 10.1016/j.jhazmat.2016.01.026 pmid: 26808251 |
|
[58] | Yang Minzhi, Lv Guxian. Geological Geochemistry of Gold Deposits in the Greenstone Belt of Jiaodong. Beijing:Geological Press, 1996. |
Yang Minzhi, Lv Guxian. Geological Geochemistry of Gold Deposits in the Greenstone Belt of Jiaodong. Beijing:Geological Press, 1996. | |
[ 杨敏之, 吕古贤. 胶东绿岩带金矿地质地球化学. 北京:地质出版社, 1996.] | |
[ 杨敏之, 吕古贤. 胶东绿岩带金矿地质地球化学. 北京:地质出版社, 1996.] | |
[59] | Sun Qingyou. The Deposit of Shandong Province. Jinan:Shandong Science and Technology Press, 2007. |
Sun Qingyou. The Deposit of Shandong Province. Jinan:Shandong Science and Technology Press, 2007. | |
[ 孙庆友. 山东矿床. 济南:山东科技出版社, 2007.] | |
[ 孙庆友. 山东矿床. 济南:山东科技出版社, 2007.] | |
[60] | Song Mingchun, Wang Peicheng. Regional geology of Shandong Province. Jinan:Shandong Map Press, 2003. |
Song Mingchun, Wang Peicheng. Regional geology of Shandong Province. Jinan:Shandong Map Press, 2003. | |
[ 宋明春, 王沛成. 山东省区域地质. 济南:山东省地图出版社, 2003.] | |
[ 宋明春, 王沛成. 山东省区域地质. 济南:山东省地图出版社, 2003.] | |
[61] | Yang Zhongfang, Zhu Lixin, Chen Yuelong. Modern Environmental Geochemistry. Beijing:Geological Press, 1999:12-14. |
Yang Zhongfang, Zhu Lixin, Chen Yuelong. Modern Environmental Geochemistry. Beijing:Geological Press, 1999:12-14. | |
[ 杨忠芳, 朱立新, 陈岳龙. 现代环境地球化学. 北京:地质出版社, 1999: 12-14.] | |
[ 杨忠芳, 朱立新, 陈岳龙. 现代环境地球化学. 北京:地质出版社, 1999: 12-14.] | |
[62] | Müller H W, Schwaighofer B, Kalman W. Heavy metal contents in river sediments. Water Air & Soil Pollution, 1994,72(1-4):191-203. |
Müller H W, Schwaighofer B, Kalman W. Heavy metal contents in river sediments. Water Air & Soil Pollution, 1994,72(1-4):191-203. |
[1] | 关皓明, 杨青山, 浩飞龙, 冯章献. 基于“产业—企业—空间”的沈阳市经济韧性特征[J]. 地理学报, 2021, 76(2): 415-427. |
[2] | 刘敏, 郝炜. 山西省国家A级旅游景区空间分布影响因素研究[J]. 地理学报, 2020, 75(4): 878-888. |
[3] | 周扬, 黄晗, 刘彦随. 中国村庄空间分布规律及其影响因素[J]. 地理学报, 2020, 75(10): 2206-2223. |
[4] | 林晓,徐伟,杜德斌,杨凡. 上海市风险投资企业的空间分布与“技术—资本”地理邻近性[J]. 地理学报, 2019, 74(6): 1112-1130. |
[5] | 王建邦, 赵军, 李传华, 朱钰, 康重阳, 高超. 2001-2015年中国植被覆盖人为影响的时空格局[J]. 地理学报, 2019, 74(3): 504-519. |
[6] | 裴韬, 刘亚溪, 郭思慧, 舒华, 杜云艳, 马廷, 周成虎. 地理大数据挖掘的本质[J]. 地理学报, 2019, 74(3): 586-598. |
[7] | 董锁成,杨洋,李富佳,程昊,李静楠,BILGAEVAlexey,李泽红,李宇. 中蒙俄高铁建设的影响机理及对策[J]. 地理学报, 2019, 74(2): 297-311. |
[8] | 韩会然,杨成凤,宋金平. 北京批发企业空间格局演化与区位选择因素[J]. 地理学报, 2018, 73(2): 219-231. |
[9] | 马帅, 盛煜, 曹伟, 吴吉春, 胡晓莹, 王生廷. 黄河源区多年冻土空间分布变化特征数值模拟[J]. 地理学报, 2017, 72(9): 1621-1633. |
[10] | 麦麦提吐尔逊·艾则孜, 阿吉古丽·马木提, 艾尼瓦尔·买买提, 马国飞. 博斯腾湖流域绿洲农田土壤重金属污染及潜在生态风险评价[J]. 地理学报, 2017, 72(9): 1680-1694. |
[11] | 朱鹤, 刘家明, 桑子文, 魏文栋, 魏宗财. 民族文化资源的类型特征及成因分析——以格萨尔(果洛)文化生态保护实验区为例[J]. 地理学报, 2017, 72(6): 1118-1132. |
[12] | 张延吉, 张磊, 吴凌燕. 流动商贩的空间分布特征及与正规商业的分布关系——基于距离测度方法的数量研究[J]. 地理学报, 2017, 72(4): 618-632. |
[13] | 江振蓝, 杨玉盛, 沙晋明. GWR模型在土壤重金属高光谱预测中的应用[J]. 地理学报, 2017, 72(3): 533-544. |
[14] | 贺祥, 林振山, 刘会玉, 齐相贞. 基于灰色关联模型对江苏省PM2.5浓度影响因素的分析[J]. 地理学报, 2016, 71(7): 1119-1129. |
[15] | 刘瑜. 社会感知视角下的若干人文地理学基本问题再思考[J]. 地理学报, 2016, 71(4): 564-575. |