地理学报 ›› 2021, Vol. 76 ›› Issue (1): 101-113.doi: 10.11821/dlxb202101008
柴元方1,2(), 邓金运1, 杨云平2,3(
), 孙昭华1, 李义天1, 朱玲玲2,4
收稿日期:
2019-07-29
修回日期:
2020-12-05
出版日期:
2021-01-25
发布日期:
2021-03-25
作者简介:
柴元方(1993-), 男, 浙江衢州人, 博士生, 主要从事气候变化与河流水文响应关系研究。E-mail: 基金资助:
CHAI Yuanfang1,2(), DENG Jinyun1, YANG Yunping2,3(
), SUN Zhaohua1, LI Yitian1, ZHU Lingling2,4
Received:
2019-07-29
Revised:
2020-12-05
Published:
2021-01-25
Online:
2021-03-25
Supported by:
摘要:
水库运行改变了坝下游水沙输移条件,在河道冲刷的同时,引起水位过程出现适应性调整。本文以长江中游荆江河段为对象,采用多项式拟合法,对比分析1991—2016年间分级流量—水位变化特征,采用基于河流动力学原理的分离变量法,识别河道冲淤、下游控制水位及河床综合糙率等变化对分级流量—水位变化的影响程度。研究表明:1991—2016年间,长江中游荆江河段同流量—枯水位呈下降趋势,2009年以来降幅增大;河道冲刷是引起同流量—枯水位下降的主控因素,河床综合糙率增加抑制了同流量—枯水位下降起到积极作用。1991—2016年间,荆江河段同流量—洪水位经历了先减小后增大的“凹”线型变化,2003年以前洪水特征为“高洪水流量—高水位”,2009年以来逐渐演化为“中大洪水流量—高水位”,同流量—洪水位特性发生转变;河床综合糙率增大是同流量—洪水位抬升的主控因素,河道冲刷抑制了同流量—洪水位的抬升态势。在航道条件及防洪情势上,应重点防控近坝段沙质河段冲刷引起的水位下降溯源传递作用,其洪水流量—水位特性的转变,不利于减缓荆江河段的防洪压力。
柴元方, 邓金运, 杨云平, 孙昭华, 李义天, 朱玲玲. 长江中游荆江河段同流量—水位演化特征及驱动成因[J]. 地理学报, 2021, 76(1): 101-113.
CHAI Yuanfang, DENG Jinyun, YANG Yunping, SUN Zhaohua, LI Yitian, ZHU Lingling. Evolution characteristics and driving factors of the water level at the same discharge in the Jingjiang reach of Yangtze River[J]. Acta Geographica Sinica, 2021, 76(1): 101-113.
[1] | Burns A, Walker K F. Effects of water level regulation on algal biofilms in the River Murray, South Australia. River Research and Applications, 2015,16(5):433-444. |
[2] | Yang Yunping, Zhang Mingjin, Liu Wanli, et al. Relationships between waterway depth and low-flow water levels in reaches below the Three Gorges Dam. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2019,145(1):04018032.DOI: 10.1061/(ASCE)WW.1943-5460.0000482. |
[3] | Gabriel A O. Impacts, perceptions, and management of shoreline hazards and water levels on a fluctuating reservoir: A case study of the Winnebago System, Wisconsin. Lake and Reservoir Management, 2004,20(3):197-210. |
[4] | Surian N, Ziliani L, Comiti F, et al. Channel adjustments and alteration of sediment fluxes in gravel-bed rivers of North-Eastern Italy: Potentials and limitations for channel recovery. River Research & Applications, 2009,25(5):551-567. |
[5] | Shields J R F D, Simon A, Steffen L J. Reservoir effects on downstream river channel migration. Environmental Conservation, 2000,27(1):54-66. |
[6] | Topping D J, Schmidt J C, Vierra L E. Computation and analysis of theinstantaneous discharge for the Colorado River at Lees Ferry, Arizona. US Geological Survey Professional Paper, 2003: 30-33. |
[7] | Lu Jinyou. Variation of stage-discharge relationship of downstream of hydro-junction. Hydro-Science and Engineering, 1994(1/2):109-117. |
[ 卢金友. 水利枢纽下游河道水位流量关系的变化. 水利水运科学研究, 1994(1/2):109-117.] | |
[8] | Lai Xijun., Jiang Jiahu, Yang Guishan, et al. Should the Three Gorges Dam be blamed for the extremely low water levels in the middle-lower Yangtze River? Hydrological Processes, 2014,28(1):150-160. |
[9] | Yang Yunping, Zhang Mingjin, Sun Zhaohua, et al. The relationship between water level change and river channel geometry adjustment in the downstream of the Three Gorges Dam. Journal of Geographical Sciences, 2018,28(12):1975-1993. |
[10] |
Yang Yunping, Zhang Mingjin, Sun Zhaohua, et al. The relationship between water level change and river channel geometry adjustment in the downstream of the Three Gorges Dam (TGD). Acta Geographica Sinica, 2017,72(5):776-789.
