地理学报 ›› 2020, Vol. 75 ›› Issue (11): 2319-2331.doi: 10.11821/dlxb202011004
吴祥文(), 臧淑英(
), 马大龙, 任建华, 李昊, 赵光影
收稿日期:
2019-01-16
修回日期:
2020-09-04
出版日期:
2020-11-25
发布日期:
2021-01-25
作者简介:
吴祥文(1991-), 男, 江苏连云港人, 博士生, 主要从事寒区冻土与气候变化研究。E-mail: 基金资助:
WU Xiangwen(), ZANG Shuying(
), MA Dalong, REN Jianhua, LI Hao, ZHAO Guangying
Received:
2019-01-16
Revised:
2020-09-04
Published:
2020-11-25
Online:
2021-01-25
Supported by:
摘要:
多年冻土温室气体排放对全球气候变化有重要影响。采用静态暗箱—气相色谱法,于2016—2017年生长季(5—9月),对大兴安岭多年冻土区兴安落叶松林、樟子松林和白桦林土壤二氧化碳(CO2)、甲烷(CH4)和氧化亚氮(N2O)通量进行野外原位观测,对比分析温室气体通量的动态变化特征及其关键影响因子。结果表明:3种林型土壤CO2通量范围为65.88~883.59 mg·m-2·h-1;CH4通量范围为-93.29~-2.82 μg·m-2·h-1;N2O通量范围为-5.31~45.22 μg·m-2·h-1。整个生长季兴安落叶松林、樟子松林和白桦林土壤均表现为CO2、N2O的排放源、CH4的吸收汇,土壤CO2和CH4通量在不同林型和年际间差异显著。3种林型土壤CO2通量与5 cm、10 cm和15 cm土壤温度呈极显著正相关(P < 0.01);CH4通量受土壤含水量和10 cm、15 cm土壤温度的影响较大(P < 0.05);兴安落叶松林和樟子松林土壤N2O通量与气温呈显著正相关(P < 0.05),而白桦林土壤N2O则与15 cm土壤温度呈显著负相关(P < 0.05)。基于100 a时间尺度计算温室气体全球综合增温潜势,3种林型土壤温室气体的排放对气候变暖具有正反馈作用。
吴祥文, 臧淑英, 马大龙, 任建华, 李昊, 赵光影. 大兴安岭多年冻土区森林土壤温室气体通量[J]. 地理学报, 2020, 75(11): 2319-2331.
WU Xiangwen, ZANG Shuying, MA Dalong, REN Jianhua, LI Hao, ZHAO Guangying. Greenhouse gas fluxes from forest soil in permafrost regions of Greater Hinggan Mountains, Northeast China[J]. Acta Geographica Sinica, 2020, 75(11): 2319-2331.
表1
不同林型表层土壤基本理化性质
林型 | 年份 | pH | 容重 (g·cm-3) | 硝态氮 (mg·kg-1) | 铵态氮 (mg·kg-1) | 有机碳 (g·kg-1) | 全氮 (g·kg-1) |
---|---|---|---|---|---|---|---|
兴安落叶松林 | 2016 | 5.50±0.11Aa | 1.01±0.08Aa | 2.65±1.01Aa | 5.31±0.75Ba | 47.47±1.77Aa | 3.78±0.63Aa |
2017 | 5.79±0.12Aa | 1.00±0.09Aa | 1.09±0.31Ab | 3.23±0.50Bb | 51.38±1.54Aa | 2.66±0.49Aa | |
樟子松林 | 2016 | 5.58±0.13Aa | 1.04±0.05Aa | 2.10±0.34Aa | 6.10±1.07Ba | 42.77±1.83Aa | 3.60±0.03Aa |
2017 | 5.52±0.16Aa | 1.05±0.07Aa | 1.10±0.46Aa | 4.27±0.63Bb | 46.69±1.65Aa | 2.27±0.18Aa | |
白桦林 | 2016 | 4.70±0.09Ba | 0.72±0.04Ba | 2.94±0.89Aa | 9.07±1.64Aa | 44.28±2.05Aa | 4.49±0.67Aa |
2017 | 4.58±0.10Ba | 0.69±0.05Ba | 1.60±0.49Ab | 6.80±1.34Ab | 46.26±1.46Aa | 2.47±0.22Ab |
表2
大兴安岭多年冻土区3种林型土壤CO2、CH4和N2O通量多重比较
林型 | 年份 | CO2通量 (mg·m-2·h-1) | CH4通量 (μg·m-2·h-1) | N2O通量 (μg·m-2·h-1) |
---|---|---|---|---|
兴安落叶松林 | 2016 | 329.96±25.46Aa | -33.84±5.43Ba | 14.23±2.92Aa |
2017 | 361.53±24.78Aa | -23.38±3.66Bb | 15.19±2.24Aa | |
樟子松林 | 2016 | 345.09±27.35Ab | -37.99±4.78Ba | 15.98±3.08Aa |
2017 | 402.75±23.93Aa | -27.63±5.87Ab | 18.11±3.36Aa | |
白桦林 | 2016 | 299.19±21.47Aa | -47.84±5.44Aa | 13.54±2.75Aa |
2017 | 315.59±22.19Ba | -33.55±5.85Ab | 13.80±2.79Aa |
