地理学报 ›› 2020, Vol. 75 ›› Issue (7): 1432-1450.doi: 10.11821/dlxb202007008
郑景云1,2(), 张学珍1,2, 刘洋1, 郝志新1,2(
)
收稿日期:
2019-06-14
修回日期:
2020-06-03
出版日期:
2020-07-25
发布日期:
2020-09-25
作者简介:
郑景云(1966-), 男, 研究员, 博士生导师, 主要从事气候变化研究。E-mail: 基金资助:
ZHENG Jingyun1,2(), ZHANG Xuezhen1,2, LIU Yang1, HAO Zhixin1,2(
)
Received:
2019-06-14
Revised:
2020-06-03
Published:
2020-07-25
Online:
2020-09-25
Supported by:
摘要:
依据近年发表的新成果,对中国过去千年干湿的年至百年尺度变化特征进行了总结梳理与对比分析,综合评估了20世纪干湿变幅的历史地位。主要结论是:① 根据历史文献记载重建的东中部各区干湿序列在1400年以后均达高信度,但其前因存在记录缺失,仅有半数时段的重建结果达高信度。在东北及内蒙古东部,根据不同地点湖沼沉积物记录揭示的区域干湿百年尺度变化特征在多数时段不一致。在西部的黄土高原、河西走廊、新疆中北部、青藏高原东北部和东南部等地区,利用不同地点树轮资料重建的干湿序列显示的干湿变化特征在区内一致性高。② 过去千年中国各地干湿变化均存在显著的年际、年代际和百年尺度周期。其中准2.5 a、60~80 a和110~120 a等尺度的周期为所有地区共有;3.5~5.0 a、20~35 a等尺度周期则主要发生在东北、东中部地区、黄土高原和青藏高原;而准45 a周期则只发生在东北和东中部地区(均超过90%信度水平);各区域间的干湿变化位相并不同步。③ 尽管已发现青藏高原东北部20世纪很可能是过去3000 a最湿的世纪之一,但其他大多数区域的重建结果显示:20世纪的干湿变幅在年代际尺度上均未超出其前各个时段的变率范围。
郑景云, 张学珍, 刘洋, 郝志新. 过去千年中国不同区域干湿的多尺度变化特征评估[J]. 地理学报, 2020, 75(7): 1432-1450.
ZHENG Jingyun, ZHANG Xuezhen, LIU Yang, HAO Zhixin. The assessment on hydroclimatic changes of different regions in China at multi-scale during the past millennium[J]. Acta Geographica Sinica, 2020, 75(7): 1432-1450.
[1] | PAGES. PAGES Restructured. Past Global Changes Magazine, 2014,22(1):3. |
[2] | Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press, 2013: 159-464. |
[3] | PAGES Hydro2k Consortium. Comparing proxy and model estimates of hydroclimate variability and change over the Common Era. Climate of the Past, 2017,13(12):1851-1900. |
[4] |
Steiger N J, Smerdon J E, Cook E R, et al. A reconstruction of global hydroclimate and dynamical variables over the Common Era. Scientific Data, 2018,5:180086. Doi: 10.1038/sdata.2018.86
doi: 10.1038/sdata.2018.86 pmid: 29786698 |
[5] | Ljungqvist F C, Krusic P J, Sundqvist H S, et al. Northern Hemisphere hydroclimate variability over the past twelve centuries. Nature, 2016,532(7597):94-98. |
[6] | Cook E R, Anchukaitis K J, Buckley B M, et al. Asian monsoon failure and megadrought during the last millennium. Science, 2010,328(5977):486-489. |
[7] | Cook B I, Smerdon J E, Seager R, et al. Pan-continental droughts in North America over the last millennium. Journal of Climate, 2014,27(1):383-397. |
[8] | Cook E R, Seager R, Kushnir Y, et al. Old world megadroughts and pluvials during the Common Era. Science Advances, 2015,1:e1500561. Doi: 10.1126/sciadv.1500561. |
[9] | Rodysill J R, Anderson L, Cronin T M, et al. A North American hydroclimate synthesis (NAHS) of the Common Era. Global and Planetary Change, 2018,162:175-198. |
[10] | Linderholm H W, Nicolle M, Francus P, et al. Arctic hydroclimate variability during the last 2000 years. Climate of the Past, 2018,14(4):473-514. |
[12] |
Cook E R, Woodhouse C A, Eakin C M, et al. Long-term aridity changes in the Western United States. Science, 2004,306(5698):1015-1018.
