地理学报 ›› 2021, Vol. 76 ›› Issue (1): 191-205.doi: 10.11821/dlxb202101015
收稿日期:
2019-12-02
修回日期:
2020-11-03
出版日期:
2021-01-25
发布日期:
2021-03-25
作者简介:
刘基伟(1994-), 山东青岛人, 硕士生, 研究方向为统计与计量方法。E-mail: 基金资助:
LIU Jiwei(), MIN Suqin, JIN Mengdi
Received:
2019-12-02
Revised:
2020-11-03
Published:
2021-01-25
Online:
2021-03-25
Supported by:
摘要:
细颗粒物(PM2.5)个体暴露水平是健康效应研究中的关键问题,然而历史数据缺失和地面监测点覆盖范围小阻碍了相关研究。基于美国国家航空航天局遥感数据提供的气溶胶光学厚度(AOD),融合地面监测、气象等多源数据进行建模来估算近地面PM2.5浓度,所得结果的空间覆盖范围广、时间连续性强、方法成本低。本文基于2018年京津冀鲁地区,引入气象、NDVI、时间节点、空间标识等50个特征分析AOD-PM2.5关系。鉴于传统插补方法单一所造成的信息损失,运用时空多视图插补方法来提高插补的精度和广度。考虑到特征的滞后作用、特征间相关性与偏相关性所导致的复杂关系,运用分布式感知深度神经网络模型来分别捕捉多源特征间的高阶特性。结果表明:① 时空多视图插补方法的相对误差为27.5%,数据平均缺失52.1%降至4.84%。② 分布式感知深度神经网络模型在时间预测上平均绝对误差、相对误差、均方误差、均方根误差分别为17.7 μg/m 3、46.8%、766.2 μg 2/m 6、26.9 μg/m 3,空间上,为16.6 μg/m 3、41.8%、691.5 μg 2/m 6、26.6 μg/m 3,从精度、稳健性、泛化能力和耗时方面综合来看,结果优于线性统计模型和常见深度学习架构。
刘基伟, 闵素芹, 金梦迪. 基于分布式感知深度神经网络的高分辨率PM2.5值估算[J]. 地理学报, 2021, 76(1): 191-205.
LIU Jiwei, MIN Suqin, JIN Mengdi. High resolution PM2.5 estimation based on the distributed perception deep neural network model[J]. Acta Geographica Sinica, 2021, 76(1): 191-205.
表1
2018年京津冀鲁地区所用特征
类别 | 特征 | 单位 | 特征描述 |
---|---|---|---|
PM2.5特征 | PM2.5 | μg/m3 | 近地面细颗粒物空气动力学粒径小于等于2.5 μm的颗粒物质量浓度的全日平均值 |
AOD特征 | AOD | MODIS暗像元与深蓝算法融合提取0.55 μm处气溶胶光学厚度 | |
NDVI特征 | NDVI | MODIS近红外波段反射值与红光波段反射值之差比上两者之和 | |
气象特征 | 温度 | ℃ | 近地面空气气温的全日平均值 |
体感温度[ | ℃ | 人体所感受到的冷暖程度,转换成同等温度的全日平均值 | |
温差 | ℃ | 给定日期内近地面空气气温最大温差 | |
日间温差 | ℃ | 给定日期内白天时段近地面空气气温最大温差 | |
体感温差 | ℃ | 给定日期内体感气温最大温差 | |
日间体感温差 | ℃ | 给定日期内白天时段体感气温最大温差 | |
云量 | 介于0和之间1的被云遮挡的天空百分比的全日平均值 | ||
露点 | ℃ | 空气中所含的气态水达到饱和而凝结成液态水所需要降至的温度的全日平均值 | |
相对湿度 | 近地面相对湿度的全日平均值 | ||
日照长度 | h | 给定日期的日照长度 | |
能见度 | km | 平均能见度的全日平均值 | |
阵风速度 | m/s | 近地面的阵风速度的全日平均值 | |
风速 | m/s | 近地面的风速的全日平均值 | |
风速角 | ° | 以角度为单位的风的来向,取全日平均风向 | |
气压 | hPa | 面积上从海平面到大气上界空气柱的重量的全日平均值 | |
积雪强度 | cm | 积雪强度的全日平均值 | |
降雨强度 | cm/h | 降雨强度的全日平均值 | |
时滞特征 | 滞后一日的气溶胶光学厚度、气温、云量、露点、相对湿度、 日照长度、能见度、风速、气压、积雪强度、降雨强度 | ||
空间标识 | 经纬度 | 监测点站点经纬度 | |
时间节点 | 月份 | 给定日期所在月份 |
表2
多视图与单视图插补精度检验
评价标准 | 多视图 | 时间视图 | 空间视图 | 局部视图 | 全局视图 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RE(%) | MAE(μg/m3) | RE(%) | MAE(μg/m3) | RE(%) | MAE(μg/m3) | RE(%) | MAE(μg/m3) | RE(%) | MAE(μg/m3) | |||||
PM2.5 | 21.3 | 7.3 | 68.0 | 24.7 | 19.1 | 6.8 | 17.8 | 5.9 | 16.2 | 5.2 | ||||
AOD | 24.6 | 113.4 | 76.8 | 283.9 | 12.3 | 60.2 | 20.9 | 110.6 | 22.6 | 76.2 | ||||
AODs | 52.7 | 136.6 | 104.5 | 357.2 | 50.6 | 116.7 | 33.7 | 116.4 | 87.6 | 151.2 | ||||