doi: 10.11821/dlxb201705002 |
[ 杨云平, 张明进, 孙昭华, 等. 三峡大坝下游水位变化与河道形态调整关系研究. 地理学报, 2017,72(5):776-789.] | |
[11] | Han Jianqiao, Sun Zhaohua, Li Yitian, et al. Combined effects of multiple large-scale hydraulic engineering on water stages in the middle Yangtze River. Geomorphology, 2017,298:31-40. |
[12] | Yang Yunping, Zhang Mingjin, Zhu Lingling, et al. Influence of large reservoir operation on water-levels and flows in reaches below dam: Case study of the Three Gorges Reservoir. Scientific Reports, 2017,7:15640. DOI: 10.1038/s41598-017-15677-y. |
[13] | Bormann H, Pinter N, Elfert S. Hydrological signatures of flood trends on German rivers: Flood frequencies, flood heights and specific stages. Journal of Hydrology, 2011,404(1-2):50-66. |
[14] | Carle M V, Sasser C E, Roberts H H. Accretion and vegetation community change in the Wax Lake Delta following the historic 2011 Mississippi River Flood. Journal Coastal Research, 2015,313(3):569-587. |
[15] | Zhang Man, Zhou Jianjun, Huang Guoxian. Flood control problems in middle reaches of Yangtze River and countermeasures. Water Resources Protection, 2016,32(4):1-10. |
[ 张曼, 周建军, 黄国鲜. 长江中游防洪问题与对策. 水资源保护, 2016,32(4):1-10.] | |
[16] |
Mei Xuefei, Dai Zhijun, Du Jinzhou, et al. Linkage between Three Gorges Dam impacts and the dramatic recessions in China's largest freshwater lake, Poyang Lake. Scientific Reports, 2016,5:18197. DOI: 10.1038/srep18197.
