地理学报 ›› 2020, Vol. 75 ›› Issue (7): 1523-1538.doi: 10.11821/dlxb202007014
刘瑜1(), 姚欣1, 龚咏喜2, 康朝贵3,4, 施迅5, 王法辉6, 王姣娥7, 张毅1, 赵鹏飞1, 朱递1, 朱欣焰8
收稿日期:
2019-07-23
修回日期:
2020-04-14
出版日期:
2020-07-25
发布日期:
2020-09-25
作者简介:
刘瑜(1971-), 男, 山东人, 教授, 中国地理学会会员(S110007302M), 主要研究方向为地理信息科学。E-mail: 基金资助:
LIU Yu1(), YAO Xin1, GONG Yongxi2, KANG Chaogui3,4, SHI Xun5, WANG Fahui6, WANG Jiao'e7, ZHANG Yi1, ZHAO Pengfei1, ZHU Di1, ZHU Xinyan8
Received:
2019-07-23
Revised:
2020-04-14
Published:
2020-07-25
Online:
2020-09-25
Supported by:
摘要:
空间交互是理解地表人文过程的重要基础,与空间依赖一起共同体现了地理空间的独特性、关联性以及对嵌入该空间的地理分布格局的影响,具有鲜明的时空属性,因此对于地理学研究具有重要意义。大数据为空间交互研究带来了新的机遇,能够使我们在不同时空尺度感知和观察空间交互模式并对其动态演化特征进行模拟和预测,从而为揭示人类活动规律及区域空间结构提供有力支持。本文在探讨空间交互与地理空间模式关系的基础上,描述了利用地理大数据感知空间交互的方式和定量模型,介绍了空间交互分析方法的研究进展及其在空间规划与交通、公共卫生、旅游等领域的应用情况,并就一些基本问题进行了讨论,以期为大数据支持下空间交互相关研究提供指导。
刘瑜, 姚欣, 龚咏喜, 康朝贵, 施迅, 王法辉, 王姣娥, 张毅, 赵鹏飞, 朱递, 朱欣焰. 大数据时代的空间交互分析方法和应用再论[J]. 地理学报, 2020, 75(7): 1523-1538.
LIU Yu, YAO Xin, GONG Yongxi, KANG Chaogui, SHI Xun, WANG Fahui, WANG Jiao'e, ZHANG Yi, ZHAO Pengfei, ZHU Di, ZHU Xinyan. Analytical methods and applications of spatial interactions in the era of big data[J]. Acta Geographica Sinica, 2020, 75(7): 1523-1538.
[1] | Ullman E L. Geography as spatial interaction. Annals of Association of the American Geographers, 1954,44:283-284. |
[2] | Tobler W R. Spatial interaction patterns. Journal of Environmental Systems, 1976,6(4):271-301. |
[3] | Fotheringham A S, O'Kelly M E. Spatial Interaction Models: Formulations and Applications. Boston, MA: Kluwer, 1989. |
[4] | Roy J R, Thill J C. Spatial interaction modelling//Florax R J G M, Plane D A. Fifty Years of Regional Science. Heidelberg: Springer, 2004: 339-361. |
[5] | Haggett P, Cliff A D, Frey A. Locational Analysis in Human Geography. London: Edward Arnold, 1977. |
[6] | Ravenstein E G. The laws of migration. Journal of the Royal Statistical Society, 1885,48(2):167-227. |
[7] | Reilly W J. The Law of Retail Gravitation. New York: Knickerbocker Press, 1931. |
[8] | Stouffer S A. Intervening opportunities: A theory relating to mobility and distance. American Sociological Review, 1940,5(6):845-867. |
[9] | Kordi M, Fotheringham A S. Spatially weighted interaction models (SWIM). Annals of the American Association of Geographers, 2016,106(5):990-1012. |
[10] | Zhu X, Guo D. Mapping large spatial flow data with hierarchical clustering. Transactions in GIS, 2014,18(3):421-435. |
[11] | Liu Y, Kang C, Gao S, et al. Understanding intra-urban trip patterns from taxi trajectory data. Journal of Geographical Systems, 2012,14(4):463-483. |
[12] | Murray A T, Liu Y, Rey S J, et al. Exploring movement object patterns. The Annals of Regional Science, 2012,49(2):471-484. |
[13] |
Andrienko G, Andrienko N, Fuchs G, et al. Revealing patterns and trends of mass mobility through spatial and temporal abstraction of origin-destination movement data. IEEE Transactions on Visualization and Computer Graphics, 2017,23(9):2120-2136.