pmid: 15472040 |
[13] | Ge Q, Zheng J, Hao Z, et al. Recent advances on reconstruction of climate and extreme events in China for the past 2000 years. Journal of Geographical Sciences, 2016,26(7):827-854. |
[14] | Seftigen K, Goosse H, Klein F, et al. Hydroclimate variability in Scandinavia over the last millennium-insights from a climate model-proxy data comparison. Climate of the Past, 2017,13(12):1831-1850. |
[15] | Ge Q, Liu H, Ma X, et al. Characteristics of temperature change in China over the last 2000 years and spatial patterns of dryness/wetness during cold and warm periods. Advances in Atmospheric Sciences, 2017,34(8):941-951. |
[16] | Hao Z, Zheng J, Zhang X, et al. Spatial patterns of precipitation anomalies in eastern China during centennial cold and warm periods of the past 2000 years. International Journal of Climatology, 2016,36(1):467-475. |
[17] | He M, Yang B, Bräuning A, et al. Recent advances in dendroclimatology in China. Earth-Science Reviews, 2019,194:521-535. |
[18] | Academy of Meteorological Science of China Central Meteorological Administration. Yearly Charts of Dryness/Wetness in China for the Last 500-year Period. Beijing: Sinomap Press, 1981. |
[ 中央气象局气象科学研究院. 中国近五百年旱涝分布图集. 北京: 地图出版社, 1981.] | |
[19] | Ge Quansheng. Climate Change in Chinese Dynasties. Beijing: Science Press, 2011. |
[ 葛全胜. 中国历朝气候变化. 北京: 科学出版社, 2011.] | |
[20] | Yao T, Jiao K, Tian L, et al. Climatic variations since the little ice age recorded in the Guliya ice core. Science in China Series D, 1996,39(6):587-596. |
[21] | Yao T, Duan K, Xu B, et al. Precipitation record since AD 1600 from ice cores on the central Tibetan Plateau. Climate of the Past, 2008,4(3):175-180. |
[22] | Zhang P, Cheng H, Edwards R, et al. A test of climate, sun and culture relationships from an 1810-year Chinese cave record. Science, 2008,322(5903):940-942. |
[23] | Chen F, Chen J, Holmes J, et al. Moisture changes over the last millennium in arid central Asia: A review, synthesis and comparison with monsoon region. Quaternary Science Reviews, 2010,29(7-8):1055-1068. |
[24] | Qin Dahe, Luo Yong, Dong Wenjie. Climate and Environmental Evolution in China: Volume 1, Basic Science. Beijing: China Meteorological Press, 2012: 55-58. |
[ 秦大河, 罗勇, 董文杰. 中国气候与环境演变: 第一卷, 科学基础. 北京: 气象出版社, 2012: 55-58.] | |
[25] | Committee for the Preparation of the Second National Assessment Report on Climate Change. The Second National Assessment Report on Climate Change. Beijing: Science Press, 2011: 124-125. |
[ 《第二次气候变化国家评估报告》编写委员会. 第二次气候变化国家评估报告. 北京: 科学出版社, 2011: 124-125.] | |
[26] | Committee for the Preparation of the Third National Assessment Report on Climate Change. The Third National Assessment Report on Climate change. Beijing: Science Press, 2015: 20-21. |
[ 《第三次气候变化国家评估报告》编写委员会. 第三次气候变化国家评估报告. 北京: 科学出版社, 2015: 20-21.] | |
[27] | Zhang Piyuan. Historical Climate Change in China. Jinan: Shandong Science and Technology Press, 1996: 200-204. |
[ 张丕远. 中国历史气候变化. 济南: 山东科学技术出版社, 1996: 200-204.] | |
[28] | Zhang De'er, Liu Chuanzhi, Jiang Jianmin. Reconstruction of dry and wet sequence in 6 regions of east China in recent 1000 years and analysis of climatic jump. Quaternary Research, 1997,17(1):1-11. |
[ 张德二, 刘传志, 江剑民. 中国东部6区域近1000年干湿序列的重建和气候跃变分析. 第四纪研究, 1997,17(1):1-11.] | |
[29] | Zheng J, Wang W, Ge Q, et al. Precipitation variability and extreme events in eastern China during the past 1500 years. Terrestrial, Atmospheric and Oceanic Sciences, 2006,17(3):579-592. |
