地理学报 ›› 2020, Vol. 75 ›› Issue (7): 1451-1464.doi: 10.11821/dlxb202007009
收稿日期:
2019-07-26
修回日期:
2020-04-06
出版日期:
2020-07-25
发布日期:
2020-09-25
作者简介:
陶泽兴(1989-), 男, 湖北十堰人, 博士后, 主要从事植被地理和物候学研究。E-mail: 基金资助:
TAO Zexing1(), GE Quansheng1,2, WANG Huanjiong1(
)
Received:
2019-07-26
Revised:
2020-04-06
Published:
2020-07-25
Online:
2020-09-25
Supported by:
摘要:
积温需求是决定北半球温带地区木本植物开花时间的主要因子。全球变暖使植物在冬季受到的冷激量减少,可能会改变植物开花的积温需求。气候变化导致的中国木本植物开花始期积温需求的时空变化仍不清楚。有鉴于此,本文基于“中国物候观测网”1963—2018年垂柳(Salix babylonica)和榆树(Ulmus pumila)开花始期数据,利用3种积温算法(GDD、GDDS和GDH)系统分析了两种植物开花积温需求的空间格局和在代表性站点的年际变化,构建了基于冷激日数模拟积温需求的模型。主要结论为:垂柳和榆树开花始期的积温需求在低纬度地区大于中纬度地区。站点多年平均积温需求与冷激日数呈显著的负指数关系,即随冷激日数增加,积温需求降低。时间上,3个典型站点(贵阳、西安和牡丹江)垂柳开花积温需求的变化趋势分别达到1.28~1.41 °C·d/a(P < 0.01)、1.63~1.89 °C·d/a(P < 0.01)和0.12~0.58 °C·d/a(仅GDD算法P < 0.05),榆树开花的积温需求在贵阳和西安同样显著增加,但在牡丹江变化不显著。冷激日数随时间减少是两个站点积温需求显著增加的主要原因。因牡丹江冬季气温低,冷激日数多且年际变化小,冷激对积温需求变化的影响不显著。基于时空耦合样本建立的冷激日数—积温需求模型对垂柳开花积温需求的模拟效果较好,R2达0.54~0.66。对榆树开花积温需求的模拟效果稍差(R2为0.33~0.64)。就不同算法而言,冷激日数对GDD算法得到的积温需求模拟效果更好。本文为量化植物开花积温需求的时空变化及在气候变化背景下的花期预测提供了重要的科学依据。
陶泽兴, 葛全胜, 王焕炯. 1963—2018年中国垂柳和榆树开花始期积温需求的时空变化[J]. 地理学报, 2020, 75(7): 1451-1464.
TAO Zexing, GE Quansheng, WANG Huanjiong. Spatio-temporal variations in the thermal requirement of the first flowering dates of Salix babylonica and Ulmus pumila in China during 1963-2018[J]. Acta Geographica Sinica, 2020, 75(7): 1451-1464.
表1
物候观测站和对应气象观测站位置
编号 | 物候 观测站 | 观测地点 | 垂柳观测起止年(年数) | 榆树观测起止年 (年数) | 气象站 (编号) | 纬度 (°N) | 经度 (°E) |
---|---|---|---|---|---|---|---|
1 | 嫩江 | 嫩江农场 | 1975—1994(10) | 1974—1991(16) | 嫩江(50557) | 49.19 | 125.24 |
2 | 五大连池 | 龙镇农场 | 缺测 | 1974—1979(5) | 北安(50656) | 49.00 | 126.78 |
3 | 佳木斯 | 黑龙江农科院 佳木斯分院 | 1983—1988(5) | 1966—1996(22) | 佳木斯(50873) | 46.81 | 130.34 |
4 | 虎林 | 虎林市气象局 | 1983—1987(5) | 1964—1987(7) | 虎林(50983) | 45.77 | 132.97 |
5 | 哈尔滨 | 黑龙江省森林植物园 | 1963—1979(5) | 1963—2014(26) | 哈尔滨(50953) | 45.75 | 126.63 |
6 | 牡丹江 | 牡丹江农气试验站 | 1978—2018(42) | 1965—2018(42) | 牡丹江(54094) | 44.57 | 129.58 |
7 | 石河子 | 石河子大学 | 1984—1996(12) | 1963—1996(16) | 石河子(51356) | 44.35 | 85.95 |
8 | 长春 | 吉林省自然博物馆 | 2003—2018(16) | 1986—2018(25) | 长春(54161) | 43.88 | 125.35 |
9 | 乌鲁木齐 | 新疆林科院 | 1985—2018(5) | 1963—1990(8) | 乌鲁木齐(51463) | 43.75 | 87.60 |
10 | 沈阳 | 沈阳农业大学 | 1964—2018(23) | 1964—2018(26) | 沈阳(54342) | 41.80 | 123.38 |
11 | 承德 | 河北旅游职业学院 | 缺测 | 1974—1996(10) | 承德(54423) | 40.85 | 118.06 |
12 | 呼和浩特 | 内蒙古大学 | 1979—2012(12) | 1964—2004(12) | 呼和浩特(53463) | 40.80 | 111.68 |
13 | 张家口 | 张家口气象局 | 1974—1993(10) | 1974—1993(10) | 张家口(54401) | 40.78 | 114.90 |