表4
大兴安岭多年冻土区3种林型土壤温室气体通量与环境因子相关分析
林型 | 年份 | 温室气体 | 土壤含水量 | 气温 | 土壤温度 | ||
---|---|---|---|---|---|---|---|
5 cm | 10 cm | 15 cm | |||||
兴安落叶松林 | 2016 | CO2 | -0.409 | 0.425 | 0.849** | 0.874** | 0.815** |
CH4 | 0.254 | -0.199 | -0.311 | -0.358 | -0.243 | ||
N2O | -0.015 | 0.551** | 0.275 | 0.116 | -0.230 | ||
2017 | CO2 | -0.057 | 0.527* | 0.862** | 0.877** | 0.855** | |
CH4 | 0.364 | -0.577** | -0.581* | -0.569** | -0.470* | ||
N2O | -0.142 | 0.570** | 0.332 | 0.267 | 0.139 | ||
樟子松林 | 2016 | CO2 | -0.017 | 0.251 | 0.813** | 0.827** | 0.800** |
CH4 | 0.194 | -0.324 | -0.402 | -0.398 | -0.385 | ||
N2O | -0.131 | 0.403 | 0.021 | -0.066 | -0.175 | ||
2017 | CO2 | -0.099 | 0.418 | 0.891** | 0.890** | 0.787** | |
CH4 | 0.599* | -0.446* | -0.287 | -0.261 | -0.317 | ||
N2O | 0.020 | 0.531* | 0.223 | 0.148 | -0.009 | ||
白桦林 | 2016 | CO2 | -0.413 | 0.163 | 0.856** | 0.855** | 0.827** |
CH4 | 0.425 | -0.297 | -0.658* | -0.592** | -0.477* | ||
N2O | 0.068 | 0.423 | -0.281 | -0.352 | -0.411 | ||
2017 | CO2 | -0.382 | 0.365 | 0.828** | 0.839** | 0.780** | |
CH4 | 0.556* | -0.550* | -0.644** | -0.617** | -0.540* | ||
N2O | 0.259 | 0.207 | -0.294 | -0.348 | -0.511* |
表6
不同冻土类型地区温室气体通量比较
冻土类型 | 样地纬度 | 植被类型 | CO2通量(mg·m-2·h-1) | CH4通量(μg·m-2·h-1) | N2O通量 (μg·m-2·h-1) | 数据来源文献 |
---|---|---|---|---|---|---|
多年冻土 | 亚北极67°03′N | 苔原 | 152.01 | 5.00 | 19.17 | [ |
阿拉斯加65°10′N | 黑云杉 | 90.00±42.00 | -52.00±15.00 | 0.20±0.30 | [ | |
东西伯利亚62°09′N | 泰加林 | 367.02 | 1.33 | [ | ||
大兴安岭52°94′N | 泥炭地 | 2.27 | [ | |||
巴音布鲁克42°53′N | 高寒草甸 | 76.70±23.10 | -54.20±6.90 | 20.40±4.20 | [ | |
海北州37°37′N | 高寒草甸 | 4.80 | [ | |||
季节冻土 | 德国48°17′N | 挪威云杉 | -14.20±1.30 | [ | ||
伊春48°11′N | 落叶松沼泽 | 537.40 | 15.33 | [ | ||
奥地利47°42′N | 山毛榉林 | 128.00±13.00 | -40.00±2.30 | 5.72±1.38 | [ | |
长白山42°24′N | 针阔混交林 | 172.40±43.88 | -15.00±30.00 | 70.00±10.00 | [ | |
北京东灵山40°01′N | 油松 | 182.00 | -79.00 | 50.00 | [ | |
神农架31°36′N | 马尾松 | 107.03±12.11 | -14.10±3.38 | [ |
[1] | IPCC. Special Report on the Ocean and Cryosphere in a Changing Climate. Contribution of Working Group I and Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Morocco, 2019. |
[2] | IPCC. Climate Change 2013: The Physical Scientific Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013. |
[3] |
Yu G R, Ren W, Chen Z, et al. Construction and progress of Chinese terrestrial ecosystem carbon, nitrogen and water fluxes coordinated observation. Journal of Geographical Sciences, 2016,26(7):803-826.