[30] | Zheng Jingyun, Hao Zhixin, Fang Xiuqi, et al. Some characteristics of extreme climate events in China in the past 2000 years. Progress in Geography, 2014,33(1):3-12. |
[ 郑景云, 郝志新, 方修琦, 等. 中国过去2000年极端气候事件变化的若干特征. 地理科学进展, 2014,33(1):3-12.] | |
[31] | Zheng J, Wu M, Ge Q, et al. Observed, reconstructed, and simulated decadal variability of summer precipitation over eastern China. Journal of Meteorological Research, 2017,31(1):49-60. |
[32] | Zheng J, Xiao L, Fang X, et al. How climate change impacted the collapse of the Ming Dynasty. Climatic Change, 2014,127(2):169-182. |
[33] | Hao Z, Zheng J, Ge Q. Precipitation cycles in the middle and lower reaches of the Yellow River (1736-2000). Journal of Geographical Sciences, 2008,18(1):17-25. |
[34] | Chen Z, He X, Cook E R, et al. Detecting dryness and wetness signals from tree-rings in Shenyang, Northeast China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011,302(3/4):301-310. |
[35] | Liu Y, Wang Y, Li Q, et al. A tree-ring-based June-September mean relative humidity reconstruction since 1837 from the Yiwulü Mountain region, China. International Journal of Climatology. 2015,35(7):1301-1308. |
[36] | Peng J, Sun Y, Chen M, et al. Tree-ring based precipitation variability since AD 1828 in northwestern Liaoning, China. Quaternary International, 2013,283:63-71. |
[37] | Chen Z, He X, Davi N K, et al. A 258-year reconstruction of precipitation for southern Northeast China and the Northern Korean Peninsula. Climatic Change, 2016,139(3/4):609-622. |
[38] | Liu N, Liu Y, Bao G, et al. A tree-ring based reconstruction of summer relative humidity variability in eastern Mongolian Plateau and its associations with the Pacific and Indian Oceans. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015,438:113-123. |
[39] | Liang E, Shao X, Liu H, et al. Tree-ring based PDSI reconstruction since AD 1842 in the Ortindag Sand Land, east Inner Mongolia. Chinese Science Bulletin, 2007,52(19):2715-2721. |
[40] | Liu Y, Wang C, Hao W, et al. Tree-ring-based annual precipitation reconstruction in Kalaqin, Inner Mongolia for the last 238 years. Chinese Science Bulletin, 2011,56(28/29):2995-3002. |
[41] | Liu Y, Tian H, Song H, et al. Tree ring precipitation reconstruction in the Chifeng-Weichang region, China, and East Asian summer monsoon variation since AD 1777. Journal of Geophysical Research, 2010,115(D6):D06103. Doi: 10.1029/2009JD012330. |
[42] | Xing W, Bao K S, Gallego-Sala A V, et al. Climate controls on carbon accumulation in peatlands of Northeast China. Quaternary Science Reviews, 2015,115:78-88. |
[43] | Zhang Z, Liu K B, Bianchette T A, et al. The mid-Holocene decline of the East Asian summer monsoon indicated by a lake-to-wetland transition in the Sanjiang Plain, Northeast China. The Holocene, 2018,28(2):246-253. |
[44] | Chu G, Sun Q, Xie M, et al. Holocene cyclic climatic variations and the role of the Pacific Ocean as recorded in varved sediments from northeastern China. Quaternary Science Reviews, 2014,102:85-95. |
[45] | Wen R, Xiao J, Chang Z, et al. Holocene climate changes in the mid-high-latitude-monsoon margin reflected by the pollen record from Hulun Lake, northeastern Inner Mongolia. Quaternary Research, 2010,73(2):293-303. |
[46] |
Zhang Y, Meyers P A, Gao C. Holocene climate change in northeastern China reconstructed from lipid biomarkers in a peat sequence from the Sanjiang Plain. Organic Geochemistry, 2017,113:105-114.