pmid: 27740487 |
[14] | Goodchild M F, Yuan M, Cova T J. Towards a general theory of geographic representation in GIS. International Journal of Geographical Information Science, 2007,21(3):239-260. |
[15] | Liu Y, Liu X, Gao S, et al. Social sensing: A new approach to understanding our socioeconomic environments. Annals of the Association of American Geographers, 2015,105(3):512-530. |
[16] | Hettner A. Die Geographie: Ihre Geschichte, ihr Wesen und ihre Methoden. Breslau: Ferdinand Hirt, 1927. |
[17] | Getis A. Spatial interaction and spatial autocorrelation: A cross-product approach. Environment and Planning A, 1991,23(9):1269-1277. |
[18] | Matheron G. Principles of geostatistics. Economic Geology, 1963,58(8):1246-1266. |
[19] | Haining R. Geography and spatial statistics: Current positions, future developments//Macmillan B. Remodelling Geography. Oxford: Basil Blackwell, 1989: 191-203. |
[20] | Miller H J. Tobler's first law and spatial analysis. Annals of the Association of American Geographers, 2004,94(2):284-289. |
[21] | Tobler W R. A computer movie simulating urban growth in the Detroit region. Economic Geography, 1970,46:234-240. |
[22] | Rodrigue J P, Comtois C, Slack B. The Geography of Transport Systems. New York: Routledge, 2013. |
[23] | Ratti C, Sobolevsky S, Calabrese F, et al. Redrawing the map of Great Britain from a network of human interactions. PLoS ONE, 2010,5(12):e14248. Doi: 10.1371/journal.pone.0014248. |
[24] |
Liu Y, Sui Z, Kang C, et al. Uncovering patterns of inter-urban trip and spatial interaction from social media check-in data. PLoS ONE, 2014,9(1):e86026. Doi: 10.1371/journal.pone.0086026.
pmid: 24465849 |
[25] | Arbia G, Petrarca F. Effects of scale in spatial interaction models. Journal of Geographical Systems, 2013,15(3):249-264. |
[26] | Bettencourt L M. The origins of scaling in cities. Science, 2013,340(6139):1438-1441. |
[27] | Long Ying, Zhang Yu, Cui Chengyin. Identifying commuting pattern of Beijing using bus smart card data. Acta Geographica Sinica, 2012,67(10):1339-1352. |
[ 龙瀛, 张宇, 崔承印. 利用公交刷卡数据分析北京职住关系和通勤出行. 地理学报, 2012,67(10):1339-1352.] | |
[28] | Yue Y, Wang H, Hu B, et al. Exploratory calibration of a spatial interaction model using taxi GPS trajectories. Computers, Environment and Urban Systems, 2012,36(2):140-153. |
[29] | Goh S, Lee K, Park J S, et al. Modification of the gravity model and application to the metropolitan Seoul subway system. Physical Review E, 2012,86(2):026102. Doi: 10.1103/PhysRevE.86.026102. |
[30] | Long Y, Thill J C. Combining smart card data and household travel survey to analyze jobs-housing relationships in Beijing. Computers, Environment and Urban Systems, 2015,53:19-35. |
[31] | Liu X, Kang C, Gong L, et al. Incorporating spatial interaction patterns in classifying and understanding urban land use. International Journal of Geographical Information Science, 2016,30(2):334-350. |
[32] | Kang C, Qin K. Understanding operation behaviors of taxicabs in cities by matrix factorization. Computers, Environment and Urban Systems, 2016,60:79-88. |
[33] | Huang J, Levinson D, Wang J, et al. Tracking job and housing dynamics with smartcard data. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(50):12710-12715. |
[34] | Chi G, Thill J C, Tong D, et al. Uncovering regional characteristics from mobile phone data: A network science approach. Papers in Regional Science, 2016,95(3):613-631. |
[35] | Xu Y, Shaw S L, Zhao Z, et al. Another tale of two cities: Understanding human activity space using actively tracked cellphone location data. Annals of the American Association of Geographers, 2016,106(2):489-502. |
[36] | Gao S, Liu Y, Wang Y, et al. Discovering spatial interaction communities from mobile phone data. Transactions in GIS, 2013,17(3):463-481. |
[37] | Wang De, Gu Jiahuan, Yan Longxu. Delimiting the Shanghai metropolitan area using mobile phone data. Acta Geographica Sinica, 2018,73(10):1896-1909. |
[ 王德, 顾家焕, 晏龙旭. 上海都市区边界划分: 基于手机信令数据的探索. 地理学报, 2018,73(10):1896-1909.] | |
[38] |
Noulas A, Scellato S, Lambiotte R, et al. A tale of many cities: Universal patterns in human urban mobility. PLoS ONE, 2012,7(5):e37027. Doi: 10.1371/journal.pone.0037027.