doi: 10.1007/s11442-016-1300-5 |
[4] | Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocryology in China. Beijing: Science Press, 2000: 37-47. |
[ 周幼吾, 郭东信, 邱国庆, 等. 中国冻土. 北京: 科学出版社, 2000: 37-47.] | |
[5] | Cheng Guodong. Recent development of geocryological study in China. Acta Geographica Sinica, 1990,45(2):220-224. |
[ 程国栋. 中国冻土研究近今进展. 地理学报, 1990,45(2):220-224.] | |
[6] |
Schuur E A G, McGuire A D, Schädel C, et al. Climate change and the permafrost carbon feedback. Nature, 2015,520(7546):171-179.
doi: 10.1038/nature14338 pmid: 25855454 |
[7] | Wang Ning, Zang Shuying, Zhang Lijuan. Spatial and temporal variations of permafrost thickness in Heilongjiang province in recent years. Geographical Research, 2018,37(3):622-634. |
[ 王宁, 臧淑英, 张丽娟. 近50年来黑龙江省冻土厚度的时空变化特征. 地理研究, 2018,37(3):622-634.] | |
[8] |
Zhao Rongqin, Li zhiping, Han Yuping, et al. The coupling interaction mechanism of regional water-land-energy-carbon system. Acta Geographica Sinica, 2016,71(9):1613-1628.
doi: 10.11821/dlxb201609012 |
[ 赵荣钦, 李志萍, 韩宇平, 等. 区域“水—土—能—碳”耦合作用机制分析. 地理学报, 2016,71(9):1613-1628.] | |
[9] | Qin Dahe, Ding Yongjian. Cryospheric changes and their impacts: Present, trends and key issues. Advances in Climate Change Research, 2009,5(4):187-195. |
[ 秦大河, 丁永建. 冰冻圈变化及其影响研究: 现状、趋势及关键问题. 气候变化研究进展, 2009,5(4):187-195.] | |
[10] |
Pan Y D, Birdsey R A, Fang J Y, et al. A large and persistent carbon sink in the world's forests. Science, 2011,333(6045):988-993.
doi: 10.1126/science.1204588 |
[11] |
Xu Li, Yu Guirui, He Nianpeng. Changes of soil organic carbon storage in Chinese terrestrial ecosystems from the 1980s to the 2010s. Acta Geographica Sinica, 2018,73(11):2150-2167.
doi: 10.11821/dlxb201811008 |
[ 徐丽, 于贵瑞, 何念鹏. 1980s—2010s中国陆地生态系统土壤碳储量的变化. 地理学报, 2018,73(11):2150-2167.] | |
[12] |
Livesley S J, Kiese R, Miehle P, et al. Soil-atmosphere exchange of greenhouse gases in a Eucalyptus marginata woodland, a clover-grass pasture, and Pinus radiata and Eucalyptus globulus plantations. Global Change Biology, 2009,15(2):425-440.
doi: 10.1111/gcb.2009.15.issue-2 |
[13] |
Jang I, Lee S, Hong J H, et al. Methane oxidation rates in forest soils and their controlling variables: A review and a case study in Korea. Ecological Research, 2006,21(6):849-854.
