地理学报 ›› 2021, Vol. 76 ›› Issue (3): 680-693.doi: 10.11821/dlxb202103013
收稿日期:
2020-03-22
修回日期:
2020-12-20
出版日期:
2021-03-25
发布日期:
2021-05-25
通讯作者:
黎夏(1962-), 男, 广西梧州人, 教授, 研究方向为元胞自动机、地理模拟系统、全球土地利用变化模拟模型。E-mail: lixia@geo.ecnu.edu.cn作者简介:
张涵(1996-), 女, 云南巍山人, 硕士生, 研究方向为自然保护区有效性评估。E-mail: zhangh575@mail2.sysu.edu.cn
基金资助:
ZHANG Han1(), LI Xia2(
), SHI Hong1, LIU Xiaojuan1
Received:
2020-03-22
Revised:
2020-12-20
Published:
2021-03-25
Online:
2021-05-25
Supported by:
摘要:
科学地评估自然保护区缓解人类活动压力的效果,对于有效的自然保护至关重要。目前中国国家尺度下的这方面研究,仅将保护区内、外的人类活动压力进行对比,其缺陷是样本选择性偏差会导致评估结果的不合理。本文选择了倾向得分匹配(Propensity Score Matching)方法来克服保护区评价中的样本选择性偏差问题。首先耦合多源数据构建了2013年、2015年、2017年的人类活动压力指数,然后采用倾向得分匹配方法对自然保护区内、外的随机点进行匹配,使两个对比组的观测变量尽可能相似。最后通过相对有效性指标和面板模型从不同层面评估了中国680个自然保护区在2013—2017年间缓解人类活动压力的效果。研究结果表明:① 2013—2017年,全国86.72%的自然保护区内人类活动压力指数呈现上升趋势,其面积占保护区总面积的43.80%。② 69.85%的自然保护区在缓解人类活动压力方面的效果较好。其中,除了海洋海岸、野生植物、野生动物类的保护区以外,其余保护区类型都表现出较好的缓解人类活动压力的效果,且保护区级别越高,保护效果越好。③ 中国自然保护区建设在2013—2017年间能缓解22.90%的人类活动压力,且保护区缓解人类活动压力的能力存在区域性差别。本文研究结果可为中国自然保护区监测、评估和管理提供更科学的参考依据。
张涵, 黎夏, 石洪, 刘晓娟. 基于倾向得分匹配方法的中国自然保护区缓解人类活动压力评估[J]. 地理学报, 2021, 76(3): 680-693.
ZHANG Han, LI Xia, SHI Hong, LIU Xiaojuan. An assessment of the effectiveness of China's nature reserves for mitigating anthropogenic pressures based on propensity score matching[J]. Acta Geographica Sinica, 2021, 76(3): 680-693.