pmid: 22666339 |
[39] | Zhen F, Cao Y, Qin X, et al. Delineation of an urban agglomeration boundary based on Sina Weibo microblog "check-in" data: A case study of the Yangtze River Delta. Cities, 2017,60:180-191. |
[40] | Wu L, Zhi Y, Sui Z, et al. Intra-urban human mobility and activity transition: Evidence from social media check-in data. PLoS ONE, 2014,9(5):e97010. Doi: 10.1371/journal.pone.0097010. |
[41] | Yuan Y, Lu Y, Chow T K, et al. The missing parts from social media enabled smart cities: Who, where, when, and what? Annals of the American Association of Geographers, 2020,110(2):462-475. |
[42] | Liu Y, Wang F, Kang C, et al. Analyzing relatedness by toponym co-occurrences on web pages. Transactions in GIS, 2014,18(1):89-107. |
[43] |
Lin J, Li X. Simulating urban growth in a metropolitan area based on weighted urban flows by using web search engine. International Journal of Geographical Information Science, 2015,29(10):1721-1736.
doi: 10.1080/13658816.2015.1034721 |
[44] |
Hu Y, Ye X, Shaw S L. Extracting and analyzing semantic relatedness between cities using news articles. International Journal of Geographical Information Science, 2017,31(12):2427-2451.
doi: 10.1080/13658816.2017.1367797 |
[45] | Zhong X, Liu J, Gao Y, et al. Analysis of co-occurrence toponyms in web pages based on complex networks. Physica A: Statistical Mechanics and Its Applications, 2017,466:462-475. |
[46] | Zhang W, Thill J C. Mesoscale structures in world city networks. Annals of the American Association of Geographers, 2019,109(3):887-908. |
[47] | Wilson A G. A statistical theory of spatial distribution models. Transportation Research, 1967,1(3):253-269. |
[48] |
Simini F, González M C, Maritan A, et al. A universal model for mobility and migration patterns. Nature, 2012,484(7392):96-100.
pmid: 22367540 |
[49] | Openshaw S. Modelling spatial interaction using a neural net//Fischer M M, Nijkamp P. Geographic Information Systems, Spatial Modelling and Policy Evaluation. Heidelberg: Springer, 1993: 147-164. |
[50] | Black W R. Spatial interaction modeling using artificial neural networks. Journal of Transport Geography, 1995,3(3):159-166. |
[51] | Celik H M. Modeling freight distribution using artificial neural networks. Journal of Transport Geography, 2004,12(2):141-148. |
[52] | Masucci A P, Serras J, Johansson A, et al. Gravity versus radiation models: On the importance of scale and heterogeneity in commuting flows. Physical Review E, 2013,88(2):022812. Doi: 10.1103/PhysRevE.88.022812. |
[53] | Yan X Y, Zhao C, Fan Y, et al. Universal predictability of mobility patterns in cities. Journal of the Royal Society Interface, 2014,11(100):20140834. Doi: 10.1098/rsif.2014.0834. |
[54] |
Kang C, Liu Y, Guo D, et al. A generalized radiation model for human mobility: Spatial scale, searching direction and trip constraint. PLoS ONE, 2015,10(11):e0143500. Doi: 10.1371/journal.pone.0143500.
pmid: 26600153 |
[55] | Kang C, Ma X, Tong D, et al. Intra-urban human mobility patterns: An urban morphology perspective. Physica A: Statistical Mechanics and Its Applications, 2012,391(4):1702-1717. |
[56] | Rhee I, Shin M, Hong S, et al. On the levy-walk nature of human mobility. IEEE/ACM Transactions on Networking, 2011,19(3):630-643. |
[57] |
Pappalardo L, Simini F, Rinzivillo S, et al. Returners and explorers dichotomy in human mobility. Nature Communications, 2015,6:8166.
doi: 10.1038/ncomms9166 pmid: 26349016 |
[58] | Wang J, Dong L, Cheng X, et al. An extended exploration and preferential return model for human mobility simulation at individual and collective levels. Physica A: Statistical Mechanics and its Applications, 2019,534:121921. Doi: 10.1016/j.physa.2019.121921. |
[59] | Barbosa H, de Lima-Neto F B, Evsukoff A, et al. The effect of recency to human mobility. EPJ Data Science, 2015,4:21.Doi: 10.1140/epjds/s13688-015-0059-8. |
[60] |
González M C, Hidalgo C A, Barabási A L. Understanding individual human mobility patterns. Nature, 2008,453(7196):779-782.
doi: 10.1038/nature06958 pmid: 18528393 |
[61] |
Yan X Y, Wang W X, Gao Z Y, et al. Universal model of individual and population mobility on diverse spatial scales. Nature Communications, 2017,8:1639. Doi: 10.1038/s41467-017-01892-8.