14 | 北京 | 颐和园 | 1974—2018(6) | 1963—2012(43) | 北京(54511) | 40.02 | 116.33 |
15 | 秦皇岛 | 秦皇岛市地理学会 | 1980—1993(12) | 1980—1993(12) | 秦皇岛(54449) | 39.88 | 119.25 |
16 | 天津 | 园林绿化所 | 1980—1992(9) | 1980—1992(12) | 天津(54527) | 39.39 | 117.07 |
17 | 原平 | 原平县水利局 | 1977—1982(5) | 1976—1982(7) | 原平(53673) | 38.73 | 112.71 |
18 | 民勤 | 民勤沙生植物园 | 缺测 | 1974—1996(20) | 民勤(52681) | 38.63 | 103.08 |
19 | 银川 | 宁夏气象科研所 | 2003—2018(20) | 2006—2018(13) | 银川(53614) | 38.48 | 106.22 |
20 | 邢台 | 达活泉公园 | 1982—1996(15) | 1982—1996(15) | 邢台(53798) | 37.09 | 114.48 |
21 | 潍坊 | 潍坊市气象局 | 1967—1996(9) | 1985—1996(8) | 潍坊(54843) | 36.69 | 119.08 |
22 | 济南 | 山东省科学院 | 1965—2018(5) | 1963—2018(8) | 济南(54823) | 36.65 | 117.04 |
23 | 泰安 | 山东农业大学 | 1963—1985(12) | 1963—1981(6) | 泰安(54827) | 36.17 | 117.10 |
24 | 西安 | 西安植物园 | 1964—2018(39) | 1964—2015(31) | 泾河(57131) | 34.22 | 108.97 |
25 | 南京 | 九华山公园 | 1987—2017(17) | 1987—2018(10) | 南京(58238) | 32.04 | 118.78 |
26 | 合肥 | 合肥师范学院 | 1965—2018(37) | 1965—2018(35) | 合肥(58321) | 31.83 | 117.25 |
27 | 芜湖 | 安徽师范大学 | 1963—1996(18) | 1963—1996(14) | 芜湖(58334) | 31.28 | 118.38 |
28 | 武汉 | 狮子山 | 1963—1981(6) | 缺测 | 武汉(57494) | 30.52 | 114.31 |
29 | 杭州 | 杭州植物园 | 1963—1983(9) | 缺测 | 杭州(58457) | 30.25 | 120.12 |
30 | 宁波 | 宁波农业科学研究院 | 1968—1996(25) | 1981—1989(6) | 鄞县(58562) | 29.85 | 121.62 |
31 | 屯溪 | 黄山学院 | 1982—1996(14) | 缺测 | 屯溪(58531) | 29.69 | 118.29 |
32 | 南昌 | 江西农业大学 | 2008—2018(9) | 1985—1991(7) | 南昌(58606) | 28.77 | 115.83 |
33 | 长沙 | 中南林业科技大学 | 2007—2019(10) | 缺测 | 长沙(57679) | 28.20 | 113.07 |
34 | 温州 | 温州科技职业学院 | 1966—1974(9) | 缺测 | 温州(58659) | 27.98 | 120.63 |
35 | 贵阳 | 贵州大学 | 1963—2018(30) | 1963—2018(32) | 贵阳(57816) | 26.42 | 106.67 |
36 | 福州 | 福州农气试验站 | 2003—2018(10) | 缺测 | 福州(58847) | 26.08 | 119.33 |
37 | 桂林 | 桂林植物园 | 1964—2015(25) | 缺测 | 桂林(57957) | 25.18 | 110.20 |
38 | 昆明 | 昆明植物园 | 1963—2017(19) | 缺测 | 昆明(56778) | 25.04 | 102.73 |
39 | 厦门 | 厦门大学 | 1964—1988(8) | 缺测 | 厦门(59134) | 24.44 | 118.10 |
表2
基于时空耦合样本的冷激日数—积温需求模型公式
物种 | 积温需求算法 | 公式 | R2 | RMSE(°C·d) | P |
---|---|---|---|---|---|
垂柳 | GDD | F=92.17+502.79×e-C/24.29 | 0.66 | 84.09 | < 0.01 |
GDDS | F=122.47+428.79×e-C/34.99 | 0.60 | 85.09 | < 0.01 | |
GDH | F=110.98+461.55×e-C/20.43 | 0.54 | 94.00 | < 0.01 | |
榆树 | GDD | F=36.30+774.01×e-C/15.89 | 0.64 | 29.75 | < 0.01 |
GDDS | F=68.27+363.21×e-C/30.04 | 0.40 | 33.01 | < 0.01 | |
GDH | F=29.82+132.32×e-C/47.74 | 0.33 | 32.32 | < 0.01 |
[1] |
Donnelly A, Caffarra A, O'Neill B F. A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems. International Journal of Biometeorology, 2011,55(6):805-817.