表2
中国自然保护区缓解人类活动压力评估所使用的数据集
数据 | 数据属性 | 年份 | 数据来源 |
---|---|---|---|
中国自然保护区矢量边界 | 矢量数据 | - | http://www.papc.cn/ |
中国自然保护区名录 | 统计数据 | 2017 | http://www.mee.gov.cn/ |
VIIRS DNB夜间灯光影像 | 遥感影像 | 2013、2015、2017 | https://www.ngdc.noaa.gov/eog/viirs/ download_dnb_composites.html |
中国城市建设用地面积 | 统计数据 | 2013、2015、2017 | http://www.stats.gov.cn/ |
人口密度 | 栅格数据 | 2010、2015、2020 | https://sedac.ciesin.columbia.edu/data/ collection/gpw-v4/sets/browse |
农田 | 栅格数据 | 2013、2015、2017 | http://maps.elie.ucl.ac.be/CCI/viewer/ index.php |
公路、铁路 | 矢量数据 | 2014、2015、2017 | https://download.geofabrik.de/ |
高程 | 栅格数据 | - | http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/zh/ |
气温、降水 | 站点数据 | 2013、2015、2017 | https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00516 |
表3
倾向得分匹配的平衡性检验结果
变量 | 均值 | 标准偏差 (%) | 标准偏差减小 幅度(%) | t检测 | |||
---|---|---|---|---|---|---|---|
实验组 | 对照组 | t统计量 | t检验相伴概率 | ||||
lnpecp | 匹配前 | -2.5682 | -2.8677 | 37.5 | 50.42 | 0.000 | |
匹配后 | -2.5682 | -2.5679 | 0.2 | 99.5 | 0.22 | 0.824 | |
lntemp | 匹配前 | 3.9294 | 3.9054 | 10.3 | 15.26 | 0.000 | |
匹配后 | 3.9294 | 3.935 | -2.4 | 76.9 | -2.55 | 0.011 | |
lnslope | 匹配前 | 0.76959 | 0.23972 | 29.9 | 44.54 | 0.000 | |
匹配后 | 0.76959 | 0.76637 | 0.2 | 99.4 | 0.22 | 0.829 | |
lnelev | 匹配前 | 6.7174 | 6.5833 | 9.1 | 12.84 | 0.000 | |
匹配后 | 6.7174 | 6.7039 | 0.9 | 89.9 | 1.07 | 0.286 | |
lntjcq | 匹配前 | 10.496 | 10.454 | 4.3 | 5.69 | 0.000 | |
匹配后 | 10.496 | 10.497 | -0.0 | 99.3 | -0.03 | 0.973 | |
lntoroad | 匹配前 | 10.805 | 10.716 | 7.5 | 10.06 | 0.000 | |
匹配后 | 10.805 | 10.797 | 0.7 | 91.0 | 0.76 | 0.445 | |
lnlandcover | 匹配前 | 0.73629 | 0.73672 | -0.1 | -0.10 | 0.918 | |
匹配后 | 0.73629 | 0.74132 | -0.9 | -1053.9 | -1.07 | 0.284 |
表5
2017年中国自然保护区的相对有效性按保护区类别统计
保护区类别 | 保护区数目 | 指标为负(%) | 指标为正(%) | 相对有效性(平均值) |
---|---|---|---|---|
草原草甸 | 7 | 85.71 | 14.29 | -0.37 |
地质遗迹 | 21 | 71.43 | 28.57 | -0.04 |
古生物遗迹 | 11 | 81.82 | 18.18 | -0.02 |
海洋海岸 | 11 | 63.64 | 36.36 | 0.53 |
荒漠生态 | 16 | 81.25 | 18.75 | -0.67 |
内陆湿地 | 81 | 67.90 | 32.10 | -0.28 |
森林生态 | 304 | 70.72 | 29.28 | -0.18 |
野生动物 | 179 | 68.72 | 31.28 | 0.04 |
野生植物 | 40 | 62.50 | 37.50 | 0.19 |
表7
基于倾向得分匹配的面板模型分析结果
变量 | (1) | (2) | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|---|---|
全国 | 全国 | 东北 | 华北 | 西北 | 华东 | 西南 | 中南 | |
PAS | -0.192*** | -0.229*** | -0.614*** | -0.263*** | 0.252*** | -0.613*** | -0.516*** | -0.279*** |
(0.0138) | (0.0126) | (0.0292) | (0.0384) | (0.0389) | (0.0194) | (0.0194) | (0.0081) | |
lnelev | -0.675*** | -0.568*** | -0.620*** | -0.697*** | -0.123*** | -1.183*** | -0.173*** | |
(0.0034) | (0.0169) | (0.0113) | (0.0197) | (0.0063) | (0.0087) | (0.0036) | ||
lnslope | 0.252*** | -0.0282*** | 0.175*** | 0.306*** | -0.0141*** | 0.0852*** | -0.0654*** | |
(0.0030) | (0.0094) | (0.0084) | (0.0081) | (0.0048) | (0.0063) | (0.0025) | ||
lnpecp | -0.0262*** | 0.00668*** | -0.0125*** | -0.00529*** | -0.00353 | -0.0204*** | -0.0346*** | |