doi: 10.1038/s41467-017-01892-8 pmid: 29158475 |
[62] | Berglund S, Karlström A. Identifying local spatial association in flow data. Journal of Geographical Systems, 1999,1(3):219-236. |
[63] | Lu Y, Thill J C. Assessing the cluster correspondence between paired point locations. Geographical Analysis, 2003,35(4):290-309. |
[64] | Liu Y, Tong D, Liu X. Measuring spatial autocorrelation of vectors. Geographical Analysis, 2015,47(3):300-319. |
[65] | Tao R, Thill J C. Spatial cluster detection in spatial flow data. Geographical Analysis, 2016,48(4):355-372. |
[66] | Xiang Q, Wu Q. Tree-based and optimum cut-based origin-destination flow clustering. ISPRS International Journal of Geo-Information, 2019,8(11):477. |
[67] | Yao X, Zhu D, Gao Y, et al. A stepwise spatio-temporal flow clustering method for discovering mobility trends. IEEE Access, 2018,6:44666-44675. |
[68] | Gao Y, Li T, Wang S, et al. A multidimensional spatial scan statistics approach to movement pattern comparison. International Journal of Geographical Information Science, 2018,32(7):1304-1325. |
[69] | Song C, Pei T, Ma T, et al. Detecting arbitrarily shaped clusters in origin-destination flows using ant colony optimization. International Journal of Geographical Information Science, 2019,33(1):134-154. |
[70] | Tao R, Thill J C. FlowAMOEBA: Identifying regions of anomalous spatial interactions. Geographical Analysis, 2019,51(1):111-130. |
[71] | Getis A, Aldstadt J. Constructing the spatial weights matrix using a local statistic. Geographical Analysis, 2004,36(2):90-104. |
[72] | Tobler W R. Experiments in migration mapping by computer. The American Cartographer, 1987,14(2):155-163. |
[73] | Tobler W R. A model of geographical movement. Geographical Analysis, 1981,13(1):1-20. |
[74] |
Andrienko N, Andrienko G. Spatial generalization and aggregation of massive movement data. IEEE Transactions on Visualization and Computer Graphics, 2011,17(2):205-219.
pmid: 21149876 |
[75] |
Guo D. Flow mapping and multivariate visualization of large spatial interaction data. IEEE Transactions on Visualization and Computer Graphics, 2009,15(6):1041-1048.
doi: 10.1109/TVCG.2009.143 pmid: 19834170 |
[76] |
Cui W, Zhou H, Qu H, et al. Geometry-based edge clustering for graph visualization. IEEE Transactions on Visualization and Computer Graphics, 2008,14(6):1277-1284.
doi: 10.1109/TVCG.2008.135 pmid: 18988974 |
[77] |
Holten D, van Wijk J J. Force-directed edge bundling for graph visualization. Computer Graphics Forum, 2009,28(3):983-990.
doi: 10.1111/cgf.2009.28.issue-3 |
[78] | Verbeek K, Buchin K, Speckmann B. Flow map layout via spiral trees. IEEE Transactions on Visualization and Computer Graphics, 2011,17(12):2536-2544. |
[79] |
Jenny B, Stephen D M, Muehlenhaus I, et al. Force-directed layout of origin-destination flow maps. International Journal of Geographical Information Science, 2017,31(8):1521-1540.
doi: 10.1080/13658816.2017.1307378 |
[80] |
Koylu C, Guo D. Design and evaluation of line symbolizations for origin-destination flow maps. Information Visualization, 2017,16(4):309-331.
doi: 10.1177/1473871616681375 |
[81] |
Jenny B, Stephen D M, Muehlenhaus I, et al. Design principles for origin-destination flow maps. Cartography and Geographic Information Science, 2018,45(1):62-75.
doi: 10.1080/15230406.2016.1262280 |
[82] |
von Landesberger T, Brodkorb F, Roskosch P, et al. Mobilitygraphs: Visual analysis of mass mobility dynamics via spatio-temporal graphs and clustering. IEEE Transactions on Visualization and Computer Graphics, 2016,22(1):11-20.
doi: 10.1109/TVCG.2015.2468111 pmid: 26529684 |
[83] |
Abel G J, Sander N. Quantifying global international migration flows. Science, 2014,343(6178):1520-1522.
doi: 10.1126/science.1248676 pmid: 24675962 |
[84] |
Masser I, Brown P J. Spatial representation and spatial interaction. Papers of the Regional Science Association, 1977,38(1):71-92.
doi: 10.1111/pirs.1977.38.issue-1 |
[85] |
Guo D. Visual analytics of spatial interaction patterns for pandemic decision support. International Journal of Geographical Information Science, 2007,21(8):859-877.
doi: 10.1080/13658810701349037 |
[86] |
Yang Y, Dwyer T, Goodwin S, et al. Many-to-many geographically-embedded flow visualisation: An evaluation. IEEE Transactions on Visualization and Computer Graphics, 2017,23(1):411-420.
doi: 10.1109/TVCG.2016.2598885 pmid: 27875157 |
[87] |
Kong X, Liu Y, Wang Y, et al. Investigating public facility characteristics from a spatial interaction perspective: A case study of Beijing hospitals using taxi data. ISPRS International Journal of Geo-Information, 2017,6(2):38. Doi: 10.3390/ijgi6020038.
