地理学报 ›› 2020, Vol. 75 ›› Issue (11): 2408-2416.doi: 10.11821/dlxb202011010
孙晶1(), 刘建国2, 杨新军3, 赵福强4, 覃驭楚5, 姚莹莹6, 王放7, 伦飞8, 王洁晶9, 秦波9, 刘涛10, 张丛林11, 黄宝荣11, 程叶青12, 石金莲13, 张劲松14, 唐华俊1, 杨鹏1, 吴文斌1(
)
收稿日期:
2019-10-27
修回日期:
2020-07-10
出版日期:
2020-11-25
发布日期:
2021-01-25
通讯作者:
吴文斌
作者简介:
孙晶(1982-), 男, 天津人, 博士, 研究员, 主要从事人地系统耦合、环境可持续等方面的研究。E-mail: 基金资助:
SUN Jing1(), LIU Jianguo2, YANG Xinjun3, ZHAO Fuqiang4, QIN Yuchu5, YAO Yingying6, WANG Fang7, LUN Fei8, WANG Jiejing9, QIN Bo9, LIU Tao10, ZHANG Conglin11, HUANG Baorong11, CHENG Yeqing12, SHI Jinlian13, ZHANG Jinsong14, TANG Huajun1, YANG Peng1, WU Wenbin1(
)
Received:
2019-10-27
Revised:
2020-07-10
Online:
2020-11-25
Published:
2021-01-25
Contact:
WU Wenbin
Supported by:
摘要:
在全球一体化进程不断加深的背景下,国家与地区之间的联系日益紧密,产生了一系列跨国家、跨地区、多尺度的社会—经济—环境影响,远程耦合(Telecoupling,社会、经济、环境的远距离相互作用)科学概念和综合框架的提出为解决上述问题提供了新方法和新途径。为更好促进远程耦合综合框架的正确使用和规范推广,本文系统解析了远程耦合综合框架,厘清各组成部分的定义和功能,梳理了框架的应用现状;通过对3个中国典型案例的阐释,展示了远程耦合综合框架的使用方法、结果分析及由此得出的科学意义和政策价值;最后描述了远程耦合综合框架使用中需要重点关注的问题,并对其应用前景进行了展望。远程耦合综合框架的推广应用有助于以跨国家、跨地区、多尺度的视角,重新审视多个人类与自然耦合系统的相互作用,揭示隐藏的远距离地理空间作用的科学价值,服务于有关政策的制定和实施,促进全球社会、经济、环境的可持续发展。
孙晶, 刘建国, 杨新军, 赵福强, 覃驭楚, 姚莹莹, 王放, 伦飞, 王洁晶, 秦波, 刘涛, 张丛林, 黄宝荣, 程叶青, 石金莲, 张劲松, 唐华俊, 杨鹏, 吴文斌. 人类世可持续发展背景下的远程耦合框架及其应用[J]. 地理学报, 2020, 75(11): 2408-2416.
SUN Jing, LIU Jianguo, YANG Xinjun, ZHAO Fuqiang, QIN Yuchu, YAO Yingying, WANG Fang, LUN Fei, WANG Jiejing, QIN Bo, LIU Tao, ZHANG Conglin, HUANG Baorong, CHENG Yeqing, SHI Jinlian, ZHANG Jinsong, TANG Huajun, YANG Peng, WU Wenbin. Sustainability in the Anthropocene: Telecoupling framework and its applicationss[J]. Acta Geographica Sinica, 2020, 75(11): 2408-2416.