(0.0005) | (0.0022) | (0.0013) | (0.0011) | (0.0026) | (0.0010) | (0.0016) | ||
lntemp | -0.0878*** | -0.0284*** | -0.0660*** | -0.128*** | -0.297*** | -0.294*** | -0.164*** | |
(0.0009) | (0.0014) | (0.0017) | (0.0021) | (0.0083) | (0.0058) | (0.0058) | ||
_cons | 1.383*** | 6.010*** | 5.145*** | 5.403*** | 6.030*** | 4.294*** | 11.38*** | 3.951*** |
(0.0049) | (0.0226) | (0.0962) | (0.0771) | (0.1471) | (0.0484) | (0.0732) | (0.0332) | |
N | 587448 | 577719 | 55552 | 95390 | 147855 | 56697 | 142963 | 79062 |
R2 | 0.0010 | 0.1677 | 0.1204 | 0.0948 | 0.0340 | 0.1580 | 0.2458 | 0.3527 |
[1] |
Xu W H, Xiao Y, Zhang J J, et al. Strengthening protected areas for biodiversity and ecosystem services in China. PNAS, 2017,114(7):1601-1606.
doi: 10.1073/pnas.1620503114 pmid: 28137858 |
[2] |
Bacon E, Gannon P, Stephen S, et al. Aichi Biodiversity Target 11 in the like-minded megadiverse countries. Journal for Nature Conservation, 2019,51:125723. DOI: 10.1016/j.jnc.2019.125723.
doi: 10.1016/j.jnc.2019.125723 |
[3] | UNEP-WCMC, IUCN, NGS. Protected Planet Live Report 2021. 2021. |
[4] |
Jones K R, Venter O, Fuller R A, et al. One-third of global protected land is under intense human pressure. Science, 2018,360(6390):788-791.
doi: 10.1126/science.aap9565 pmid: 29773750 |
[5] |
Venter O, Sanderson E W, Magrach A, et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications, 2016,7:12558. DOI: 10.1038/ncomms12558.
doi: 10.1038/ncomms12558 pmid: 27552116 |
[6] |
Veldhuis M P, Ritchie M E, Ogutu J O, et al. Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Science, 2019,363(6434):1424-1428.
doi: 10.1126/science.aav0564 pmid: 30923217 |
[7] |
Joshi A R, Dinerstein E, Wikramanayake E, et al. Tracking changes and preventing loss in critical tiger habitat. Science Advances, 2016,2(4):e1501675. DOI: 10.1126/sciadv.1501675.
doi: 10.1126/sciadv.1501675 pmid: 27051881 |
[8] |
He C Y, Liu Z F, Tian J, et al. Urban expansion dynamics and natural habitat loss in China: A multiscale landscape perspective. Global Change Biology, 2014,20(9):2886-2902.
doi: 10.1111/gcb.12553 |
[9] |
Di Marco M, Venter O, Possingham H P, et al. Changes in human footprint drive changes in species extinction risk. Nature Communications, 2018,9(1):4621. DOI: 10.1038/s41467-018-07049-5.
doi: 10.1038/s41467-018-07049-5 pmid: 30397204 |
[10] | Harris N C, Mills K L, Harissou Y, et al. First camera survey in Burkina Faso and Niger reveals human pressures on mammal communities within the largest protected area complex in West Africa. Conservation Letters, 2019,12(5):12667. DOI: 10.1111/conl.12667. |
[11] |
Abukari H, Mwalyosi R B. Comparing pressures on national parks in Ghana and Tanzania: The case of Mole and Tarangire National Parks. Global Ecology and Conservation, 2018,15:e00405. DOI: 10.1016/j.gecco.2018.e00405.