NDVI | 26.4 | 0.05 | 49.8 | 0.12 | 12.9 | 0.02 | 20.0 | 0.03 | 12.3 | 0.02 | ||||
气象 | 12.5 | \ | 36.3 | \ | 15.5 | \ | 15.5 | \ | 21.8 | \ | ||||
平均结果 | 27.5 | \ | 67.8 | \ | 22.1 | \ | 21.5 | \ | 32.1 | \ |
表4
2018年京津冀鲁地区PM2.5预测的误差和时间开销
DP-DNN | MLP | MI-NN | LSTM | GWR | B-OLSR | EN | ||||
---|---|---|---|---|---|---|---|---|---|---|
地域迁移检验 | ||||||||||
MAE | 16.6 | 17.2 | 18.5 | 22.1 | 29.1 | 19.2 | 21.3 | |||
MAE_std | 1.1 | 1.2 | 1.6 | 0.9 | 41.0 | 0.4 | 0.6 | |||
RE(%) | 41.80 | 44.7 | 44.6 | 76.1 | 141.1 | 56.6 | 67.0 | |||
RE_std(%) | 4.90 | 4.72 | 5.0 | 13.7 | 141.7 | 4.3 | 5.7 | |||
MSE | 691.5 | 744.2 | 901.2 | 1026.6 | 63086.4 | 788.6 | 1008.9 | |||
MSE_std | 100.4 | 103.7 | 181.1 | 176.1 | 275336.9 | 49.0 | 81.0 | |||
RMSE | 26.6 | 27.2 | 29.9 | 31.9 | 100.3 | 28.1 | 31.7 | |||
RMSE_std | 1.9 | 1.9 | 2.9 | 2.6 | 230.3 | 0.9 | 1.3 | |||
时间预测检验 | ||||||||||
MAE | 17.7 | 18.9 | 22.4 | 25.7 | 33.7 | 53.8 | 21.9 | |||
MAE_std | 3.7 | 5.0 | 7.4 | 4.7 | 2.7 | 12.0 | 4.3 | |||
RE(%) | 46.8 | 50.9 | 61.9 | 87.4 | 108.3 | 211.2 | 70.7 | |||
RE_std(%) | 7.2 | 11.7 | 20.8 | 18.8 | 26.9 | 71.3 | 10.9 | |||
MSE | 766.2 | 837.4 | 1126.8 | 1645.7 | 2228.3 | 3966.7 | 1038 | |||
MSE_std | 355.6 | 446.7 | 789.5 | 712.1 | 532.6 | 1300 | 489.7 | |||
RMSE | 26.9 | 27.4 | 31.9 | 39.6 | 46.9 | 62.1 | 31.3 | |||
RMSE_std | 6.1 | 5.0 | 10.3 | 8.9 | 5.1 | 10.5 | 7.6 | |||
平均耗时(s) | 4.2 | 3.1 | 3.3 | 26.4 | 3389.0 | 1.3 | 0.5 |
[1] | Geng G N, Zhang Q, Martin R V, et al. Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model. Remote Sensing of Environment, 2015,166:262-270. |
[2] | Lee D, Mukhopadhyay S, Rushworth A, et al. A rigorous statistical framework for spatio-temporal pollution prediction and estimation of its long-term impact on health. Biostatistics, 2017,18(2):370-385. |
[3] | Mukhopadhyay S, Sahu S K. A Bayesian spatiotemporal model to estimate long-term exposure to outdoor air pollution at coarser administrative geographies in England and Wales. Journal of the Royal Statistical Society: Series A (Statistics in Society), 2018,181(2):465-486. |
[4] | Fang X, Zou B, Liu X, et al. Satellite-based ground PM2.5 estimation using timely structure adaptive modeling. Remote Sensing of Environment, 2016,186:152-163. |
[5] |
van Donkelaar A, Martin R V, Brauer M, et al. Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors. Environmental Science & Technology, 2016,50(7):3762-3772.