doi: 10.1007/s11284-006-0041-9 |
[14] | Ju Hua, Shen Guozhen, Xu Wenting, et al. The emission of CH4, CO2, and N2O in the typical forest soils of Shennongjia under the precipitation reduction. Acta Ecologica Sinica, 2016,36(20):6397-6408. |
[ 菊花, 申国珍, 徐文婷, 等. 神农架主要森林土壤CH4、CO2和N2O排放对降水减少的响应. 生态学报, 2016,36(20):6397-6408.] | |
[15] |
Leckie S E, Prescott C E, Grayston S J. Forest floor microbial community response to tree species and fertilization of regenerating coniferous forests. Canadian Journal of Forest Research, 2004,34(7):1426-1435.
doi: 10.1139/x04-028 |
[16] |
Wang H, Liu S R, Mo J M, et al. Soil-atmosphere exchange of greenhouse gases in subtropical plantations of indigenous tree species. Plant and Soil, 2010,335(1-2):213-227.
doi: 10.1007/s11104-010-0408-0 |
[17] |
Castro M S, Steudler P A, Melillo J M, et al. Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochemical Cycles, 1995,9(1):1-10.
doi: 10.1029/94GB02651 |
[18] |
Butterbach-Bahl K, Gasche R, Willibald G, et al. Exchange of N-gases at the Höglwald Forest: A summary. Plant and Soil, 2002,240(1):117-123.
doi: 10.1023/A:1015825615309 |
[19] |
Gao W F, Yao Y L, Liang H, et al. Emissions of nitrous oxide from continuous permafrost region in the Daxing'an Mountains, Northeast China. Atmospheric Environment, 2019,198:34-45.
doi: 10.1016/j.atmosenv.2018.10.045 |
[20] | Wang Ying, Wang Chuankuan, Fu Minjie, et al. Soil nitrous oxide emission in four temperate forests in northeastern China. Chinese Journal of Applied Ecology, 2009,20(5):1007-1012. |
[ 王颖, 王传宽, 傅民杰, 等. 四种温带森林土壤氧化亚氮通量及其影响因子. 应用生态学报, 2009,20(5):1007-1012.] | |
[21] | Han Yingying, Huang Wei, Sun Tao, et al. Soil organic carbon stocks and fluxes in different age stands of secondary Betula platyphylla in Xiaoxing'an Mountain, China. Acta Ecologica Sinica, 2015,35(5):1460-1469. |
[ 韩营营, 黄唯, 孙涛, 等. 不同林龄白桦天然次生林土壤碳通量和有机碳储量. 生态学报, 2015,35(5):1460-1469.] | |
[22] | Li Ping, Lang Man, Li Miao, et al. Short-term effects of different fertilization treatments on greenhouse gas emissions from Northeast black soil. Environmental Science, 2018,39(5):2360-2367. |
[ 李平, 郎漫, 李淼, 等. 不同施肥处理对东北黑土温室气体排放的短期影响. 环境科学, 2018,39(5):2360-2367.] | |
[23] |
Song Y Y, Song C C, Hou A X, et al. Effects of temperature and root additions on soil carbon and nitrogen mineralization in a predominantly permafrost peatland. Catena, 2018,165:381-389.
doi: 10.1016/j.catena.2018.02.026 |
[24] |
Cui Q, Song C C, Wang X W, et al. Effects of warming on N2O fluxes in a boreal peatland of Permafrost region,Northeast China. Science of the Total Environment, 2018, 616-617:427-434.
doi: 10.1016/j.scitotenv.2017.10.246 |
[25] | Wang Jinlong, Li Yanhong, Li Fadong. Emission fluxes of CO2, CH4, and N2O from artificial and natural reed wetlands in Bosten Lake, China. Acta Ecologica Sinica, 2018,38(2):668-677. |
[ 王金龙, 李艳红, 李发东. 博斯腾湖人工和天然芦苇湿地土壤CO2、CH4和N2O排放通量. 生态学报, 2018,38(2):668-677.] | |
[26] |
Song X Y, Wang G X, Ran F, et al. Effects of topography and fire on soil CO2 and CH4 flux in boreal forest underlain by permafrost in northeast China. Ecological Engineering, 2017,106:35-43.