[1] | Wu Chuanjun. The research core of geography: Human-land relationship areal system. Economic Geography, 1991,11(3):1-6. |
[ 吴传钧. 论地理学的研究核心: 人地关系地域系统. 经济地理, 1991,11(3):1-6.] | |
[2] | Song Changqing, Cheng Changxiu, Shi Peijun. Geography complexity: New connotations of geography in the new era. Acta Geographica Sinica, 2018,73(7):1204-1213. |
[ 宋长青, 程昌秀, 史培军. 新时代地理复杂性的内涵. 地理学报, 2018,73(7):1204-1213.] | |
[3] | Tang Huajun, Wu Wenbin, Yang Peng, et al. Recent progresses of land use and land cover change (LUCC) models. Acta Geographica Sinica, 2009,64(4):456-468. |
[ 唐华俊, 吴文斌, 杨鹏, 等. 土地利用/土地覆被变化(LUCC)模型研究进展. 地理学报, 2009,64(4):456-468.] | |
[4] | Yu Qiangyi, Wu Wenbin, Tang Huajun, et al. Complex system theory and agent-based modeling: Progresses in land change science. Acta Geographica Sinica, 2011,66(11):1518-1530. |
[ 余强毅, 吴文斌, 唐华俊, 等. 复杂系统理论与Agent模型在土地变化科学中的研究进展. 地理学报, 2011,66(11):1518-1530.] | |
[5] |
Lewis S L, Maslin M A. Defining the Anthropocene. Nature, 2015,519:171-180.
pmid: 25762280 |
[6] | Liu J. Integration across a metacoupled world. Ecology and Society, 2017,22(4):29. Doi: 10.5751/ES-09830-22042. |
[7] |
Rockström J, Steffen W, Noone K, et al. A safe operating space for humanity. Nature, 2019,461:472-475.
pmid: 19779433 |
[8] | Shi Peijun, Song Changqing, Cheng Changxiu. Geographical synergetics: From understanding human-environment relationship to designing human-environment synergy. Acta Geographica Sinica, 2019,74(1):3-15. |
[ 史培军, 宋长青, 程昌秀. 地理协同论: 从理解“人—地关系”到设计“人—地协同”. 地理学报, 2019,74(1):3-15.] | |
[9] | Song Changqing, Cheng Changxiu, Yang Xiaofan, et al. Understanding geographic coupling and achieving geographic integration. Acta Geographica Sinica, 2020,75(1):3-13. |
[ 宋长青, 程昌秀, 杨晓帆, 等. 理解地理“耦合”实现地理“集成”. 地理学报, 2020,75(1):3-13.] | |
[10] | Liu J, Dietz T, Carpenter S, et al. Complexity of coupled human and natural systems. Science, 2007,317(5844):1513-1516. |
[11] | Ye Daifu. The interactive mechanism of man-earth areal system and the sustainable development. Geographical Research, 2001,20(3):307-314. |
[ 叶岱夫. 人地关系地域系统与可持续发展的相互作用机理初探. 地理研究, 2001,20(3):307-314.] | |
[12] | Zheng Du. Prospects of studies on man-land relationship in the 21st century. Geographical Research, 2002,21(1):9-13. |
[ 郑度. 21世纪人地关系研究前瞻. 地理研究, 2002,21(1):9-13.] | |
[13] |
Meyfroidt P, Rudel T K, Lambin E F. Forest transitions, trade, and the global displacement of land use. PNAS, 2010,107(49):20917-20922.
doi: 10.1073/pnas.1014773107 pmid: 21078977 |
[14] | Liu J, Hull V, Batistella M, et al. Framing sustainability in a telecoupled world. Ecology and Society, 2013,18(2):26. Doi: 10.5751/ES-05873-180226. |
[15] | Sun Jing, Wang Jun, Yang Xinjun. An overview on the resilience of social-ecological systems. Acta Ecologica Sinica, 2007,27(12):5371-5381. |
[ 孙晶, 王俊, 杨新军. 社会—生态系统恢复力研究综述. 生态学报, 2007,27(12):5371-5381.] | |
[16] |
Sun J, Mooney H, Wu W. et al. Importing food damages domestic environment: Evidence from global soybean trade. PNAS, 2018,115(21):5415-5419.