doi: 10.1016/j.gecco.2018.e00405 |
[12] |
Geldmann J, Joppa L N, Burgess N D. Mapping change in human pressure globally on land and within protected areas. Conservation Biology, 2014,28(6):1604-1616.
doi: 10.1111/cobi.12332 |
[13] |
Venter O, Sanderson E W, Magrach A, et al. Global terrestrial human footprint maps for 1993 and 2009. Scientific Data, 2016,3:160067. DOI: 10.1038/sdata.2016.67.
doi: 10.1038/sdata.2016.67 pmid: 27552448 |
[14] |
Hellwig N, Walz A, Markovic D. Climatic and socioeconomic effects on land cover changes across Europe: Does protected area designation matter? PLOS ONE, 2019,14(7):e0219374. DOI: 10.1371/journal.pone.0219374.
doi: 10.1371/journal.pone.0219374 pmid: 31314769 |
[15] |
Guetté A, Godet L, Juigner M, et al. Worldwide increase in Artificial Light At Night around protected areas and within biodiversity hotspots. Biological Conservation, 2018,223:97-103.
doi: 10.1016/j.biocon.2018.04.018 |
[16] |
Durán A P, Rauch J, Gaston K J. Global spatial coincidence between protected areas and metal mining activities. Biological Conservation, 2013,160:272-278.
doi: 10.1016/j.biocon.2013.02.003 |
[17] |
Radeloff V C, Stewart S I, Hawbaker T J, et al. Housing growth in and near United States protected areas limits their conservation value. PNAS, 2010,107(2):940-945.
doi: 10.1073/pnas.0911131107 pmid: 20080780 |
[18] |
Qiu C, Hu J M, Yang F L, et al. Human pressures on natural reserves in Yunnan Province and management implications. Scientific Reports, 2018,8:3260. DOI: 10.1038/s41598-018-21654-w.
doi: 10.1038/s41598-018-21654-w pmid: 29459749 |
[19] |
Zhao Guanghua, Tian Yu, Tang Zhiyao, et al. Distribution of terrestrial national nature reserves in relation to human activities and natural environments in China. Biodiversity Science, 2013,21(6):658-665.
doi: 10.3724/SP.J.1003.2013.08048 |
[ 赵广华, 田瑜, 唐志尧, 等. 中国国家级陆地自然保护区分布及其与人类活动和自然环境的关系. 生物多样性, 2013,21(6):658-665.] | |
[20] |
Joppa L N, Pfaff A. High and far: Biases in the location of protected areas. PLOS ONE, 2009,4(12):e8273. DOI: 10.1371/journal.pone.0008273.
doi: 10.1371/journal.pone.0008273 pmid: 20011603 |
[21] |
Joppa L, Pfaff A. Reassessing the forest impacts of protection The challenge of nonrandom location and a corrective method. Annals of the New York Academy of Sciences. 2010,1185:135-149.
doi: 10.1111/j.1749-6632.2009.05162.x pmid: 20146766 |
[22] |
Geldmann J, Manica A, Burgess N D, et al. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. PNAS, 2019,116(46):23209-23215.
doi: 10.1073/pnas.1908221116 pmid: 31659036 |
[23] |
Rosenbaum P R, Rubin D B. The central role of the propensity score in observational studies for causal effects. Biometrika, 1983,70(1):41-55.
doi: 10.1093/biomet/70.1.41 |
[24] | Xu Haigen, Ding Hui, Ouyang Zhiyun, et al. Assessing China's progress toward the 2020 Global Biodiversity Targets. Acta Ecologica Sinica, 2016,36(13):3847-3858. |
[ 徐海根, 丁晖, 欧阳志云, 等. 中国实施2020年全球生物多样性目标的进展. 生态学报, 2016,36(13):3847-3858.] | |
[25] | Shu Song, Yu Bailang, Wu Jianping, et al. Methods for deriving urban built-up area using night-light data: Assessment and application. Remote Sensing Technology and Application, 2011,26(2):169-176. |
[ 舒松, 余柏蒗, 吴健平, 等. 基于夜间灯光数据的城市建成区提取方法评价与应用. 遥感技术与应用, 2011,26(2):169-176.] | |
[26] |
Dai Z X, Hu Y F, Zhao G H. The suitability of different nighttime light data for GDP estimation at different spatial scales and regional levels. Sustainability, 2017,9(2):305. DOI: 10.3390/su9020305.