doi: 10.1016/j.ecoleng.2017.05.033 |
[27] |
Li Y Y, Dong S K, Liu S L, et al. Seasonal changes of CO2, CH4 and N2O fluxes in different types of alpine grassland in the Qinghai-Tibetan Plateau of China. Soil Biology and Biochemistry, 2015,80:306-314.
doi: 10.1016/j.soilbio.2014.10.026 |
[28] | Li Pan, Zhou Mei, Wang Zhonglin, et al. Study on soil surface CO2 flux in burned areas of Larix gmelinii forest in the cool temperate zone. Ecology and Environmental Sciences, 2012,21(12):1950-1954. |
[ 李攀, 周梅, 王忠林, 等. 寒温带兴安落叶松林火烧迹地地表CO2通量研究. 生态环境学报, 2012,21(12):1950-1954.] | |
[29] |
Mu Changcheng, Cheng Wei, Sun Xiaoxin, et al. Seasonal variation of emission fluxes of CO2, N2O and CH4 from Larix gmelinii swamps soils in Xiaoxing'an Mountains of China. Scientia Silvae Sinicae, 2010,46(7):7-15.
doi: 10.11707/j.1001-7488.20100702 |
[ 牟长城, 程伟, 孙晓新, 等. 小兴安岭落叶松沼泽林土壤CO2、N2O和CH4的排放规律. 林业科学, 2010,46(7):7-15.] | |
[30] |
Menyailo O V, Matvienko A I, Stepanov A L, et al. Measuring soil CO2 efflux: Effect of collar depth. Russian Journal of Ecology, 2015,46(2):152-156.
doi: 10.1134/S1067413615020071 |
[31] |
Oertel C, Matschullat J, Andreae H, et al. Soil respiration at forest sites in Saxony (Central Europe). Environmental Earth Sciences, 2015,74(3):2405-2412.
doi: 10.1007/s12665-015-4241-x |
[32] |
Leitner S, Sae-Tun O, Kranzinger L, et al. Contribution of litter layer to soil greenhouse gas emissions in a temperate beech forest. Plant and Soil, 2016,403(1-2):455-469.
doi: 10.1007/s11104-015-2771-3 |
[33] |
Geng Yuanbo, Luo Guangqiang. Analysis of affecting factors and partitioning of respiration in a Leymus chinensis steppe in Inner Mongolia. Acta Geographica Sinica, 2010,65(9):1058-1068.
doi: 10.11821/xb201009003 |
[ 耿元波, 罗光强. 内蒙古羊草草原呼吸的影响因素分析和区分. 地理学报, 2010,65(9):1058-1068.] | |
[34] |
Tong Chuan, Huang Jiafang, Wang Weiqi, et al. Methane dynamics of a brackish-water tidal Phragmites australis marsh in the Minjiang River Estuary. Acta Geographica Sinica, 2012,67(9):1165-1180.
doi: 10.11821/xb201209002 |
[ 仝川, 黄佳芳, 王维奇, 等. 闽江口半咸水芦苇潮汐沼泽湿地甲烷动态. 地理学报, 2012,67(9):1165-1180.] | |
[35] |
Zhang L H, Hou L Y, Guo D F, et al. Interactive impacts of nitrogen input and water amendment on growing season fluxes of CO2, CH4, and N2O in a semiarid grassland, Northern China. Science of the Total Environment, 2017,578:523-534.
doi: 10.1016/j.scitotenv.2016.10.219 |
[36] |
Song C C, Xu X F, Sun X X, et al. Large methane emission upon spring thaw from natural wetlands in the northern permafrost region. Environmental Research Letters, 2012,7(3):034009. Doi: 10.1088/1748-9326/7/3/034009.
doi: 10.1088/1748-9326/7/3/034009 |
[37] | Ni Yongqing, Shi Xuewei, Zheng Xiaoji, et al. Advances in methane-cycling microbial communities of permafrost and their response to global change. Acta Ecologica Sinica, 2011,31(13):3846-3855. |
[ 倪永清, 史学伟, 郑晓吉, 等. 冻土甲烷循环微生物群落及其对全球变化的响应. 生态学报, 2011,31(13):3846-3855.] | |
[38] |
Mer J L, Roger P. Production, oxidation, emission and consumption of methane by soils: A review. European Journal of Soil Biology, 2001,37(1):25-50.