doi: 10.1016/j.orggeochem.2017.07.018 |
[47] |
Xiao J, Si B, Zhai D, et al. Hydrology of Dali lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability. Journal of Paleolimnology, 2008,40(1):519-528.
doi: 10.1007/s10933-007-9179-x |
[48] | Liu Y, Sun J, Yang Y, et al. Tree-ring-derived precipitation records from Inner Mongolia, China, since AD 1627. Tree-Ring Research, 2007,63(1):3-15. |
[49] | Fang K, Gou X, Chen F, et al. Tree-ring based drought reconstruction for the Guiqing Mountain (China): Linkages to the Indian and Pacific Oceans. International Journal of Climatology, 2010,30(8):1137-1145. |
[50] | Fang K, Gou X, Chen F, et al. Precipitation variability during the past 400 years in the Xiaolong Mountain (central China) inferred from tree rings. Climate Dynamics, 2012,39(7-8):1697-1707. |
[51] | Fang K, Gou X, Chen F, et al. Tree-ring based reconstruction of drought variability (1615-2009) in the Kongtong Mountain area, northern China. Global and Planetary Change, 2012, 80-81:190-197. |
[52] | Fang K, Guo Z, Chen D, et al. Drought variation of western Chinese Loess Plateau since 1568 and its linkages with droughts in western North America. Climate Dynamics, 2017,49(11-12):3839-3850. |
[53] | Chen F, Zhang R, Wang H, et al. Updated precipitation reconstruction (AD 1482-2012) for Huashan, north-Central China. Theoretical and Applied Climatology, 2016,123:723-732. |
[54] | Zhang Y, Tian Q, Guillet S, et al. 500 a precipitation variability in Southern Taihang Mountains, China, and its linkages to ENSO and PDO. Climatic Change, 2017,144(3):419-432. |
[55] |
Zhang P, Cheng H, Edwards R L, et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science, 2008,322(5903):940-942.
pmid: 18988851 |
[56] | Tan L, Cai Y, An Z, et al. Centennial-to decadal-scale monsoon precipitation variability in the semi-humid region, northern China during the last 1860 years: Records from stalagmites in Huangye Cave. The Holocene, 2011,21(2):287-296. |
[57] | Li J, Dodson J, Yan H, et al. Quantifying climatic variability in monsoonal northern China over the last 2200 years and its role in driving Chinese dynastic changes. Quaternary Science Reviews, 2017,159:35-46. |
[58] | Tan Ming. Circulation background of climate patterns in the past millennium: Uncertainty analysis and re-reconstruction of ENSO-like state. Science China Earth Sciences, 2016,46(5):657-673. |
[ 谭明. 近千年气候格局的环流背景: ENSO态的不确定性分析与再重建. 中国科学: 地球科学, 2016,46(5):657-673.] | |
[59] | Zhang Y, Tian Q, Gou X, et al. Annual precipitation reconstruction since AD 775 based on tree rings from the Qilian Mountains, northwestern China. International Journal of Climatology, 2011,31(3):371-381. |
[60] | Gou X, Deng Y, Gao L, et al. Millennium tree-ring reconstruction of drought variability in the eastern Qilian Mountains, northwest China. Climate Dynamics, 2015,45(7-8):1761-1770. |
[61] | Gou X, Gao L, Deng Y, et al. An 850‐year tree‐ring‐based reconstruction of drought history in the western Qilian Mountains of northwestern China. International Journal of Climatology, 2015,35(11):3308-3319. |
[62] |
Liu Y, Sun J, Song H, et al. Tree-rings hydrologic reconstructions for the Heihe River watershed, western China since AD 1430. Water Research, 2010,44(9):2781-2792.