doi: 10.1021/acs.est.5b05833 pmid: 26953851 |
[6] | He Q Q, Huang B. Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling. Remote Sensing of Environment, 2018,206:72-83. |
[7] | Wang Z F, Chen L F, Tao J H, et al. Satellite-based estimation of regional particulate matter (PM) in Beijing using vertical-and-RH correcting method. Remote Sensing of Environment, 2010,114(1):50-63. |
[8] |
Fu D S, Xia X G, Wang J, et al. Synergy of AERONET and MODIS AOD products in the estimation of PM2.5 concentrations in Beijing. Scientific Reports, 2018,8(1):10174-10181.
doi: 10.1038/s41598-018-28535-2 pmid: 29977000 |
[9] | Wang J, Christopher S A. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophysical Research Letters, 2003,30(21):2095-2098. |
[10] |
Engel-Cox J A, Holloman C H, Coutant B W, et al. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmospheric Environment, 2004,38(16):2495-2509.
doi: 10.1016/j.atmosenv.2004.01.039 |
[11] | Jia Songlin, Su Lin, Tao Jinhua, et al. A study of multiple regression method for estimating concentration of fine particulate matter using satellite remote sensing. China Environmental Science, 2014,34(3):565-573. |
[ 贾松林, 苏林, 陶金花, 等. 卫星遥感监测近地表细颗粒物多元回归方法研究. 中国环境科学, 2014,34(3):565-573.] | |
[12] | Zang Z L, Wang W Q, Cheng X H, et al. Effects of boundary layer height on the model of ground-level PM2.5 concentrations from AOD: Comparison of stable and convective boundary layer heights from different methods. Atmosphere, 2017,8:104-121. |
[13] | Gupta P, Christopher S A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach. Journal of Geophysical Research Atmospheres, 2009,114:D14205. DOI: 10.1029/2008JD011497. |
[14] | Koelemeijer R B A, Homan C D, Matthijsen J. Comparison of spatial and temporal variations of aerosol optical thickness and particulate matter over Europe. Atmospheric Environment, 2006,40(27):5304-5315. |
[15] | Chen Hui, Li Qing, Zhang Yuhuan, et al. Estimations of PM2.5 concentrations based on the method of geographically weighted regression. Acta Scientiae Circumstantiae, 2016,36(6):2142-2151. |
[ 陈辉, 厉青, 张玉环, 等. 基于地理加权模型的我国冬季PM2.5遥感估算方法研究. 环境科学学报, 2016,36(6):2142-2151.] | |
[16] |
He Q Q, Huang B. Satellite-based high-resolution PM2.5 estimation over the Beijing-Tianjin-Hebei region of China using an improved geographically and temporally weighted regression model. Environmental Pollution, 2018,236:1027-1037.
