地理学报 ›› 2021, Vol. 76 ›› Issue (1): 44-56.doi: 10.11821/dlxb202101004
齐贵增1,2,3(), 白红英1,2,3(
), 赵婷1,2,3, 孟清1,2,3, 张善红1,2,3
收稿日期:
2019-12-02
修回日期:
2020-10-21
出版日期:
2021-01-25
发布日期:
2021-03-25
作者简介:
齐贵增(1994-), 男, 硕士, 主要从事区域气候变化与植被响应方向研究。E-mail: 基金资助:
QI Guizeng1,2,3(), BAI Hongying1,2,3(
), ZHAO Ting1,2,3, MENG Qing1,2,3, ZHANG Shanhong1,2,3
Received:
2019-12-02
Revised:
2020-10-21
Published:
2021-01-25
Online:
2021-03-25
Supported by:
摘要:
秦岭位于暖温带与亚热带交界处,也是中国南北地理分界线,秦岭南北坡植被对干湿变化响应敏感性,可以折射出暖温带、亚热带地区主要植被类型对干湿变化的响应规律和机制特征,对深入理解不同气候带植被变化规律具有重要意义。本文利用秦岭山地32个气象站点的气象数据和MODIS NDVI时间序列数据集,探讨了2000—2018年秦岭南北坡NDVI和SPEI时空变化特征,揭示了南北坡植被对干湿变化响应敏感性及其空间差异。结果表明:① 2000—2018年秦岭植被覆盖情况整体显著改善,但秦岭南坡NDVI上升幅度和面积占比均高于北坡,南坡植被比北坡改善情况好。秦岭湿润化趋势不显著,但秦岭北坡湿润化速率和面积占比均大于南坡。② 秦岭北坡植被比南坡植被更易受干湿变化影响,秦岭北坡植被对3—6月总体干湿变化最为敏感,南坡植被对3—5月(春季)干湿变化最为敏感。秦岭南北坡植被主要受3~7个月尺度干湿变化影响,对11~12个月尺度的干湿变化响应较弱。③ 秦岭有90.34%的区域NDVI与SPEI呈正相关,大部分地区春季湿润化能促进全年植被生长;随海拔上升,植被对干湿变化响应敏感性先上升再下降,海拔800~1200 m是植被响应最敏感的海拔段,海拔1200~3000 m随海拔上升植被响应敏感性下降;南北坡草丛均是对干湿变化响应最为敏感的植被类型,但秦岭北坡多数植被类型对干湿变化响应比南坡敏感。
齐贵增, 白红英, 赵婷, 孟清, 张善红. 秦岭陕西段南北坡植被对干湿变化响应敏感性及空间差异[J]. 地理学报, 2021, 76(1): 44-56.
QI Guizeng, BAI Hongying, ZHAO Ting, MENG Qing, ZHANG Shanhong. Sensitivity and areal differentiation of vegetation responses to hydrothermal dynamics on the southern and northern slopes of the Qinling Mountains in Shaanxi province[J]. Acta Geographica Sinica, 2021, 76(1): 44-56.
[1] | Fu Bojie, Yu Dandan, Lü Nan. An indicator system for biodiversity and ecosystem services evaluation in China. Acta Ecologica Sinica, 2017,37(2):341-348. |
[ 傅伯杰, 于丹丹, 吕楠. 中国生物多样性与生态系统服务评估指标体系. 生态学报, 2017,37(2):341-348.] | |
[2] | Gao Jiangbo, Jiao Kewei, Wu Shaohong. Revealing the climatic impacts on spatial heterogeneity of NDVI in China during 1982-2013. Acta Geographica Sinica, 2019,74(3):534-543. |
[ 高江波, 焦珂伟, 吴绍洪. 1982—2013年中国植被NDVI空间异质性的气候影响分析. 地理学报, 2019,74(3):534-543.] | |
[3] | Liu Shiliang, Tian Yunyu, Yin Yijie, et al. Temporal dynamics of vegetation NDVI and its response to drought conditions in Yunnan Province. Acta Ecologica Sinica, 2016,36(15):4699-4707. |
[ 刘世梁, 田韫钰, 尹艺洁, 等. 云南省植被NDVI时间变化特征及其对干旱的响应. 生态学报, 2016,36(15):4699-4707.] | |
[4] |
Thuiller W, Lavorel S, Araújo M B, et al. Climate change threats to plant diversity in Europe. PNAS, 2005,102(23):8245-8250.