doi: 10.1016/j.watres.2010.02.013 pmid: 20206961 |
[63] |
Chen F, Yuan Y, Chen F, et al. A 426-year drought history for Western Tian Shan, Central Asia, inferred from tree rings and linkages to the North Atlantic and Indo-West Pacific Oceans. The Holocene, 2013,23(8):1095-1104.
doi: 10.1177/0959683613483614 |
[64] |
Chen F, Yuan Y, Wei W, et al. Precipitation reconstruction for the southern Altay Mountains (China) from tree rings of Siberian spruce, reveals recent wetting trend. Dendrochronologia, 2014,32(3):266-272.
doi: 10.1016/j.dendro.2014.06.003 |
[65] |
Chen F, Yuan Y, Wei W, et al. Tree-ring recorded hydroclimatic change in Tienshan mountains during the past 500 years. Quaternary International, 2015,358:35-41.
doi: 10.1016/j.quaint.2014.09.057 |
[66] | Chen F, Yuan Y, Yu S, et al. Tree-ring based reconstruction of precipitation in the Urumqi region, China, since AD 1580 reveals changing drought signals. Climate Research, 2016,68(1):49-58. |
[67] |
Chen F, Yuan Y, Zhang T, et al. Precipitation reconstruction for the northwestern Chinese Altay since 1760 indicates the drought signals of the northern part of inner Asia. International Journal of Biometeorology, 2016,60(3):455-463.
doi: 10.1007/s00484-015-1043-5 pmid: 26232944 |
[68] | Chen F, Yuan Y, Yu S. Tree-ring indicators of rainfall and streamflow for the Ili-Balkhash Basin, Central Asia since CE 1560. Palaeogeography Palaeclimatology Palaeoecology, 2017,482:48-56. |
[69] |
Zhang R, Yuan Y, Yu S, et al. Past changes of spring drought in the inner Tianshan Mountains, China, as recorded by tree rings. Boreas, 2017,46(4):688-696.
doi: 10.1111/bor.2017.46.issue-4 |
[70] |
Zhang T W, Yuan Y J, Liu Y, et al. A tree-ring based precipitation reconstruction for the Baluntai region on the southern slop of the central Tien Shan Mountains, China, since AD 1464. Quaternary International, 2013,283:55-62.
doi: 10.1016/j.quaint.2012.03.037 |
[71] |
Jiang Qingfeng, Shen Ji, Liu Xingqi, et al. 2.5 ka study on the climate and environmental changes recorded by lake sediments in Jili Lake, Xinjiang. Journal of Lake Sciences, 2010,22(1):119-126.
doi: 10.18307/2010.0117 |
[ 蒋庆丰, 沈吉, 刘兴起, 等. 2.5 ka来新疆吉力湖湖泊沉积记录的气候环境变化. 湖泊科学, 2010,22(1):119-126.] | |
[72] |
Li Y, Qiang M, Zhang J, et al. Hydroclimatic changes over the past 900 years documented by the sediments of Tiewaike Lake, Altai Mountains, northwestern China. Quaternary International, 2017,452:91-101.
doi: 10.1016/j.quaint.2016.07.053 |
[73] | Yao Tandong, et al. Scientific Assessment of Environmental Change in Tibetan Plateau. Beijing: Science Press, 2015: 157. |
[ 姚檀栋, 等. 青藏高原环境变化科学评估. 北京: 科学出版社, 2015: 157.] | |
[74] |
Shao X, Xu Y, Yin Z, et al. Climatic implications of a 3585-year tree-ring width chronology from the northeastern Qinghai-Tibetan Plateau. Quaternary Science Reviews, 2010,29(17-18):2111-2122.
doi: 10.1016/j.quascirev.2010.05.005 |
[75] | Yang B, Qin C, Wang J, et al. A 3500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. Proceedings of the National Academy of Sciences of USA, 2014,111(8):2903-2908. |
[76] |
Wang H, Shao X, Li M. A 2917-year tree-ring-based reconstruction of precipitation for the Buerhanbuda Mts., southeastern Qaidam Basin, China. Dendrochronologia, 2019,55:80-92.