doi: 10.3390/ijgi6020038 |
[88] |
Wood J, Dykes J, Slingsby A. Visualisation of origins, destinations and flows with OD maps. The Cartographic Journal, 2010,47(2):117-129.
doi: 10.1179/000870410X12658023467367 |
[89] |
Yao X, Wu L, Zhu D, et al. Visualizing spatial interaction characteristics with direction-based pattern maps. Journal of Visualization, 2019,22(3):555-569.
doi: 10.1007/s12650-018-00543-4 |
[90] | Fotheringham A S. Spatial structure and distance-decay parameters. Annals of the Association of American Geographers, 1981,71(3):425-436. |
[91] |
Shen G. Reverse-fitting the gravity model to inter-city airline passenger flows by an algebraic simplification. Journal of Transport Geography, 2004,12(3):219-234.
doi: 10.1016/j.jtrangeo.2003.12.006 |
[92] |
Xiao Y, Wang F, Liu Y, et al. Reconstructing gravitational attractions of major cities in China from air passenger flow data, 2001-2008: A particle swarm optimization approach. The Professional Geographer, 2013,65(2):265-282.
doi: 10.1080/00330124.2012.679445 |
[93] |
Kang C, Zhang Y, Ma X, et al. Inferring properties and revealing geographical impacts of intercity mobile communication network of China using a subnet data set. International Journal of Geographical Information Science, 2013,27(3):431-448.
doi: 10.1080/13658816.2012.689838 |
[94] |
O'Kelly M E, Song W, Shen G. New estimates of gravitational attraction by linear programming. Geographical Analysis, 1995,27(4):271-285.
doi: 10.1111/gean.1995.27.issue-4 |
[95] | Song W. Nodal attractions in China's intercity air passenger transportation. Papers of the Applied Geography Conferences, 2006,29:443-452. |
[96] |
Noronha V T, Goodchild M F. Modeling interregional interaction: Implications for defining functional regions. Annals of the Association of American Geographers, 1992,82(1):86-102.
doi: 10.1111/j.1467-8306.1992.tb01899.x |
[97] |
Brown L A, Holmes J. The delimitation of functional regions, nodal regions, and hierarchies by functional distance approaches. Journal of Regional Science, 1971,11(1):57-72.
doi: 10.1111/jors.1971.11.issue-1 |
[98] |
Masser I, Brown P J. Hierarchical aggregation procedures for interaction data. Environment and Planning A, 1975,7(5):509-523.
doi: 10.1068/a070509 |
[99] | Batty M. Entropy and spatial geometry. Area, 1972,4:230-236. |
[100] |
Openshaw S. Optimal zoning systems for spatial interaction models. Environment and Planning A, 1977,9(2):169-184.
doi: 10.1068/a090169 |
[101] |
Kim K, Dean D J, Kim H, et al. Spatial optimization for regionalization problems with spatial interaction: A heuristic approach. International Journal of Geographical Information Science, 2016,30(3):451-473.
doi: 10.1080/13658816.2015.1031671 |
[102] |
Fortunato S. Community detection in graphs. Physics Reports, 2010,486(3-5):75-174.
doi: 10.1016/j.physrep.2009.11.002 |
[103] |
Thiemann C, Theis F, Grady D, et al. The structure of borders in a small world. PLoS ONE, 2010,5(11):e15422. Doi: 10.1371/journal.pone.0015422.
doi: 10.1371/journal.pone.0015422 pmid: 21124970 |
[104] |
Liu X, Gong L, Gong Y, et al. Revealing travel patterns and city structure with taxi trip data. Journal of Transport Geography, 2015,43:78-90.
doi: 10.1016/j.jtrangeo.2015.01.016 |
[105] | Expert P, Evans T S, Blondel V D, et al. Uncovering space-independent communities in spatial networks. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(19):7663-7668. |
[106] |
Chen Y, Xu J, Xu M. Finding community structure in spatially constrained complex networks. International Journal of Geographical Information Science, 2015,29(6):889-911.
doi: 10.1080/13658816.2014.999244 |
[107] |
Lin J. Network analysis of China's aviation system, statistical and spatial structure. Journal of Transport Geography, 2012,22:109-117.
doi: 10.1016/j.jtrangeo.2011.12.002 |
[108] |
Wang Jiao'e, Jiao Jingjuan, Jin Fengjun. Spatial effects of high-speed rails on interurban economic linkages in China. Acta Geographica Sinica, 2014,69(12):1833-1846.
doi: 10.11821/dlxb201412009 |
[ 王姣娥, 焦敬娟, 金凤君. 高速铁路对中国城市空间相互作用强度的影响. 地理学报, 2014,69(12):1833-1846.] | |
[109] |
Jang W, Yao X. Interpolating spatial interaction data. Transactions in GIS, 2011,15(4):541-555.