pmid: 15919825 |
[5] | Hou Meiting, Zhao Haiyan, Wang Zheng, et al. Vegetation responses to climate change by using the satellite-derived normalized difference vegetation index: A review. Climatic and Environmental Research, 2013,18(3):353-364. |
[ 侯美亭, 赵海燕, 王筝, 等. 基于卫星遥感的植被NDVI对气候变化响应的研究进展. 气候与环境研究, 2013,18(3):353-364. | |
[6] | Stocker T F, Qin D H, Plattner M, et al. Climate Change 2013: The Physical Science Basis Cambridge: Cambridge University Press, 2013: 866-871. |
[7] | Dai A G. Increasing drought under global warming in observations and models. Nature Climate Change, 2013,3(1):52-58. |
[8] | Huang J P, Ji M X, Xie Y K, et al. Global semi-arid climate change over last 60 years. Climate Dynamics, 2016,46(3-4):1131-1150. |
[9] | Vicenteserrano S M, Beguería S, Lópezmoreno J I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 2010,23(7):1696-1718. |
[10] | Palmer W C. Keeping track of crop moisture conditions, nationwide: The new crop moisture index. Weatherwise, 1968,21(4):156-161. |
[11] | Mckee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration of time scales. The 8th Conference on Apllied Climatology, American Meteorological Society: Anaheim, California, 1993, 174-184. |
[12] | Byakatonda J, Parida B P, Moalafhi D B, et al. Analysis of long term drought severity characteristics and trends across semiarid Botswana using two drought indices. Atmospheric Research, 2018,213:492-508. |
[13] | Tong S Q, Lai Q, Zhang J Q, et al. Spatiotemporal drought variability on the Mongolian Plateau from 1980-2014 based on the SPEI-PM, intensity analysis and Hurst exponent. Science of the Total Environment, 2018,615:1557-1565. |
[14] | Qi Guizeng, Bai Hongying, Meng Qing, et al. Climate change in the Qinling Mountains in spring during 1959-2018. Arid Zone Research, 2019,36(5):1079-1091. |
[ 齐贵增, 白红英, 孟清, 等. 1959—2018年秦岭南北春季气候时空变化特征. 干旱区研究, 2019,36(5):1079-1091.] | |
[15] | Kong Dongdong, Zhang Qiang, Gu Xihui, et al. Vegetation responses to drought at different time scales in China. Acta Ecologica Sinica, 2016,36(24):7908-7918. |
[ 孔冬冬, 张强, 顾西辉, 等. 植被对不同时间尺度干旱事件的响应特征及成因分析. 生态学报, 2016,36(24):7908-7918.] | |
[16] | Yang Siyao, Meng Dan, Li Xiaojuan, et al. Multi-scale responses of vegetation changes relative to the SPEI meteorological drought index in North China in 2001-2014. Acta Ecologica Sinica, 2018,38(3):1028-1039. |
[ 杨思遥, 孟丹, 李小娟, 等. 华北地区2001—2014年植被变化对SPEI气象干旱指数多尺度的响应. 生态学报, 2018,38(3):1028-1039.] | |
[17] | Li Yanju, Ding Jianli, Zhang Junyong, et al. Response of vegetation cover to drought in the northern slope of the Tianshan Mountains during 2001-2015 based on the land-use and land-cover change. Acta Ecologica Sinica, 2019,39(17):6206-6217. |
[ 李艳菊, 丁建丽, 张钧泳, 等. 2001—2015年天山北坡植被覆盖对干旱的响应: 基于土地利用/土地覆盖分析. 生态学报, 2019,39(17):6206-6217.] | |
[18] | Kang Muyi, Zhu Yuan. Discussion and analysis on the geo-ecological boundary in Qinling Range. Acta Ecologica Sinica, 2007,27(7):2774-2784. |
[ 康慕谊, 朱源. 秦岭山地生态分界线的论证. 生态学报, 2007,27(7):2774-2784.] | |
[19] | Deng Chenhui, Bai Hongying, Gao Shan, et al. Comprehensive effect of climatic factors on plant phenology in Qinling Mountains region during 1964-2015. Acta Geographica Sinica, 2018,73(5):917-931. |
[ 邓晨晖, 白红英, 高山, 等. 1964—2015年气候因子对秦岭地区植物物候的综合影响效应. 地理学报, 2018,73(5):917-931.] | |