doi: 10.1016/S1164-5563(01)01067-6 |
[39] |
Voigt C, Lamprecht R E, Marushchak M E, et al. Warming of subarctic tundra increases emissions of all three important greenhouse gases: Carbon dioxide, methane and nitrous oxide. Global Change Biology, 2017,23(8):3121-3138.
doi: 10.1111/gcb.13563 pmid: 27862698 |
[40] | Morishita T, Noguchi K, Kim Y, et al. CO2, CH4 and N2O fluxes of upland black spruce (Picea mariana) forest soils after forest fires of different intensity in interior Alaska. Soil Science and Plant Nutrition, 2015,61(1):98-105. |
[41] |
Takakai F, Desyatkin A R, Lopez C M L, et al. Influence of forest disturbance on CO2, CH4 and N2O fluxes from larch forest soil in the permafrost taiga region of eastern Siberia. Soil Science and Plant Nutrition, 2008,54(6):938-949.
doi: 10.1111/j.1747-0765.2008.00309.x |
[42] |
Li K H, Gong Y M, Song W, et al. Responses of CH4, CO2 and N2O fluxes to increasing nitrogen deposition in alpine grassland of the Tianshan Mountains. Chemosphere, 2012,88(1):140-143.
doi: 10.1016/j.chemosphere.2012.02.077 |
[43] |
Hu Y G, Chang X F, Lin X W, et al. Effects of warming and grazing on N2O fluxes in an alpine meadow ecosystem on the Tibetan Plateau. Soil Biology and Biochemistry, 2010,42(6):944-952.
doi: 10.1016/j.soilbio.2010.02.011 |
[44] |
Wu X, Brüggemann N, Gasche R, et al. Long-term effects of clear-cutting and selective cutting on soil methane fluxes in a temperate spruce forest in southern Germany. Environmental Pollution, 2011,159(10):2467-2475.
doi: 10.1016/j.envpol.2011.06.025 |
[45] | Dang Xusheng, Cheng Shulan, Fang Huajun, et al. The controlling factors and coupling of soil CO2, CH4 and N2O fluxes in a temperate needle-broadleaved mixed forest. Acta Ecologica Sinica, 2015,35(19):6530-6540. |
[ 党旭升, 程淑兰, 方华军, 等. 温带针阔混交林土壤碳氮气体通量的主控因子与耦合关系. 生态学报, 2015,35(19):6530-6540.] | |
[46] |
Steudler P A, Bowden R D, Melillo J M, et al. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature, 1989,341(6240):314-316.
doi: 10.1038/341314a0 |
[47] | Liang Wei, Zhang Ying, Yue Jin, et al. Effect of slow-releasing nitrogen fertilizers on CH4 and N2O emission in maize and rice fields in black earth soil. Chinese Journal of Ecology, 2004,23(3):44-48. |
[ 梁巍, 张颖, 岳进, 等. 长效氮肥施用对黑土水旱田CH4和N2O排放的影响. 生态学杂志, 2004,23(3):44-48.] | |
[48] |
Luyssaert S, Schulze E D, Börner A, et al. Old-growth forests as global carbon sinks. Nature, 2008,455(7210):213-215.
doi: 10.1038/nature07276 pmid: 18784722 |
[49] |
Høj L, Olsen R A, Torsvik V L. Effects of temperature on the diversity and community structure of known methanogenic groups and other archaea in high Arctic peat. The ISME Journal, 2008,2(1):37-48.
doi: 10.1038/ismej.2007.84 pmid: 18180745 |
[50] |
Knoblauch C, Zimmermann U, Blumenberg M, et al. Methane turnover and temperature response of methane-oxidizing bacteria in permafrost-affected soils of northeast Siberia. Soil Biology and Biochemistry, 2008,40(12):3004-3013.
doi: 10.1016/j.soilbio.2008.08.020 |
[51] |
Fisher D A, Lacelle D, Pollard W. A model of unfrozen water content and its transport in icy permafrost soils: Effects on ground ice content and permafrost stability. Permafrost and Periglacial Processes, 2020,31(1):184-199.