doi: 10.1016/j.envpol.2018.01.053 pmid: 29455919 |
[17] | Chen Hui, Li Qing, Wang Zhongting, et al. Utilization of MERSI and MODIS data to monitor PM2.5 concentration in Beijing-Tianjin-Hebei and its surrounding areas. Journal of Remote Sensing, 2018,22(5):822-832. |
[ 陈辉, 厉青, 王中挺, 等. MERSI和MODIS卫星监测京津冀及周边地区PM2.5浓度. 遥感学报, 2018,22(5):822-832.] | |
[18] | Jiang M, Sun W W, Yang G, et al. Modelling seasonal GWR of daily PM2.5 with proper auxiliary variables for the Yangtze River Delta. Remote Sensing, 2017,9(4):346. DOI: 10.3390/rs9040346. |
[19] | Wu J S, Yao F, Li W F, et al. VIIRS-based remote sensing estimation of ground-level PM2.5 concentrations in Beijing-Tianjin-Hebei: A spatiotemporal statistical model. Remote Sensing of Environment, 2016,184:316-328. |
[20] | Wu Y R, Guo J P, Zhang X Y, et al. Synergy of satellite and ground based observations in estimation of particulate matter in eastern China. Science of the Total Environment, 2012,433:20-30. |
[21] |
Yao L, Lu N. Spatiotemporal distribution and short-term trends of particulate matter concentration over China, 2006-2010. Environmental Science and Pollution Research, 2014,21(16):9665-9675.
pmid: 24824505 |
[22] | Shao Qi, Chen Yunhao, Li Jing. Inversion of PM2.5 concentration in Beijing based on satellite remote sensing and meteorological reanalysis data. Geography and Geo-Information Science, 2018,34(3):32-38. |
[ 邵琦, 陈云浩, 李京. 基于卫星遥感和气象再分析资料的北京市PM2.5浓度反演研究. 地理与地理信息科学, 2018,34(3):32-38.] | |
[23] | Zou B, Chen J W, Zhai L, et al. Satellite based mapping of ground PM2.5 concentration using generalized additive modeling. Remote Sensing, 2016,9(1):1. DOI: 10.3390/rs9010001. |
[24] | Kloog I, Koutrakis P, Coull B A, et al. Assessing temporally and spatially resolved PM2.5 exposures for epidemiological studies using satellite aerosol optical depth measurements. Atmospheric Environment, 2011,45(35):6267-6275. |
[25] |
Sorek-Hamer M, Strawa A W, Chatfield R B, et al. Improved retrieval of PM2.5 from satellite data products using non-linear methods. Environmental Pollution, 2013,182:417-423.
doi: 10.1016/j.envpol.2013.08.002 pmid: 23995022 |
[26] | Li T W, Shen H F, Zeng C, et al. Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China: Methods and assessment. Atmospheric Environment, 2017,152:477-489. |
[27] | Lyu H, Dai T, Zheng Y F, et al. Estimation of PM2.5 concentrations over Beijing with MODIS AODs using an artificial neural network. Scientific Online Letters on the Atmosphere, 2018,14:14-18. |
[28] |
Zou B, Wang M, Wan N, et al. Spatial modeling of PM2.5 concentrations with a multifactoral radial basis function neural network. Environmental Science and Pollution Research, 2015,22(14):10395-10404.
doi: 10.1007/s11356-015-4380-3 pmid: 25813644 |
[29] | Yao L, Lu N, Jiang S. Artificial Neural Network (ANN) for multi-source PM2.5 estimation using surface, MODIS, and meteorological data. Proceedings of the 2012 International Conference on Biomedical Engineering and Biotechnology, 2012: 1228-1231. |
[30] | Mei Bo, Tian Maozai. Analysis of influential factors on PM2.5 in Beijing based on spatio-temporal model. Journal of Applied Statistics and Management, 2018,37(4):571-586. |
[ 梅波, 田茂再. 基于时空模型北京市PM2.5浓度影响因素研究. 数理统计与管理, 2018,37(4):571-586.] | |
[31] | Ellett F S Jr, Ericson D P. Correlation, partial correlation, and causation. Synthese, 1986,67(2):157-173. |
[32] |
Wang W L, Zhao S L, Jiao L M, et al. Estimation of PM2.5 concentrations in China using a spatial back propagation neural network. Scientific Reports, 2019,9:13788. DOI: 10.1038/s41598-019-50177-1.