[20] | Zhang Yang, Bai Hongying, Su Kai, et al. Spatial variation of extreme temperature change on southern and northern slopes of Shaanxi section in Qinling Mountains during 1960-2013. Acta Geographica Sinica, 2018,73(7):1296-1308. |
[ 张扬, 白红英, 苏凯, 等. 1960—2013年秦岭陕西段南北坡极端气温变化空间差异. 地理学报, 2018,73(7):1296-1308.] | |
[21] | Lu Fuzhi, Lu Huayu. A high-resolution grid dataset of air temperature and precipitation for Qinling-Daba Mountains in central China and its implications for regional climate. Acta Geographica Sinica, 2019,74(5):875-888. |
[ 陆福志, 鹿化煜. 秦岭—大巴山高分辨率气温和降水格点数据集的建立及其对区域气候的指示. 地理学报, 2019,74(5):875-888.] | |
[22] | Deng Chenhui, Bai Hongying, Gao Shan, et al. Spatial-temporal variation of the vegetation coverage in Qinling Mountains and its dual response to climate change and human activities. Journal of Natural Resources, 2018,33(3):425-438. |
[ 邓晨晖, 白红英, 高山, 等. 秦岭植被覆盖时空变化及其对气候变化与人类活动的双重响应. 自然资源学报, 2018,33(3):425-438.] | |
[23] | Vicenteserrano S M, Beguería S, Lópezmoreno J I, et al. A new global 0.5° gridded dataset (1901-2006) of a multiscalar drought index: Comparison with current drought index datasets based on the Palmer drought severity index. Journal of Hydrometeorology, 2010,11(4):1033-1043. |
[24] | Hutchinson M F, Xu T. Anusplin Version 4.4 User Guide. 2013. |
[25] | Liu Zhihong Tim R M van Niel T G, et al. Introduction of the professional interpolation software for meteorology data: ANUSPLIN. Meteorological Monthly, 2008(2):92-100. |
[ 刘志红 Tim R M van Niel T G, 等. 专用气候数据空间插值软件ANUSPLIN及其应用. 气象, 2008(2):92-100.] | |
[26] | Xu Xiang, Xu Yao, Sun Qingqing, et al. Comparision study on meteorological spatial interpolation approaches in Kangdian region of China. Journal of Central China Normal University (Natural Sciences), 2018,52(1):122-129. |
[ 徐翔, 许瑶, 孙青青, 等. 复杂山地环境下气候要素的空间插值方法比较研究. 华中师范大学学报(自然科学版), 2018,52(1):122-129.] | |
[27] | Meng Qing, Bai Hongying, Guo Shaozhuang. Spatial-temporal variation of precipitation in Qinling area in recent 50 years based on Anusplin. Research of Soil and Water Conservation, 2020,27(2):206-212. |
[ 孟清, 白红英, 郭少壮. 基于Anusplin秦岭地区近50多年来的降水时空变化. 水土保持研究, 2020,27(2):206-212.] | |
[28] | Dong J W, Liu J Y, Zhang G L, et al. Climate change affecting temperature and aridity zones: A case study in eastern Inner Mongolia, China from 1960-2008. Theoretical and Applied Climatology, 2013,113(3):561-572. |
[29] | Bai Hongying, Ma Xinping, Gao Xiang, et al. Variations in January temperature and 0 ℃ isothermal curve in Qinling Mountains based on DEM. Acta Geographica Sinica, 2012,67(11):1443-1450. |
[ 白红英, 马新萍, 高翔, 等. 基于DEM的秦岭山地1月气温及0 ℃等温线变化. 地理学报, 2012,67(11):1443-1450.] | |
[30] | Chen Lan, Li Shuheng, Hou Li, et al. Response of Larix chinensis radial growth to climatic factors based on the Vaganov-Shashkin model. Chinese Journal of Applied Ecology, 2017,28(8):2470-2480. |
[ 陈兰, 李书恒, 侯丽, 等. 基于Vaganov-Shashkin模型的太白红杉径向生长对气候要素的响应. 应用生态学报, 2017,28(8):2470-2480.] | |
[31] | Hou Li, Li Shuheng, Chen Lan, et al. Reconstruction of the historical temperature from February to April of the Qinling Mountains in recent 200 years. Geographical Research, 2017,36(8):1428-1442. |
[ 侯丽, 李书恒, 陈兰, 等. 近200年来秦岭2—4月历史气温重建与空间差异. 地理研究, 2017,36(8):1428-1442.] | |