doi: 10.1073/pnas.1718153115 pmid: 29735661 |
[17] | Sun J, Tong Y, Liu J. Telecoupled land-use changes in distant countries. Journal of Integrative Agriculture, 2017,16(2):368-376. |
[18] | Ma Enpu, Cai Jianming, Lin Jing, et al. Explanation of land use/cover change from the perspective of tele-coupling. Acta Geographica Sinica, 2019,74(3):421-431. |
[ 马恩朴, 蔡建明, 林静, 等. 远程耦合视角下的土地利用/覆被变化解释. 地理学报, 2019,74(3):421-431.] | |
[19] | Montti L, Carrillo V, Gutiérrez-Angonese J, et al. The role of bioclimatic features, landscape configuration and historical land use in the invasion of an Asian tree in subtropical Argentina. Landscape Ecology, 2017,32(11):2167-2185. |
[20] | Chen W, Ye X, Li J, et al. Analyzing requisition-compensation balance of farmland policy in China through telecoupling: A case study in the middle reaches of Yangtze River Urban Agglomerations. Land Use Policy, 2019,83:134-146. |
[21] | Deines J, Liu X, Liu J. Telecoupling in urban water systems: An examination of Beijing's imported water supply. Water International, 2016,41(2):251-270. |
[22] | Quan Y, Wang C, Yan Y, et al. Impact of inter-basin water transfer projects on regional ecological security from a telecoupling perspective. Sustainability, 2016,8(2):162. Doi: 10.3390/su8020162. |
[23] | Chung M, Dietz T, Liu J. Global relationships between biodiversity and nature-based tourism in protected areas. Ecosystem Services, 2018,34:11-23. |
[24] | Chung M, Pan T, Zou X, et al. Complex interrelationships between ecosystem services supply and tourism demand: General framework and evidence from the origin of three Asian rivers. Sustainability, 2018,10(12):4576. |
[25] | Lopez-Hoffman L, Diffendorfer J, Wiederholt R, et al. Operationalizing the telecoupling framework for migratory species using the spatial subsidies approach to examine ecosystem services provided by Mexican free-tailed bats. Ecology and Society, 2017,22(4):23. Doi: 10.5751/ES-09589-220423. |
[26] |
Bagstad K, Semmens D, Diffendorder J, et al. Ecosystem service flows from a migratory species: Spatial subsidies of the northern pintail. Ambio, 2019,48(1):61-73.
pmid: 29637473 |
[27] | Hulina J, Bocetti C, Campa III H, et al. Telecoupling framework for research on migratory species in the Anthropocene. Science of the Anthropocene, 2017,5:5. Doi: 10.1525/elementa.184. |
[28] | Fang Chuanglin, Ren Yufei. Analysis of energy-based metabolic efficiency and environmentalpressure on the local coupling and telecoupling between urbanization and the eco-environment in the Beijing-Tianjin-Hebei urban agglomeration. Science China: Terrae, 2017,47(7):833-846. |
[ 方创琳, 任宇飞. 京津冀城市群地区城镇化与生态环境近远程耦合能值代谢效率及环境压力分析. 中国科学: 地球科学, 2017,47(7):833-846.] | |
[29] | Yang W, Hyndman D, Winkler J, et al. Urban water sustainability: Framework and application. Ecology and Society, 2016,21(4):4. Doi: 10.5751/ES-08685-210404. |
[30] | Ringel M. Tele-coupling energy efficiency polices in Europe: Showcasing the German governance arrangements. Sustainability, 2018,10(6):1754. Doi: 10.3390/su10061754. |
[31] | Fang B, Tan Y, Li C, et al. Energy sustainability under the framework of telecoupling. Energy, 2016,106:253-259. |
[32] |
Zheng H, Robinson B, Liang Y, et al. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program. PNAS, 2013,110(41):16681-16686.
doi: 10.1073/pnas.1312324110 pmid: 24003160 |
[33] |
Liu J, Yang W. Integrated assessments of payments for ecosystem services programs. PNAS, 2013,110(41):16297-16298.
pmid: 24072648 |
[34] |
Sachs J, Remans J, Smukler S, et al. Monitoring the world's agriculture. Nature, 2010,466:558-560.