doi: 10.1007/s00484-011-0426-5 pmid: 21509461 |
[2] | Høye T T, Post E, Schmidt N M, et al. Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic. Nature Climate Change, 2013,3(8):759-763. |
[3] | Tao Zexing, Zhong Shuying, Ge Quansheng, et al. Spatiotemporal variations in flowering duration of woody plants in China from 1963 to 2012. Acta Geographica Sinica, 2017,72(1):53-63. |
[ 陶泽兴, 仲舒颖, 葛全胜, 等. 1963—2012年中国主要木本植物花期长度时空变化. 地理学报, 2017,72(1):53-63.] | |
[4] | Zhang Mingqing, Yang Guodong, Fan Zhentao, et al. Prediction of flowering date of dominant trees with allergic pollen in Beijing. Journal of Environment and Health, 2008,25(3):262-263. |
[ 张明庆, 杨国栋, 范振涛, 等. 北京地区主要致敏花粉树木花期的预报. 环境与健康杂志, 2008,25(3):262-263.] | |
[5] |
Wang H J, Zhong S Y, Tao Z X, et al. Changes in flowering phenology of woody plants from 1963 to 2014 in North China. International Journal of Biometeorology, 2019,63(5):579-590.
pmid: 28547481 |
[6] | Dong Haitao, Tan Lijing, Liu Honglin, et al. Study on forecasting flowering phase of peach tree based on accumulated temperature model in Dandong. Journal of Meteorology and Environment, 2018,34(1):99-105. |
[ 董海涛, 谭丽静, 刘洪林, 等. 基于积温模型丹东地区桃树盛花期预测研究. 气象与环境学报, 2018,34(1):99-105.] | |
[7] | IPCC. Summary for policymakers//Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva, Switzerland, 2018: 1-32. |
[8] | Zhuang W B, Cai B H, Gao Z H, et al. Determination of chilling and heat requirements of 69 Japanese apricot cultivars. European Journal of Agronomy, 2016,74:68-74. |
[9] | Templ B, Templ M, Filzmoser P, et al. Phenological patterns of flowering across biogeographical regions of Europe. International Journal of Biometeorology, 2017,61(7):1347-1358. |
[10] | Hunter A F, Lechowicz M J. Predicting the timing of budburst in temperate trees. Journal of Applied Ecology, 1992,29(3):597-604. |
[11] | Xu Yunjia, Zhong Shuying, Dai Junhu, et al. Changes in flowering phenology of plants and their model simulation in Mudanjiang, China. Geographical Research, 2017,36(4):779-789. |
[ 徐韵佳, 仲舒颖, 戴君虎, 等. 1978—2014年牡丹江地区植物花期变化及模型模拟. 地理研究, 2017,36(4):779-789.] | |
[12] | Zhang Aiying, Wang Huanjiong, Dai Junhu, et al. Applicability analysis of phenological models in the flowering time prediction of ornamental plants in Beijing area. Journal of Applied Meteorological Science, 2014,25(4):483-492. |
[ 张爱英, 王焕炯, 戴君虎, 等. 物候模型在北京观赏植物开花期预测中的适用性. 应用气象学报, 2014,25(4):483-492.] | |
[13] | Basler D. Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agricultural and Forest Meteorology, 2016,217:10-21. |
[14] |
Linkosalo T, Häkkinen R, Hänninen H. Models of the spring phenology of boreal and temperate trees: Is there something missing? Tree Physiology, 2006,26(9):1165-1172.