[32] | Qin Jin, Bai Hongying, Liu Rongjuan, et al. Reconstruction of March-June mean air temperature along the timberline of Mount Taibai, Qinling Mountains, Northwest China, over the last 144 years. Acta Ecologica Sinica, 2017,37(22):7585-7594. |
[ 秦进, 白红英, 刘荣娟, 等. 近144年来秦岭太白山林线区3—6月平均气温的重建. 生态学报, 2017,37(22):7585-7594.] | |
[33] | Bai Hongying, Liu Kang, Wang Jun, et al. Vegetation Response and Adaptation in the Qinling Mountains under Climate Change Background. Beijing: Science Press, 2019: 16-18. |
[ 白红英, 刘康, 王俊, 等. 气候变化背景下秦岭山地植被响应与适应. 北京: 科学出版社, 2019: 16-18.] | |
[34] | Zhu Xiaoqin, Liu Kang, Li Jianguo, et al. Analysis on vegetation-environment gradient correlation in Qinling Mountain based on GIS. Research of Soil and Water Conservation, 2009,16(2):169-175. |
[ 朱晓勤, 刘康, 李建国, 等. GIS支持下的秦岭山地植被分布与环境梯度关系研究. 水土保持研究, 2009,16(2):169-175.] | |
[35] | Chen Chaonan, Zhu Lianqi, Tian Li, et al. Spatial-temporal changes in vegetation characteristics and climate in the Qinling-Daba Mountains. Acta Ecologica Sinica, 2019,39(9):3257-3266. |
[ 陈超男, 朱连奇, 田莉, 等. 秦巴山区植被覆盖变化及气候因子驱动分析. 生态学报, 2019,39(9):3257-3266.] | |
[36] | Tang Jian, Cao Huiqun, Chen Jin. Effects of ecological conservation projects and climate variations on vegetation changes in the source region of the Yangtze River. Acta Geographica Sinica, 2019,74(1):76-86. |
[ 唐见, 曹慧群, 陈进. 生态保护工程和气候变化对长江源区植被变化的影响量化. 地理学报, 2019,74(1):76-86.] | |
[37] | Zhao Anzhou, Zhang Anbing, Liu Haixin, et al. Spatiotemporal variation of vegetation coverage before and after implementation of Grain for Green Project in the Loess Plateau. Journal of Natural Resources, 2017,32(3):449-460. |
[ 赵安周, 张安兵, 刘海新, 等. 退耕还林(草)工程实施前后黄土高原植被覆盖时空变化分析. 自然资源学报, 2017,32(3):449-460.] | |
[38] | Zhang Yinping. Vertical distribution and comparison of forests in the north and south slope of Qinling Mountains[D]. Xi'an: Xi'an University of Science and Technology, 2017. |
[ 张银屏. 秦岭南北坡森林垂直分布对比及变化分析[D]. 西安: 西安科技大学, 2017.] |
[1] | 黄海, 田尤, 刘建康, 张佳佳, 杨东旭, 杨顺. 藏东地区斜坡土壤冻融侵蚀力学机制及敏感性分析[J]. 地理学报, 2021, 76(1): 87-100. |
[2] | 郭泽呈, 魏伟, 石培基, 周亮, 王旭峰, 李振亚, 庞素菲, 颉斌斌. 中国西北干旱区土地沙漠化敏感性时空格局[J]. 地理学报, 2020, 75(9): 1948-1965. |
[3] | 高晓路, 吴丹贤, 颜秉秋. 北京城市老年贫困人口识别与空间分布[J]. 地理学报, 2020, 75(8): 1557-1571. |
[4] | 金凯, 王飞, 韩剑桥, 史尚渝, 丁文斌. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5): 961-974. |
[5] | 周玉科. 中国东北地区植被生产力控制因素分析[J]. 地理学报, 2020, 75(1): 53-67. |
[6] | 彭文甫, 张冬梅, 罗艳玫, 陶帅, 徐新良. 自然因子对四川植被NDVI变化的地理探测[J]. 地理学报, 2019, 74(9): 1758-1776. |
[7] | 刘立程, 刘春芳, 王川, 李鹏杰. 黄土丘陵区生态系统服务供需匹配研究——以兰州市为例[J]. 地理学报, 2019, 74(9): 1921-1937. |
[8] | 马丹阳, 尹云鹤, 吴绍洪, 郑度. 中国干湿格局对未来高排放情景下气候变化响应的敏感性[J]. 地理学报, 2019, 74(5): 857-874. |
[9] | 张生瑞, 王英杰, 张桐艳, 曹瑞昌. 基于跨省界自然地理实体地名空间格局的行政管理优化[J]. 地理学报, 2019, 74(4): 797-813. |
[10] | 高江波, 焦珂伟, 吴绍洪. 1982-2013年中国植被NDVI空间异质性的气候影响分析[J]. 地理学报, 2019, 74(3): 534-543. |
[11] | 张扬,白红英,苏凯,黄晓月,孟清,郭少壮. 1960-2013年秦岭陕西段南北坡极端气温变化空间差异[J]. 地理学报, 2018, 73(7): 1296-1308. |
[12] | 林雄斌,杨家文,陶卓霖,宋金平,任颋. 交通投资、经济空间集聚与多样化路径——空间面板回归与结构方程模型视角[J]. 地理学报, 2018, 73(10): 1970-1984. |
[13] | 高海东, 庞国伟, 李占斌, 程圣东. 黄土高原植被恢复潜力研究[J]. 地理学报, 2017, 72(5): 863-874. |
[14] | 杨志远, 高超, 臧淑英, 杨秀春. SWIM模型在东北黑土区流域的适用性评价——以乌裕尔河中上游流域为例[J]. 地理学报, 2017, 72(3): 457-470. |
[15] | 孔冬冬, 张强, 黄文琳, 顾西辉. 1982-2013年青藏高原植被物候变化及气象因素影响[J]. 地理学报, 2017, 72(1): 39-52. |