pmid: 20671691 |
[35] |
Brown C, Murray-Rust D, van Vliet J, et al. Experiments in globalisation, food security and land use decision making. PLoS One, 2014,9(12):e114213. Doi: 10.1371/journal.pone.0114213.
doi: 10.1371/journal.pone.0114213 pmid: 25437010 |
[36] | MacDonald G, Brauman K, Sun S, et al. Rethinking agricultural trade relationships in an era of globalization. BioScience, 2015,65(3):275-289. |
[37] |
Yang W, Liu W, Vina A, et al. Nonlinear effects of group size on collective action and resource outcomes. PNAS, 2013,110(27):10916-10921.
doi: 10.1073/pnas.1301733110 pmid: 23776222 |
[38] | Liu J, Hull V, Yang W, et al. Pandas and People: Coupling Human and Natural Systems for Sustainability. Oxford: Oxford University Press, 2016. |
[39] | Yang H, Lupi F, Zhang J, et al. Feedback of telecoupling: The case of a payments for ecosystem services program. Ecology and Society, 2018,23(2):45. Doi: 10.5751/ES-10140-230245. |
[40] | Liu Jianguo, Hull V, Batistella M, et al. Framing sustainability in a telecoupled world. Acta Ecologica Sinica, 2016,36(23):7870-7885. |
[ 刘建国, Vanessa Hull, Mateus Batistella, 等. 远程耦合世界的可持续性框架. 生态学报, 2016,36(23):7870-7885.] | |
[41] | Holling C. Understanding the complexity of economic, ecological, and social systems. Ecosystems, 2001,4(5):390-405. |
[42] | Ma Shijun, Wang Rusong. The social-economic-natural complex ecosystem. Acta Ecological Sinica, 1984,4(1):1-9. |
[ 马世骏, 王如松. 社会—经济—自然复合生态系统. 生态学报, 1984,4(1):1-9.] | |
[43] | Wang Rusong, Ouyang Zhiyun. Social-economic-natural complex ecosystem and sustainability. Bulletin of Chinese Academy of Sciences, 2012,27(3):337-345. |
[ 王如松, 欧阳志云. 社会—经济—自然复合生态系统与可持续发展. 中国科学院院刊, 2012,27(3):337-345.] | |
[44] | Dou Y, da Silva R, Yang H, et al. Spillover effect offsets the conservation effort in the Amazon. Journal of Geographical Sciences, 2018,28(11):1715-1732. |
[45] |
Liu J, Dou Y, Batistella M, et al. Spillover systems in a telecoupled Anthropocene: Typology, methods, and governance for global sustainability. Current Opinion in Environmental Sustainability, 2018,33:58-69.
doi: 10.1016/j.cosust.2018.04.009 |
[46] | van Noordwijk M, Poulsen J, Ericksen P. Quantifying off-site effects of land use change: Filters, flows and fallacies. Agriculture, Ecosystems and Environment, 2004,104(1):19-34. |
[47] | Lewis D, Barham B, Zimmerer K. Spatial externalities in agriculture: Empirical analysis, statistical identification, and policy implications. World Development, 2008,36(10):1813-1829. |
[48] |
Lambin E, Meyfroidt P. Global land use change, economic globalization, and the looming land scarcity. PNAS, 2011,108(9):3465-3472.
doi: 10.1073/pnas.1100480108 pmid: 21321211 |
[49] | McCord P, Tonini F, Liu J. The Telecoupling GeoApp: A Web-GIS application to systematically analyze telecouplings and sustainable development. Applied Geography, 2018,96:16-28. |
[50] | Tonini F, Liu J. Telecoupling Toolbox: Spatially explicit tools for studying telecoupled human and natural systems. Ecology and Society, 2017,22(4):11. Doi: 10.5751/ES-09696-220411. |
[51] | Hertel T, Lee H, Rose S, et al. Economic Analysis of Land Use in Global Climate Change Policy. New York: Routledge, 2009: 123-153. |
[52] | Burniaux J, Truong T. GTAP-E: An energy-environmental version of the GTAP model. GTAP Technical Paper, 2002. https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=923. |
[53] |
Golub A, Hertel T. Modeling land-use change impacts of biofuels in the GTAP-BIO framework. Climate Change Economics, 2012,3(3):1250015. Doi: 10.1142/S2010007812500157.