doi: 10.1016/j.dendro.2019.04.002 |
[77] |
Yin Z, Zhu H, Huang L, et al. Reconstruction of biological drought conditions during the past 2847 years in an alpine environment of the northeastern Tibetan Plateau, China, and possible linkages to solar forcing. Global and Planetary Change, 2016,143:214-227.
doi: 10.1016/j.gloplacha.2016.04.010 |
[78] |
Sheppard P R, Tarasov P E, Graumlich L J, et al. Annual precipitation since 515 BC reconstructed from living and fossil juniper growth of northeastern Qinghai Province, China. Climate Dynamics, 2004,23(7/8):869-881.
doi: 10.1007/s00382-004-0473-2 |
[79] | Pu Y, Nace T, Meyers P A, et al. Paleoclimate changes of the last 1000 yr on the eastern Qinghai-Tibetan Plateau recorded by elemental, isotopic, and molecular organic matter proxies in sediment from glacial Lake Ximencuo. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013,379:39-53. |
[80] | Huang L, Shao X. Precipitation variation in Delingha, Qinghai and solar activity over the last 400 years. Quaternary Sciences, 2005,25(2):184-192. |
[81] |
Fang K, Frank D, Gou X, et al. Precipitation over the past four centuries in the Dieshan Mountains as inferred from tree rings: An introduction to an HHT-based method. Global and Planetary Change, 2013,107:109-118.
doi: 10.1016/j.gloplacha.2013.04.010 |
[82] |
Peng J, Liu Y. Reconstructed droughts for the northeastern Tibetan Plateau since AD 1411 and its linkages to the Pacific, Indian and Atlantic oceans. Quaternary International, 2013,283:98-106.
doi: 10.1016/j.quaint.2012.04.021 |
[83] | Yao T, Duan K, Xu B, et al. Precipitation record since AD 1600 from ice cores on the central Tibetan Plateau. Climate of the Past, 2008,4(3):175-180. |
[84] | Tian Lide, Yao Tandong. High-resolution climatic and environmental records from the Tibetan Plateau ice cores. Chinese Science Bulletin, 2016,61(9):926-937. |
[ 田立德, 姚檀栋. 青藏高原冰芯高分辨率气候环境记录研究进展. 科学通报, 2016,61(9):926-937.] | |
[85] | Shao X, Huang L, Liu H, et al. Reconstruction of precipitation variation from tree rings in recent 1000 years in Delingha, Qinghai. Science in China Series D: Earth Sciences, 2005,48(7):939-949. |
[86] | Liu Y, An Z, Ma H, et al. Precipitation variation in the northeastern Tibetan Plateau recorded by the tree rings since 850 AD and its relevance to the Northern Hemisphere temperature. Science in China Series D: Earth Sciences, 2006,49(4):408-420. |
[87] |
Zhang Q B, Evans M N, Lyu L. Moisture dipole over the Tibetan Plateau during the past five and a half centuries. Nature Communications, 2015,6:8062. Doi: 10.1038/ncomms9062.