doi: 10.1111/tgis.2011.15.issue-4 |
[110] |
Zhu D, Huang Z, Shi L, et al. Inferring spatial interaction patterns from sequential snapshots of spatial distributions. International Journal of Geographical Information Science, 2018,32(4):783-805.
doi: 10.1080/13658816.2017.1413192 |
[111] |
Roth C, Kang S M, Batty M, et al. Structure of urban movements: Polycentric activity and entangled hierarchical flows. PLoS ONE, 2011,6(1):e15923. Doi: 10.1371/journal.pone.0015923.
doi: 10.1371/journal.pone.0015923 pmid: 21249210 |
[112] |
Zhong C, Schläpfer M, Arisona S M, et al. Revealing centrality in the spatial structure of cities from human activity patterns. Urban Studies, 2016,54(2):437-455.
doi: 10.1177/0042098015601599 |
[113] |
Zhong C, Arisona S, Huang X, et al. Detecting the dynamics of urban structure through spatial network analysis. International Journal of Geographical Information Science, 2014,28(11):2178-2199.
doi: 10.1080/13658816.2014.914521 |
[114] |
Huang J, Levinson D, Wang J, et al. Job-worker spatial dynamics in Beijing: Insights from smart card data. Cities, 2019,86:83-93.
doi: 10.1016/j.cities.2018.11.021 |
[115] |
Huang Jie, Wang Jiao'e, Jin Haitao, et al. Investigating spatiotemporal patterns of passenger flows in the Beijing metro system from smart card data. Progress in Geography, 2018,37(3):397-406.
doi: 10.18306/dlkxjz.2018.03.010 |
[ 黄洁, 王姣娥, 靳海涛, 等. 北京市地铁客流的时空分布格局及特征: 基于智能交通卡数据. 地理科学进展, 2018,37(3):397-406.] | |
[116] | Li Zhifeng, Zhao Miaoxi. City networks in cyberspace: Using Douban-event to measure the cross-city activities in urban agglomeration of China. Human Geography, 2016,31(6):102-108. |
[ 黎智枫, 赵渺希. 赛博空间视角下中国三大城市群网络特征: 基于豆瓣跨城活动数据. 人文地理, 2016,31(6):102-108.] | |
[117] |
Zhen Feng, Wang Bo, Chen Yingxue. China's city network characteristics based on social network space: An empirical analysis of Sina micro-blog. Acta Geographica Sinica, 2012,67(8):1031-1043.
doi: 10.11821/xb201208003 |
[ 甄峰, 王波, 陈映雪. 基于网络社会空间的中国城市网络特征: 以新浪微博为例. 地理学报, 2012,67(8):1031-1043.] | |
[118] |
Hawelka B, Sitko I, Beinat E, et al. Geo-located Twitter as proxy for global mobility patterns. Cartography and Geographic Information Science, 2014,41(3):260-271.
doi: 10.1080/15230406.2014.890072 |
[119] |
Wei Ye, Xiu Chunliang, Liu Zhimin, et al. Spatial pattern of city network in transitional China based on the population flows in "Chunyun" period. Scientia Geographica Sinica, 2016,36(11):1654-1660.
doi: 10.13249/j.cnki.sgs.2016.11.007 |
[ 魏冶, 修春亮, 刘志敏, 等. 春运人口流动透视的转型期中国城市网络结构. 地理科学, 2016,36(11):1654-1660.] | |
[120] |
Ren M, Lin Y, Jin M, et al. Examining the effect of land-use function complementarity on intra-urban spatial interactions using metro smart card records. Transportation, 2019. Doi: 10.1007/s11116-019-09977-7.
doi: 10.1007/s11116-009-9186-z pmid: 20953273 |
[121] | Bauer D, Gonzalez M C, Toole J L, et al. Inferring land use from mobile phone activity. Beijing: Proceedings of the ACM SIGKDD International Workshop on Urban Computing, 2012. |
[122] |
Ding Liang, Niu Xinyi, Song Xiaodong, Measuring the employment center system in Shanghai central city: A study using mobile phone signaling data. Acta Geographica Sinica, 2016,71(3):484-499.
doi: 10.11821/dlxb201603011 |
[ 丁亮, 钮心毅, 宋小冬, 上海中心城就业中心体系测度: 基于手机信令数据的研究. 地理学报, 2016,71(3):484-499.] | |
[123] |
Wang J, Mo H, Wang F, et al. Exploring the network structure and nodal centrality of China's air transport network: A complex network approach. Journal of Transport Geography, 2011,19(4):712-721.
doi: 10.1016/j.jtrangeo.2010.08.012 |
[124] |
Wang J, Mo H, Wang F. Evolution of air transport network of China 1930-2012. Journal of Transport Geography, 2014,40:145-158.
doi: 10.1016/j.jtrangeo.2014.02.002 |
[125] |
Jiao Jingjuan, Wang Jiao'e, Jin Fengjun, et al. Impact of high-speed rail on inter-city network based on the passenger train network in China, 2003-2013. Acta Geographica Sinica, 2016,71(2):265-280.