doi: 10.1142/S2010007812500157 |
[54] | Yao G, Hertel T, Taheripour F. Economic drivers of telecoupling and terrestrial carbon fluxes in the global soybean complex. Global Environmental Change, 2018,50:190-200. |
[55] | An L, Linderman M, Qi J, et al. Exploring complexity in a human-environment system: An agent-based spatial model for multidisciplinary and multiscale integration. Annals of the Association of American Geographers, 2005,95(1):54-79. |
[56] | Dou Y, Millington J, Silva R, et al. Land-use changes across distant places: Design of a telecoupled agent-based model. Journal of Land Use Science, 2019,14(3):191-209. |
[1] | 刘清兰, 陈俊卿, 陈沈良. 调水调沙以来黄河尾闾河道冲淤演变及其影响因素[J]. 地理学报, 2021, 76(1): 139-152. |
[2] | 任宇飞, 方创琳, 李广东, 孙思奥, 鲍超, 刘若文. 城镇化与生态环境近远程耦合关系研究进展[J]. 地理学报, 2020, 75(3): 589-606. |
[3] | 刘海猛, 方创琳, 李咏红. 城镇化与生态环境“耦合魔方”的基本概念及框架[J]. 地理学报, 2019, 74(8): 1489-1507. |
[4] | 佟彪, 党安荣, 许剑. 300 BC-1900 AD无定河流域城镇时空格局演变[J]. 地理学报, 2019, 74(8): 1508-1524. |
[5] | 马恩朴, 蔡建明, 林静, 韩燕, 廖柳文, 韩炜. 远程耦合视角下的土地利用/覆被变化解释[J]. 地理学报, 2019, 74(3): 421-431. |
[6] | 祝萍,黄麟,肖桐,王军邦. 中国典型自然保护区生境状况时空变化特征[J]. 地理学报, 2018, 73(1): 92-103. |
[7] | 彭建, 胡晓旭, 赵明月, 刘焱序, 田璐. 生态系统服务权衡研究进展:从认知到决策[J]. 地理学报, 2017, 72(6): 960-973. |
[8] | 张镱锂, 胡忠俊, 祁威, 吴雪, 摆万奇, 李兰晖, 丁明军, 刘林山, 王兆锋, 郑度. 基于NPP数据和样区对比法的青藏高原自然保护区保护成效分析[J]. 地理学报, 2015, 70(7): 1027-1040. |
[9] | 杨飞龄, 胡金明, 武瑞东. 基于NPWP的云南植物保护优先区分析[J]. 地理学报, 2013, 68(11): 1538-1548. |
[10] | 范泽孟, 张轩, 李婧, 岳天祥, 刘纪远, 孙晓芳, 香宝, 匡文慧. 国家级自然保护区土地覆盖类型转换趋势[J]. 地理学报, 2012, 67(12): 1623-1633. |
[11] | 聂勇; 张镱锂; 刘林山; 张继平. 近30年珠穆朗玛峰国家自然保护区冰川变化的遥感监测[J]. 地理学报, 2010, 65(1): 13-28. |
[12] | 蒋晓辉1, 刘昌明2, 3. 黑河下游植被对调水的响应[J]. 地理学报, 2009, 64(7): 791-797. |
[13] | 沈大军, 刘昌明. 南水北调中线工程不同调水规模对汉江中下游影响分析[J]. 地理学报, 1998, 53(4): 341-348. |
[14] | 沈大军, 刘昌明, 陈传友. 南水北调中线工程对汉江中下游的影响分析[J]. 地理学报, 1996, 51(5): 426-433. |
[15] | 黄锡畴, 朱颜明, 富德义, 孟宪玺, 佘中盛. 长白山自然保护区生态环境的化学结构[J]. 地理学报, 1982, 37(1): 65-75. |