doi: 10.1038/ncomms9062 pmid: 26293214 |
[88] | Sun J, Liu Y. Tree ring based precipitation reconstruction in the south slope of the middle Qilian Mountains, northeastern Tibetan Plateau, over the last millennium. Journal of Geophysical Research: Atmospheres, 2012,117:D08108. |
[89] | Nie C Y, Zhang Q B, Lyu L. Millennium-long tree-ring chronology reveals megadroughts on the southeastern Tibetan Plateau. Tree-ring Research, 2017,73(1):1-10. |
[90] | Wang X, Zhang Q B, Ma K, et al. A tree-ring record of 500-year dry-wet changes in northern Tibet, China. The Holocene, 2008,18(4):579-588. |
[91] | Liu J, Yang B, Qin C. Tree-ring based annual precipitation reconstruction since AD 1480 in south central Tibet. Quaternary International, 2011,236(1/2):75-81. |
[92] | Liu J, Yang B, Huang K, et al. Annual regional precipitation variations from a 700 year treering record in south Tibet, western China. Climate Research, 2012,53(1):25-41. |
[93] | He M, Yang B, Bräuning A, et al. Tree-ring derived millennial precipitation record for the south-central Tibetan Plateau and its possible driving mechanism. The Holocene, 2012,23(1):36-45. |
[94] | He M, Bräuning A, Grießinger J, et al. May-June drought reconstruction over the past 821 years on the south-central Tibetan Plateau derived from tree-ring width series. Dendrochronologia, 2018,47:48-57. |
[95] | Fang K, Gou X, Chen F, et al. Reconstructed droughts for the southeastern Tibetan Plateau over the past 568 years and its linkages to the Pacific and Atlantic Ocean climate variability. Climate Dynamics, 2010,35(4):577-585. |
[96] | Tan L, Cai Y, An Z, et al. Decreasing monsoon precipitation in southwest China during the last 240 years associated with the warming of tropical ocean. Climate Dynamics, 2017,48(5/6):1769-1778. |
[97] | Tan L, Cai Y, Cheng H, et al. High resolution monsoon precipitation changes on southeastern Tibetan Plateau over the past 2300 years. Quaternary Science Reviews, 2018,195:122-132. |
[98] |
Deng Y, Gou X, Gao L, et al. Spatiotemporal drought variability of the eastern Tibetan Plateau during the last millennium. Climate Dynamics, 2017,49(5/6):2077-2091.
doi: 10.1007/s00382-016-3433-8 |
[1] | 魏石梅, 潘竟虎. 中国地级及以上城市网络结构韧性测度[J]. 地理学报, 2021, 76(6): 1394-1407. |
[2] | 杨忍, 潘瑜鑫. 中国县域乡村脆弱性空间特征与形成机制及对策[J]. 地理学报, 2021, 76(6): 1438-1454. |
[3] | 殷江滨, 李尚谦, 姜磊, 程哲, 黄晓燕, 路改改. 中国连片特困地区非农就业增长的时空特征与驱动因素[J]. 地理学报, 2021, 76(6): 1471-1488. |
[4] | 胡畔, 陈波, 史培军. 中国暴雨洪涝灾情时空格局及影响因素[J]. 地理学报, 2021, 76(5): 1148-1162. |
[5] | 黄晓东, 马海涛, 苗长虹. 基于创新企业的中国城市网络联系特征[J]. 地理学报, 2021, 76(4): 835-852. |
[6] | 王录仓, 刘海洋, 刘清. 基于腾讯迁徙大数据的中国城市网络研究[J]. 地理学报, 2021, 76(4): 853-869. |
[7] | 夏兴生, 潘耀忠, 朱秀芳, 张锦水. 中国综合农业分区下的Ångström-Prescott公式系数逐月校正与优选[J]. 地理学报, 2021, 76(4): 888-902. |
[8] | 王淑佳, 孙九霞. 中国传统村落可持续发展评价体系构建与实证[J]. 地理学报, 2021, 76(4): 921-938. |
[9] | 范泽孟. 中国生态过渡带分布的空间识别及情景模拟[J]. 地理学报, 2021, 76(3): 626-644. |
[10] | 徐羽, 李秀彬, 辛良杰. 中国耕地规模化流转租金的分异特征及其影响因素[J]. 地理学报, 2021, 76(3): 753-763. |
[11] | 李钢, 薛淑艳, 马雪瑶, 周俊俊, 徐婷婷, 王皎贝. 中国失踪人口的时空格局演变与形成机制[J]. 地理学报, 2021, 76(2): 310-325. |
[12] | 古恒宇, 沈体雁. 中国高学历人才的空间演化特征及驱动因素[J]. 地理学报, 2021, 76(2): 326-340. |
[13] | 朱晟君, 金文纨. 地方出口产品结构及制度环境与企业出口相关多样化[J]. 地理学报, 2021, 76(2): 398-414. |
[14] | 葛全胜, 朱会义. 两千年来中国自然与人文地理环境变迁及启示[J]. 地理学报, 2021, 76(1): 3-14. |
[15] | 张兴航, 张百平, 王晶, 余付勤, 赵超, 姚永慧. 中国南北过渡带东段样带植被序列与气候分界问题[J]. 地理学报, 2021, 76(1): 30-43. |