doi: 10.11821/dlxb201602007 |
[ 焦敬娟, 王姣娥, 金凤君, 等. 高速铁路对城市网络结构的影响研究: 基于铁路客运班列分析. 地理学报, 2016,71(2):265-280.] | |
[126] |
Yan X Y, Wang W X, Gao Z Y, et al. Universal model of individual and population mobility on diverse spatial scales. Nature Communications, 2017,8:1639. Doi: 10.1038/s41467-017-01892-8.
doi: 10.1038/s41467-017-01892-8 pmid: 29158475 |
[127] |
Zhang Y, Cheng T, Ren Y, et al. A novel residual graph convolution deep learning model for short-term network-based traffic forecasting. International Journal of Geographical Information Science, 2020,34(5):969-995.
doi: 10.1080/13658816.2019.1697879 |
[128] | Irfan A, Rasyid R A, Handayani S. Data mining applied for accident prediction model in Indonesia toll road. AIP Conference Proceedings, 2018,1977(1):060001. Doi: 10.1063/1.5043013. |
[129] |
Brum-Bastos W, Long J, Demšar U. Weather effects on human mobility: A study using multi-channel sequence analysis. Computers, Environment and Urban Systems, 2018,71:131-152.
doi: 10.1016/j.compenvurbsys.2018.05.004 |
[130] | Shi X, Wang F. Applications of Geospatial Information Technologies in Public Health. Beijing: Higher Education Press, 2016. |
[131] | Wallace D, Chen M. A simulation of the US influenza outbreak in 2009-2010 using a patch sir model based on airport transportation data. Toronto: Proceedings of International Symposium on Mathematical and Computational Biology (BIOMAT 2013), 2013: 286-297. |
[132] | Haydon D T, Chase-Topping M, Shaw D J, et al. The construction and analysis of epidemic trees with reference to the 2001 UK foot-and-mouth outbreak. Proceedings of the Royal Society of London. Series B: Biological Sciences, 2003,270(1511):121-127. |
[133] | Lau M S, Dalziel B D, Funk S, et al. Spatial and temporal dynamics of superspreading events in the 2014-2015 West Africa Ebola epidemic. Proceedings of the National Academy of Sciences of USA, 2017,114(9):2337-2342. |
[134] |
Li M, Shi X, Li X, et al. Epidemic forest: A spatiotemporal model for communicable diseases. Annals of the American Association of Geographers, 2019,109(3):812-836.
doi: 10.1080/24694452.2018.1511413 |
[135] |
Yuan H Y, Hossain M P, Tsegaye M M, et al. Estimating the risk on outbreak spreading of 2019-nCoV in China using transportation data. MedRxiv, 2020. Doi: 10.1101/2020.02.01.20019984.
doi: 10.1101/2020.07.02.20144543 pmid: 32637978 |
[136] |
Wu J T, Leung K, Leung G M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. The Lancet, 2020. Doi: 10.1016/S0140-6736(20)30260-9.
doi: 10.1016/S1470-2045(20)30315-6 pmid: 32682457 |
[137] |
Wang F, McLafferty S, Escamilla V, et al. Late-stage breast cancer diagnosis and health care access in Illinois. Professional Geographer, 2008,60:54-69.
doi: 10.1080/00330120701724087 pmid: 18458760 |
[138] |
Wang F. Measurement, optimization, and impact of health care accessibility: A methodological review. Annals of the Association of American Geographers, 2012,102(5):1104-1112.
doi: 10.1080/00045608.2012.657146 pmid: 23335813 |
[139] |
Jia P, Wang F, Xierali I M. Delineating hierarchical hospital service areas in Florida. Geographical Review, 2017,107(4):608-623.
doi: 10.1111/j.1931-0846.2016.12207.x |
[140] |
Jia P, Wang F, Xierali I M. Using a Huff-based model to delineate hospital service areas. Professional Geographer, 2017,69(4):522-530.
doi: 10.1080/00330124.2016.1266950 |
[141] |
Huff D L. A probabilistic analysis of shopping center trade areas. Land Economics, 1963,39(1):81-90.
doi: 10.2307/3144521 |
[142] |
Hu Y, Wang F, Xierali I M. Automated delineation of hospital service areas and hospital referral regions by modularity optimization. Health Services Research, 2018,53(1):236-255.
doi: 10.1111/1475-6773.12616 pmid: 27861822 |
[143] |
Li J, Xu L, Tang L, et al. Big data in tourism research: A literature review. Tourism Management, 2018,68:301-323.
doi: 10.1016/j.tourman.2018.03.009 |
[144] |
Shao H, Zhang Y, Li W. Extraction and analysis of city's tourism districts based on social media data. Computers, Environment and Urban Systems, 2017,65:66-78.