doi: 10.3390/su9020305 |
[27] |
Zhao N Z, Hsu F C, Cao G F, et al. Improving accuracy of economic estimations with VIIRS DNB image products. International Journal of Remote Sensing, 2017,38(21):5899-5918.
doi: 10.1080/01431161.2017.1331060 |
[28] |
Zhao X, Li D R, Li X, et al. Spatial and seasonal patterns of night-time lights in global ocean derived from VIIRS DNB images. International Journal of Remote Sensing, 2018,39(22):8151-8181.
doi: 10.1080/01431161.2018.1482022 |
[29] |
Sanderson E W, Jaiteh M, Levy M A, et al. The human footprint and the last of the wild. Bioscience, 2002,52(10):891-904.
doi: 10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2 |
[30] |
Bowker J N, de Vos A, Ament J M, et al. Effectiveness of Africa's tropical protected areas for maintaining forest cover. Conservation Biology, 2017,31(3):559-569.
doi: 10.1111/cobi.12851 pmid: 27696505 |
[31] |
Kukkonen M O, Tammi I. Systematic reassessment of Laos' protected area network. Biological Conservation, 2019,229:142-151.
doi: 10.1016/j.biocon.2018.11.012 |
[32] |
Shi H, Li X, Liu X P, et al. Global protected areas boost the carbon sequestration capacity: Evidences from econometric causal analysis. Science of the Total Environment, 2020,715:137001. DOI: 10.1016/j.scitotenv.2020.137001.
doi: 10.1016/j.scitotenv.2020.137001 |
[33] | Chen Qiang. Advanced Econometrics and Stata Applications. 2nd ed. Beijing. Higher Education Press, 2014: 542-545. |
[ 陈强. 高级计量经济学及Stata应用. 2版. 北京:高等教育出版社, 2014: 542-545.] | |
[34] | Rosenbaum P R, Rubin D B. Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. The American Statistician, 1985,39(1):33-38. |
[35] | Li Ben, Wu Lihua. Development zone and firms' growth: Research on heterogeneity and mechanism. China Industrial Economics, 2018(4):79-97. |
[ 李贲, 吴利华. 开发区设立与企业成长: 异质性与机制研究. 中国工业经济, 2018(4):79-97.] | |
[36] | He Siyuan, Su Yang, Min Qingwen. Boundary, zoning, and land use management of the China national parks: Learning from nature reserves and scenic areas. Acta Ecologica Sinica, 2019,39(4):1318-1329. |
[ 何思源, 苏杨, 闵庆文. 中国国家公园的边界、分区和土地利用管理: 来自自然保护区和风景名胜区的启示. 生态学报, 2019,39(4):1318-1329.] | |
[37] |
Levin N, Ali S, Crandall D, et al. World Heritage in danger: Big data and remote sensing can help protect sites in conflict zones. Global Environmental Change, 2019,55:97-104.
doi: 10.1016/j.gloenvcha.2019.02.001 |
[38] |
Bennett M M, Smith L C. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sensing of Environment, 2017,192:176-197.
doi: 10.1016/j.rse.2017.01.005 |
[39] | Cao Wei, Huang Lin, Xiao Tong, et al. Effects of human activities on the ecosystems of China's National Nature Reserves. Acta Ecologica Sinica, 2019,39(4):1338-1350. |
[ 曹巍, 黄麟, 肖桐, 等. 人类活动对中国国家级自然保护区生态系统的影响. 生态学报, 2019,39(4):1338-1350.] | |
[40] |
Gray C L, Hill S L L, Newbold T, et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nature Communications, 2016,7:12306. DOI: 10.1038/ncomms12306.