pmid: 26657816 |
[17] | Huang Xinlong, Zhu Minghua, Zuo Jichang, et al. "2016.7" flood last danger analysis and revelation in the middle and lower reaches of the Yangtze River. China Flood & Drought Management, 2016(5):47-49. |
[ 黄先龙, 褚明华, 左吉昌, 等. “2016.7”长江中下游洪水防御工作及启示. 中国防汛抗旱, 2016(5):47-49.] | |
[18] | Moshe L B, Haviv I, Enzel Y, et al. Incision of alluvial channels in response to a continuous base level fall: Field characterization, modeling, and validation along the Dead Sea. Geomorphology, 2008,93(3/4):524-536. |
[19] | Greene S L, Knox J C. Coupling legacy geomorphic surface facies to riparian vegetation: Assessing red cedar invasion along the Missouri River downstream of Gavins Point Dam, South Dakota. Geomorphology, 2014,204(1):277-286. |
[20] | Han Jianqiao, Sun Zhaohua, Yang Yunping. Flood and low stage adjustment in the middle Yangtze River after impoundment of the Three Gorges Reservoir (TGR). Journal of Lake Sciences, 2017,29(5):1217-1226. |
[ 韩剑桥, 孙昭华, 杨云平. 三峡水库运行后长江中游洪、枯水位变化特征. 湖泊科学, 2017,29(5):1217-1226.] | |
[21] | Guo Yi, Sun Zhaohua, Luo Fangbing. Time-variation characteristics and causes of Yichang low-water level since impoundment of Three Gorges Reservoir. Hydro-Science and Engineering, 2017(4):35-42. |
[ 郭怡, 孙昭华, 罗方冰. 三峡水库蓄水后宜昌枯水位的时变特征及成因. 水利水运工程学报, 2017(4):35-42.] | |
[22] | Han Jianqiao, Sun Zhaohua, Li Yitian, et al. Changes and causes of lower water level in Yichang-Chenglingji reach after impounding of Three Gorges Reservoir. Engineering Journal of Wuhan University, 2011,44(6):685-690, 895. |
[ 韩剑桥, 孙昭华, 李义天, 等. 三峡水库蓄水后宜昌至城陵矶河段枯水位变化及成因. 武汉大学学报(工学版), 2011,44(6):685-690, 895.] | |
[23] | Sun Zhaohua, Huang Ying, Cao Qixin, et al. Spatial and temporal variations of the low flow stage in the immediate downstream reach of the Three Georges Dam. Journal of Basic Science and Engineering, 2015,23(4):694-704. |
[ 孙昭华, 黄颖, 曹绮欣, 等. 三峡近坝段枯水位降幅的时空分异性及成因. 应用基础与工程科学学报, 2015,23(4):694-704.] | |
[24] | Zhang Xibing, Lu Jinyou, Lin Qiusheng. Preliminary study on accumulated influence of the bankline use on flood control in the middle and lower reaches of the Yangtze River. Resources and Environment in the Yangtze Basin, 2011,20(9):1138-1142. |
[ 张细兵, 卢金友, 蔺秋生. 长江中下游岸线利用对防洪累积影响初步研究. 长江流域资源与环境, 2011,20(9):1138-1142.] | |
[25] | Chai Yuanfang, Li Yitian, Yang Yunping, et al. Water level variation characteristics under the impacts of extreme drought and the operation of the Three Gorges Dam. Frontiers Earth Science, 2019,13(3):510-522. |
[26] | Yuan Weihao, Yin Daowei, Finlayson B, et al. Assessing the potential for change in the middle Yangtze River channel following impoundment of the Three Gorges Dam. Geomorphology, 2012,147/148:27-34. |