doi: 10.1002/ppp.v31.1 |
[52] |
Li Z L, Zeng Z Q, Tian D S, et al. Global patterns and controlling factors of soil nitrification rate. Global Change Biology, 2020,26(7):4147-4157.
doi: 10.1111/gcb.15119 pmid: 32301539 |
[53] | Liang Dongli, Tong Yan'an, Ove E, et al. The effects of wetting and drying cycles on N2O emission in dryland. Agricultural Research in the Arid Areas, 2002,20(2):28-31, 48. |
[ 梁东丽, 同延安, Ove Emteryd, 等. 干湿交替对旱地土壤N2O气态损失的影响. 干旱地区农业研究, 2002,20(2):28-31, 48.] | |
[54] |
Livesley S J, Grover S, Hutley L B, et al. Seasonal variation and fire effects on CH4, N2O and CO2 exchange in savanna soils of northern Australia. Agricultural and Forest Meteorology, 2011,151(11):1440-1452.
doi: 10.1016/j.agrformet.2011.02.001 |
[55] | Feng Ke, Wang Zibo, Wang Xiaozhi, et al. Effect of soil pH on N2O production in nitrate reduction. Acta Pedologica Sinica, 2004,41(1):81-86. |
[ 封克, 王子波, 王小治, 等. 土壤pH对硝酸根还原过程中N2O产生的影响. 土壤学报, 2004,41(1):81-86.] |
[1] | 刘诗奇, 王平, 王田野, 黄其威, 于静洁. 西伯利亚北极河流有机碳输出特征及影响要素[J]. 地理学报, 2021, 76(5): 1065-1077. |
[2] | 崔耀平, 李楠, 付一鸣, 陈良雨. 中美俄加陆域碳汇对人为增温的消减贡献[J]. 地理学报, 2021, 76(1): 167-177. |
[3] | 马帅, 盛煜, 曹伟, 吴吉春, 胡晓莹, 王生廷. 黄河源区多年冻土空间分布变化特征数值模拟[J]. 地理学报, 2017, 72(9): 1621-1633. |
[4] | 南卓铜, 黄培培, 赵林. 青藏高原西部区域多年冻土分布模拟及其下限估算[J]. 地理学报, 2013, 68(3): 318-327. |
[5] | 吴吉春,盛煜,李静,王杰. 疏勒河源区的多年冻土[J]. 地理学报, 2009, 64(5): 571-580. |
[6] | 张志强, 曲建升, 曾静静. 温室气体排放评价指标及其定量分析[J]. 地理学报, 2008, 63(7): 693-702. |
[7] | 张文纲,李述训,庞强强. 近45 年青藏高原土壤温度的变化特征分析[J]. 地理学报, 2008, 63(11): 1151-1159. |
[8] | 南卓铜,高泽深,李述训,吴通华. 近30年来青藏高原西大滩多年冻土变化[J]. 地理学报, 2003, 58(6): 817-823. |
[9] | 耿远波, 章申, 董云社, 孟维奇, 齐玉春, 陈佐忠, 王艳芬. 草原土壤的碳氮含量及其与温室气体通量的相关性[J]. 地理学报, 2001, 56(1): 44-53. |
[10] | 董云社, 彭公炳, 李俊. 温带森林土壤排放CO2、CH4、N2O时空特征[J]. 地理学报, 1996, 51(s1): 120-128. |
[11] | 顾钟炜, 周幼吾. 气候变暖和人为扰动对大兴安岭北坡多年冻土的影响──以阿木尔地区为例[J]. 地理学报, 1994, 49(2): 182-187. |
[12] | 齐瑛, 傅抱璞 . 过山气流与大兴安岭焚风 [J]. 地理学报, 1993, 48(5): 403-411. |
[13] | 程国栋. 我国高海拔多年冻土地带性规律之探讨[J]. 地理学报, 1984, 39(2): 185-193. |
[14] | 陈永宗. 大兴安岭地区河系结构的基本规律[J]. 地理学报, 1980, 35(35): 325-337. |
[15] | 王家澄, 王绍令, 邱国庆. 青藏公路沿线的多年冻土[J]. 地理学报, 1979, 34(1): 18-32. |