doi: 10.1038/ncomms12306 pmid: 27465407 |
[41] |
Geldmann J, Barnes M, Coad L, et al. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biological Conservation, 2013,161:230-238.
doi: 10.1016/j.biocon.2013.02.018 |
[42] |
Wu R D, Zhang S, Yu D W, et al. Effectiveness of China's nature reserves in representing ecological diversity. Frontiers in Ecology and the Environment, 2011,9(7):383-389.
doi: 10.1890/100093 |
[43] |
Andam K S, Ferraro P J, Pfaff A, et al. Measuring the effectiveness of protected area networks in reducing deforestation. PNAS, 2008,105(42):16089-16094.
doi: 10.1073/pnas.0800437105 pmid: 18854414 |
[44] |
Dähler N B, Holderegger R, Flora I, et al. Effectiveness of Swiss protected areas in maintaining populations of rare vascular plants. Journal for Nature Conservation, 2019,52:125749. DOI: 10.1016/j.jnc.2019.125749.
doi: 10.1016/j.jnc.2019.125749 |
[1] | 彭立, 邓伟, 谭静, 林磊. 横断山区水土资源利用与经济增长的匹配关系[J]. 地理学报, 2020, 75(9): 1996-2008. |
[2] | 孙晶, 刘建国, 杨新军, 赵福强, 覃驭楚, 姚莹莹, 王放, 伦飞, 王洁晶, 秦波, 刘涛, 张丛林, 黄宝荣, 程叶青, 石金莲, 张劲松, 唐华俊, 杨鹏, 吴文斌. 人类世可持续发展背景下的远程耦合框架及其应用[J]. 地理学报, 2020, 75(11): 2408-2416. |
[3] | 杨宇,李小云,董雯,洪辉,何则,金凤君,刘毅. 中国人地关系综合评价的理论模型与实证[J]. 地理学报, 2019, 74(6): 1063-1078. |
[4] | 王少剑,苏泳娴,赵亚博. 中国城市能源消费碳排放的区域差异、空间溢出效应及影响因素[J]. 地理学报, 2018, 73(3): 414-428. |
[5] | 祝萍,黄麟,肖桐,王军邦. 中国典型自然保护区生境状况时空变化特征[J]. 地理学报, 2018, 73(1): 92-103. |
[6] | 李汝资, 刘耀彬, 谢德金. 中国产业结构变迁中的经济效率演进及影响因素[J]. 地理学报, 2017, 72(12): 2179-2198. |
[7] | 张镱锂, 胡忠俊, 祁威, 吴雪, 摆万奇, 李兰晖, 丁明军, 刘林山, 王兆锋, 郑度. 基于NPP数据和样区对比法的青藏高原自然保护区保护成效分析[J]. 地理学报, 2015, 70(7): 1027-1040. |
[8] | 杨飞龄, 胡金明, 武瑞东. 基于NPWP的云南植物保护优先区分析[J]. 地理学报, 2013, 68(11): 1538-1548. |
[9] | 范泽孟, 张轩, 李婧, 岳天祥, 刘纪远, 孙晓芳, 香宝, 匡文慧. 国家级自然保护区土地覆盖类型转换趋势[J]. 地理学报, 2012, 67(12): 1623-1633. |
[10] | 聂勇; 张镱锂; 刘林山; 张继平. 近30年珠穆朗玛峰国家自然保护区冰川变化的遥感监测[J]. 地理学报, 2010, 65(1): 13-28. |
[11] | 黄锡畴, 朱颜明, 富德义, 孟宪玺, 佘中盛. 长白山自然保护区生态环境的化学结构[J]. 地理学报, 1982, 37(1): 65-75. |