pmid: 16740492 |
[15] | Zhang X Y, Friedl M A, Schaaf C B, et al. Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Global Change Biology, 2004,10(7):1133-1145. |
[16] | Cong N, Shen M G, Piao S L, et al. Little change in heat requirement for vegetation green-up on the Tibetan Plateau over the warming period of 1998-2012. Agricultural and Forest Meteorology, 2017,232:650-658. |
[17] | Fu Y H, Piao S, Vitasse Y, et al. Increased heat requirement for leaf flushing in temperate woody species over 1980-2012: Effects of chilling. precipitation and insolation, Global Change Biology, 2015,21(7):2687-2697. |
[18] |
Carter J M, Orive M E, Gerhart L M, et al. Warmest extreme year in US history alters thermal requirements for tree phenology. Oecologia, 2017,183(4):1197-1210.
pmid: 28224350 |
[19] |
Flynn D F B, Wolkovich E M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytologist, 2018,219(4):1353-1362.
doi: 10.1111/nph.15232 pmid: 29870050 |
[20] |
Laube J, Sparks T H, Estrella N, et al. Chilling outweighs photoperiod in preventing precocious spring development. Global Change Biology, 2014,20(1):170-182.
doi: 10.1111/gcb.12360 pmid: 24323535 |
[21] |
Fu Y S H, Piao S L, Zhou X C, et al. Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut. Global Change Biology, 2019,25(5):1696-1703.
doi: 10.1111/gcb.14599 pmid: 30779408 |
[22] |
Heide O M, Prestrud A K. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiology, 2005,25(1):109-114.
doi: 10.1093/treephys/25.1.109 pmid: 15519992 |
[23] |
Vihera-Aarnio A, Sutinen S, Partanen J, et al. Internal development of vegetative buds of Norway spruce trees in relation to accumulated chilling and forcing temperatures. Tree Physiology, 2014,34(5):547-556.
doi: 10.1093/treephys/tpu038 pmid: 24876293 |
[24] | Cannell M G R, Smith R I. Thermal time, chill days and prediction of budburst in Picea sitchensis. Journal of Applied Ecology, 1983,20(3):951-963. |
[25] |
Okie W R, Blackburn B. Increasing chilling reduces heat requirement for floral budbreak in peach. Hortscience, 2011,46(2):245-252.
doi: 10.21273/HORTSCI.46.2.245 |
[26] | Wan Minwei, Liu Xiuzhen. China Phenological Observation Method. Beijing: Science Press, 1979: 1-24. |
[ 宛敏渭, 刘秀珍. 中国物候观测方法. 北京: 科学出版社, 1979: 1-24.] | |
[27] | Zheng Jingyun, Bian Juanjuan. Merge on daily temperature data by adjusting two series of adjacent meteorological stations with observation type alternation. Geographical Research, 2012,31(4):579-588. |
[ 郑景云, 卞娟娟. 类型变更的相邻气象观测站的日气温资料整合. 地理研究, 2012,31(4):579-588.] | |
[28] |
Chow D H C, Levermore G J. New algorithm for generating hourly temperature values using daily maximum, minimum and average values from climate models. Building Services Engineering Research & Technology, 2007,28(3):237-248.
doi: 10.1177/0143624407078642 |
[29] | Sarvas R. Investigations on the annual cycle of development on forest trees active period. Communicationes Instituti Forestalis Fenniae, 1972,76(3):1-110. |
[30] | Hänninen H. Modelling bud dormancy release in trees from cool and temperate regions. Acta Forestalia Fennica, 1990,213:1-47. |
[31] | Anderson J L, Richardson E, AKesner C D. Validation of chill unit and flower bud phenology models for "Montmorency" sour cherry. Acta Horticulturae, 1986,184:71-78. |
[32] | Luedeling E, Zhang M H, Luedeling V, et al. Sensitivity of winter chill models for fruit and nut trees to climatic changes expected in California's Central Valley. Agriculture Ecosystems & Environment, 2009,133(1/2):23-31. |
[33] | Vitasse Y, Basler D. What role for photoperiod in the bud burst phenology of European beech. European Journal of Forest Research, 2013,132(1):1-8. |
[34] | Fu Y, Piao S, Zhao H, et al. Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes. Global Change Biology, 2014,20(12):3743-3755. |
[35] | Bennie J, Kubin E, Wiltshire A, et al. Predicting spatial and temporal patterns of bud-burst and spring frost risk in north-west Europe: The implications of local adaptation to climate. Global Change Biology, 2010,16(5):1503-1514. |
[36] |
Wilczek A, Burghardt L, Cobb A, et al. Genetic and physiological bases for phenological responses to current and predicted climates. Philosophical Transactions of the Royal Society of London, 2010,365:3129-3147.