[27] | Li Yunzhong. Change in Yangtze water level along Yichang stretch in dry season. China Three Gorges Construction, 2002,9(5):12-14. |
[ 李云中. 长江宜昌河段低水位变化研究. 中国三峡建设, 2002,9(5):12-14.] | |
[28] | Dai Shuiping, Yan Jinbo, Zou Tao, et al. A study of the impact of bottle-neck reach evolution downstream from Gezhouba on Yichang's low water level. Express Water Resources & Hydropower Information, 2012,33(7):40-44. |
[ 代水平, 闫金波, 邹涛, 等. 葛洲坝下游沿程节点演变对宜昌枯水位影响研究. 水利水电快报, 2012,33(7):40-44.] | |
[29] | Cheng Jinhai, Xiang Rong, Qiu Xiaofeng, et al. Analysis of the impact on roughness of riverbed erosion downstream the Three Georges Project. Express Water Resources & Hydropower Information, 2012,33(7):59-63. |
[ 成金海, 向荣, 邱晓峰, 等. 三峡水库运行初期坝下近坝段河道冲刷对河床糙率影响分析. 水利水电快报, 2012,33(7):59-63.] | |
[30] | Yang Yunping, Zhang Mingjin, Li Yitian, et al. Suspended sediment recovery and bedsand compensation mechanism affected by the Three Gorges Project. Acta Geographica Sinica, 2016,71(7):1241-1254. |
[ 杨云平, 张明进, 李义天, 等. 长江三峡水坝下游河道悬沙恢复和床沙补给机制. 地理学报, 2016,71(7):1241-1254.] | |
[31] | Zhang Wei, Yang Yunping, Zhang Mingjin, et al. Mechanisms of suspended sediment restoration and bed level compensation in downstream reaches of the Three Gorges Projects (TGP). Journal of Geographical Sciences, 2017,27(4):463-480. |
[32] | Li Yitian, Sun Zhaohua, Liu Yun, et al. Channel degradation downstream from the Three Gorges Project and its impacts on flood level. Journal of Hydraulic Engineering, 2009,135(9):718-728. |
[1] | 朱政, 朱翔, 李霜霜. 长江中游城市群空间结构演变历程与特征[J]. 地理学报, 2021, 76(4): 799-817. |
[2] | 方世敏, 黄琰. 长江经济带旅游效率与规模的时空演化及耦合协调[J]. 地理学报, 2020, 75(8): 1757-1772. |
[3] | 魏素豪, 李晶, 李泽怡, 宗刚. 中国农业竞争力时空格局演化及其影响因素[J]. 地理学报, 2020, 75(6): 1287-1300. |
[4] | 崔耀平, 刘玄, 李东阳, 邓晴心, 徐佳宁, 石欣瑜, 秦耀辰. 长三角地区城市化空间关联特征及内在机制[J]. 地理学报, 2020, 75(6): 1301-1315. |
[5] | 马恩朴, 蔡建明, 林静, 郭华, 韩燕, 廖柳文. 2000—2014年全球粮食安全格局的时空演化及影响因素[J]. 地理学报, 2020, 75(2): 332-347. |
[6] | 李钢, 王皎贝, 徐婷婷, 高兴, 金安楠, 于悦. 中国COVID-19疫情时空演化与综合防控[J]. 地理学报, 2020, 75(11): 2475-2489. |
[7] | 童昀, 马勇, 刘海猛. COVID-19疫情对中国城市人口迁徙的短期影响及城市恢复力评价[J]. 地理学报, 2020, 75(11): 2505-2520. |
[8] | 陈瑞,李凤全,王天阳,朱丽东,叶玮,周国成. 长江中游新石器时代遗址规模的分布特征[J]. 地理学报, 2018, 73(3): 474-486. |
[9] | 徐玲琳, 王强, 李娜, 杜雪, 伍世代, 田兰蓝, 吴琛璐, 丁哲澜. 20世纪90年代以来世界能源安全时空格局演化过程[J]. 地理学报, 2017, 72(12): 2166-2178. |
[10] | 郭庆宾, 张中华. 长江中游城市群要素集聚能力的时空演变[J]. 地理学报, 2017, 72(10): 1746-1761. |
[11] | 蔺雪芹, 王岱. 中国城市空气质量时空演化特征及社会经济驱动力[J]. 地理学报, 2016, 71(8): 1357-1371. |
[12] | 杨文龙, 杜德斌, 刘承良, 马亚华. 中国地缘经济联系的时空演化特征及其内部机制[J]. 地理学报, 2016, 71(6): 956-969. |
[13] | 段德忠, 杜德斌, 刘承良. 上海和北京城市创新空间结构的时空演化模式[J]. 地理学报, 2015, 70(12): 1911-1925. |
[14] | 龚胜生, 林月辉, 戈大专. 三峡地区城市与河流关系的时空演化研究[J]. 地理学报, 2013, 68(12): 1619-1631. |
[15] | 汤放华, 汤慧, 孙倩, 汤迪莎. 长江中游城市集群经济网络结构分析[J]. 地理学报, 2013, 68(10): 1357-1366. |