doi: 10.1038/s41598-019-50177-1 pmid: 31551510 |
[33] | Wang X Q, Wang F, Jia L L, et al. Retrieval and validation of aerosol optical depth using GF-1 WFV cameras data. Advances in Space Research, 2020,65(3):997-1007. |
[34] | Yu W J, Nan Z T, Wu T H, et al. An effective interpolation method for MODIS land surface temperature on the Qinghai-Tibet Plateau. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015,8(9):4539-4550. |
[35] | Safarpour S, Abdullah K, Lim H S, et al. Spatial interpolation of aerosol optical depth pollution: Comparison of methods for the development of aerosol distribution. ISPRS: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017,4(4):237-244. |
[36] | Sathe Y, Kulkarni S, Gupta P, et al. Application of moderate resolution imaging spectroradiometer (MODIS) aerosol optical depth (AOD) and weather research forecasting (WRF) model meteorological data for assessment of fine particulate matter (PM2.5) over India. Atmospheric Pollution Research, 2019,10(2):418-434. |
[37] |
Beckerman B S, Jerrett M, Serre M, et al. A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States. Environmental Science & Technology, 2013,47(13):7233-7241.
doi: 10.1021/es400039u pmid: 23701364 |
[38] | Chow J C, Chen L W A, Watson J G, et al. PM2.5 chemical composition and spatiotemporal variability during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS). Journal of Geophysical Research: Atmospheres, 2006,111(10). DOI: 10.1029/2005jd006457. |
[39] |
Lin G, Fu J, Jiang D, et al. Spatio-temporal variation of PM2.5 concentrations and their relationship with geographic and socioeconomic factors in China. International Journal of Environmental Research and Public Health, 2013,11(1):173-186.
pmid: 24362546 |
[40] | Gelencsér A, May B, Simpson D, et al. Source apportionment of PM2.5 organic aerosol over Europe: Primary/secondary, natural/anthropogenic, and fossil/biogenic origin. Journal of Geophysical Research: Atmospheres, 2007, 112:17D23S043. DOI: 10.1029/2006JD008094. |
[41] |
Liu Y, Paciorek C J, Koutrakis P. Estimating regional spatial and temporal variability of PM2.5 Concentrations using satellite data, meteorology, and land use information. Environmental Health Perspectives, 2009,117(6):886-892.
doi: 10.1289/ehp.0800123 pmid: 19590678 |
[42] |
Kloog I, Nordio F, Coull B A, et al. Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the Mid-Atlantic states. Environmental Science & Technology, 2012,46(21):11913-11921.
doi: 10.1021/es302673e pmid: 23013112 |
[43] | National Oceanic and Atmospheric Administration Weather Prediction Center. The Heat Index Equation[EB/OL]. (2014-05-28) [2019-08-13]. http://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml. |
[44] | National Aeronautics and Space Administration. MODIS Standard Collection 6.1 Update Executive Summary[EB/OL]. (2017-08-09) [2019-08-20]. https://atmosphere-imager.gsfc.nasa.gov/documentation/collection-61. |
[45] | Dark Sky Docs: Data Sources[EB/OL]. (2019-09-04) [2019-08-24]. https://darksky.net/dev/docs/sources. |
[46] | Tobler W R. A computer movie simulating urban growth in the Detroit Region. Economic Geography, 1970,46:234-240. |
[47] | Swami A, Jain R. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 2013,12(10):2825-2830. |
[48] | Wang X X, Brown D J. Boosting orthogonal least squares regression. Lecture Notes in Computer Science, 2004,3177:678-683. |
[1] | 郭向阳, 穆学青, 丁正山, 秦东丽. 长三角多维城市化对PM2.5浓度的非线性影响及驱动机制[J]. 地理学报, 2021, 76(5): 1274-1293. |
[2] | 蔡瑞婷, 肖舜, 董治宝, 曹军骥, 张宁宁, 刘随心, 沈振兴, 徐红梅, 陶燕, 李星敏, 王鑫, 王雨萌. 汾渭平原典型城乡PM2.5中多环芳烃特征与健康风险[J]. 地理学报, 2021, 76(3): 740-752. |
[3] | 徐冬, 黄震方, 黄睿. 基于空间面板计量模型的雾霾对中国城市旅游流影响的空间效应[J]. 地理学报, 2019, 74(4): 814-830. |
[4] | 王振波, 梁龙武, 王旭静. 中国城市群地区PM2.5时空演变格局及其影响因素[J]. 地理学报, 2019, 74(12): 2614-2630. |
[5] | 刘海猛,方创琳,黄解军,朱向东,周艺,王振波,张蔷. 京津冀城市群大气污染的时空特征与影响因素解析[J]. 地理学报, 2018, 73(1): 177-191. |