doi: 10.1016/j.compenvurbsys.2017.04.010 |
[145] |
Yang Y, Zhang H. Spatial-temporal forecasting of tourism demand. Annals of Tourism Research, 2019,75:106-119.
doi: 10.1016/j.annals.2018.12.024 |
[146] |
Raun J, Ahas R, Tiru M. Measuring tourism destinations using mobile tracking data. Tourism Management, 2016,57:202-212.
doi: 10.1016/j.tourman.2016.06.006 |
[147] |
Lv S X, Peng L, Wang L. Stacked autoencoder with echo-state regression for tourism demand forecasting using search query data. Applied Soft Computing, 2018,73:119-133.
doi: 10.1016/j.asoc.2018.08.024 |
[148] |
Marrocu E, Paci R. They arrive with new information. Tourism flows and production efficiency in the European regions. Tourism Management, 2011,32:750-758.
doi: 10.1016/j.tourman.2010.06.010 |
[149] |
Yang Y, Li D, Li X. Public transport connectivity and intercity tourist flows. Journal of Travel Research, 2019,58:25-41.
doi: 10.1177/0047287517741997 |
[150] |
Zhang S, Zhu D, Yao X, et al. The scale effect on spatial interaction patterns: An empirical study using taxi OD data of Beijing and Shanghai. IEEE Access, 2018,6:51994-52003.
doi: 10.1109/ACCESS.2018.2869378 |
[151] |
Yue M, Kang C, Andris C, et al. Understanding the interplay between bus, metro, and cab ridership dynamics in Shenzhen, China. Transactions in GIS, 2018,22(3):855-871.
doi: 10.1111/tgis.12340 |
[152] |
Zhu D, Zhang F, Wang S, et al. Understanding place characteristics in geographic contexts through graph convolutional neural networks. Annals of the American Association of Geographers, 2020,110(2):408-420.
doi: 10.1080/24694452.2019.1694403 |
[1] | 魏石梅, 潘竟虎. 中国地级及以上城市网络结构韧性测度[J]. 地理学报, 2021, 76(6): 1394-1407. |
[2] | 徐藜丹, 邓祥征, 姜群鸥, 马丰魁. 中国县域多维贫困与相对贫困识别及扶贫路径研究[J]. 地理学报, 2021, 76(6): 1455-1470. |
[3] | 殷江滨, 李尚谦, 姜磊, 程哲, 黄晓燕, 路改改. 中国连片特困地区非农就业增长的时空特征与驱动因素[J]. 地理学报, 2021, 76(6): 1471-1488. |
[4] | 黄万状, 石培基. 河湟地区乡村聚落位序累积规模模型的实证研究[J]. 地理学报, 2021, 76(6): 1489-. |
[5] | 方远平, 毕斗斗, 陈宏洋, 彭婷. 知识密集型服务业集聚对城市群旅游创新影响的空间效应[J]. 地理学报, 2021, 76(6): 1521-1536. |
[6] | 吴朝宁, 李仁杰, 郭风华. 基于圈层结构的游客活动空间边界提取新方法[J]. 地理学报, 2021, 76(6): 1537-1552. |
[7] | 李萌, 袁文, 袁武, 牛方曲, 李汉青, 胡段牧. 基于新闻大数据的北极地区地缘关系研究[J]. 地理学报, 2021, 76(5): 1090-1104. |
[8] | 王武林, 王成金. 基于东北航线的中欧贸易研究[J]. 地理学报, 2021, 76(5): 1105-1121. |
[9] | 尼格娜热·阿曼太, 丁建丽, 葛翔宇, 包青岭. 1960—2017年艾比湖流域实际蒸散量与气象要素的变化特征[J]. 地理学报, 2021, 76(5): 1177-1192. |
[10] | 王录仓, 刘海洋, 刘清. 基于腾讯迁徙大数据的中国城市网络研究[J]. 地理学报, 2021, 76(4): 853-869. |
[11] | 王少剑, 崔子恬, 林靖杰, 谢金燕, 苏坤. 珠三角地区城镇化与生态韧性的耦合协调研究[J]. 地理学报, 2021, 76(4): 973-991. |
[12] | 彭如霞, 夏丽丽, 林剑铬. 创新政策环境对外商直接投资区位选择的影响——以珠江三角洲核心区六市为例[J]. 地理学报, 2021, 76(4): 992-1005. |
[13] | 吴海江, 粟晓玲, 张更喜. 基于Meta-Gaussian模型的中国农业干旱预测研究[J]. 地理学报, 2021, 76(3): 525-538. |
[14] | 熊礼阳, 汤国安, 杨昕, 李发源. 面向地貌学本源的数字地形分析研究进展与展望[J]. 地理学报, 2021, 76(3): 595-611. |
[15] | 范泽孟. 中国生态过渡带分布的空间识别及情景模拟[J]. 地理学报, 2021, 76(3): 626-644. |