doi: 10.1098/rstb.2010.0128 pmid: 20819808 |
[37] |
Singh R, Maurya J, Azeez A, et al. A genetic network mediating the control of bud break in hybrid aspen. Nature Communications, 2018,9:4173.
pmid: 30301891 |
[38] | Dai Junhu, Tao Zexing, Wang Huanjiong, et al. Applications of phenological models in quantitative climate reconstruction. Quaternary Science, 2016,36(3):702-710. |
[ 戴君虎, 陶泽兴, 王焕炯, 等. 物候模型在气候定量重建中的应用. 第四纪研究, 2016,36(3):702-710.] | |
[39] | Chen X Q, Wang L X, Inouye D. Delayed response of spring phenology to global warming in subtropics and tropics. Agricultural and Forest Meteorology, 2017, 234-235:222-235. |
[40] |
Ge Q S, Wang H J, Dai J H. Simulating changes in the leaf unfolding time of 20 plant species in China over the twenty-first century. International Journal of Biometeorology, 2014,58(4):473-484.
doi: 10.1007/s00484-013-0671-x pmid: 23689929 |
[41] | Zhong Shuying, Ge Quansheng, Dai Junhu, et al. Development of phenological models for simulating past flowering phenology of typical ornamental plants in China. Resources Science, 2017,39(11):2116-2129. |
[ 仲舒颖, 葛全胜, 戴君虎, 等. 中国典型观赏植物花期模型建立及过去花期变化模拟. 资源科学, 2017,39(11):2116-2129.] | |
[42] | Caffarra A, Donnelly A, Chuine I. Modelling the timing of Betula pubescens budburst. II. Integrating complex effects of photoperiod into process-based models. Climate Research, 2011,46(2):159-170. |
[1] | 魏石梅, 潘竟虎. 中国地级及以上城市网络结构韧性测度[J]. 地理学报, 2021, 76(6): 1394-1407. |
[2] | 杨忍, 潘瑜鑫. 中国县域乡村脆弱性空间特征与形成机制及对策[J]. 地理学报, 2021, 76(6): 1438-1454. |
[3] | 殷江滨, 李尚谦, 姜磊, 程哲, 黄晓燕, 路改改. 中国连片特困地区非农就业增长的时空特征与驱动因素[J]. 地理学报, 2021, 76(6): 1471-1488. |
[4] | 胡畔, 陈波, 史培军. 中国暴雨洪涝灾情时空格局及影响因素[J]. 地理学报, 2021, 76(5): 1148-1162. |
[5] | 黄晓东, 马海涛, 苗长虹. 基于创新企业的中国城市网络联系特征[J]. 地理学报, 2021, 76(4): 835-852. |
[6] | 王录仓, 刘海洋, 刘清. 基于腾讯迁徙大数据的中国城市网络研究[J]. 地理学报, 2021, 76(4): 853-869. |
[7] | 夏兴生, 潘耀忠, 朱秀芳, 张锦水. 中国综合农业分区下的Ångström-Prescott公式系数逐月校正与优选[J]. 地理学报, 2021, 76(4): 888-902. |
[8] | 王淑佳, 孙九霞. 中国传统村落可持续发展评价体系构建与实证[J]. 地理学报, 2021, 76(4): 921-938. |
[9] | 范泽孟. 中国生态过渡带分布的空间识别及情景模拟[J]. 地理学报, 2021, 76(3): 626-644. |
[10] | 徐羽, 李秀彬, 辛良杰. 中国耕地规模化流转租金的分异特征及其影响因素[J]. 地理学报, 2021, 76(3): 753-763. |
[11] | 古恒宇, 沈体雁. 中国高学历人才的空间演化特征及驱动因素[J]. 地理学报, 2021, 76(2): 326-340. |
[12] | 朱晟君, 金文纨. 地方出口产品结构及制度环境与企业出口相关多样化[J]. 地理学报, 2021, 76(2): 398-414. |
[13] | 李钢, 薛淑艳, 马雪瑶, 周俊俊, 徐婷婷, 王皎贝. 中国失踪人口的时空格局演变与形成机制[J]. 地理学报, 2021, 76(2): 310-325. |
[14] | 葛全胜, 朱会义. 两千年来中国自然与人文地理环境变迁及启示[J]. 地理学报, 2021, 76(1): 3-14. |
[15] | 张兴航, 张百平, 王晶, 余付勤, 赵超, 姚永慧. 中国南北过渡带东段样带植被序列与气候分界问题[J]. 地理学报, 2021, 76(1): 30-43. |