地理学报 ›› 2020, Vol. 75 ›› Issue (7): 1346-1358.doi: 10.11821/dlxb202007002
收稿日期:
2019-04-02
修回日期:
2020-04-27
出版日期:
2020-07-25
发布日期:
2020-09-25
作者简介:
孙思奥(1983-), 女, 湖南津市人, 博士, 副研究员, 主要从事城市水文和水资源管理与政策相关研究。E-mail: 基金资助:
SUN Siao1(), WANG Jing2, QI Wei1
Received:
2019-04-02
Revised:
2020-04-27
Published:
2020-07-25
Online:
2020-09-25
Supported by:
摘要:
青藏高原是亚洲水塔,其水资源与水生态环境保护意义重大。从虚拟水视角,研究青藏高原与外部的水资源贸易关系和影响因素,有助于理解该地区的水资源问题、制定虚拟水贸易策略、优化区域城乡水资源配置、保障亚洲水塔功能。依托2012年中国区域间投入产出表成果,本文测算了青藏高原与中国其他区域之间的虚拟水贸易关系,建立了中国区域城镇与农村地区的虚拟水贸易网络,采用对数平均迪氏指数模型分析了青藏高原对其他区域虚拟水贸易不平衡的影响因素。结果表明,青藏高原向中国其他区域净输出虚拟水2.25亿m3,其中向西南、华北、华中、华东、华南等5个区域净输出虚拟水,从西北和东北2个区域净输入虚拟水。城乡之间虚拟水贸易联系非常紧密,农村地区生产水足迹较高,而城镇地区由于人口密度较高、消费水平较高,是虚拟水最终消费的热点区域,青藏高原农村地区的虚拟水贸易量大于城镇地区的虚拟水贸易量。青藏高原贸易输出结构以农产品为主导,虚拟水净输出12.7亿m3;青藏高原与其他区域贸易存在逆差,贸易量因素导致虚拟水净输入8.6亿m3;用水效率在青藏高原与不同区域虚拟水贸易中的正负效应不一,总体带来青藏高原虚拟水净输入1.8亿m3。未来,应重点通过灌溉节水减少农业水足迹,引导城镇居民向低水足迹生活方式转变,鼓励内地为青藏高原提供物质与技术支援,实行水资源生态补偿政策,以保护青藏高原水资源,促进区域水资源可持续利用。
孙思奥, 王晶, 戚伟. 青藏高原地区城乡虚拟水贸易格局与影响因素[J]. 地理学报, 2020, 75(7): 1346-1358.
SUN Siao, WANG Jing, QI Wei. Urban-and-rural virtual water trade of Qinghai-Tibet Plateau: Patterns and influencing factors[J]. Acta Geographica Sinica, 2020, 75(7): 1346-1358.
[1] | Immerzeel W, Stoorvogel J, Antle J. Can payments for ecosystem services secure the water tower of Tibet. Agricultural Systems, 2008,96:52-63. |
[2] | Zhang L, Su F, Yang D, et al. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. Journal of Geophysical Research-Atmosphere, 2013,118:8500-8518. |
[3] | Lu Chunxia, Xie Gaodi, Cheng Shengkui, et al. The Tibetan Plateau as water tower. Journal of Mountain Science, 2004,22(4):428-432. |
[ 鲁春霞, 谢高地, 成升魁, 等. 青藏高原的水塔功能. 山地学报, 2004,22(4):428-432.] | |
[4] |
Wang X, Zhong X, Pan G. A GIS-based decision support system for regional eco-security assessment and its application on the Tibetan Plateau. Journal of Environmental Management, 2010,91:1981-1990.
doi: 10.1016/j.jenvman.2010.05.006 pmid: 20627541 |
[5] |
Yu C, Zhang Y, Claus H, et al. Ecological and environmental issues faced by a developing Tibet. Environmental Science & Technology, 2012,46:1979-1980.
pmid: 22304386 |
[6] | Yao Tandong, Zhu Liping. The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy. Advances in Earth Science, 2006,21(5):459-464. |
[ 姚檀栋, 朱立平. 青藏高原环境变化对全球变化的响应及其适应对策. 地球科学进展, 2006,21(5):459-464.] | |
[7] | Klein J A, Harte J, Zhao X Q. Experimental warming causes large and rapid species loss dampened by simulated grazing on the Tibetan Plateau. Ecology Letters, 2004,7(12):1170-1179. |
[8] | Ministry of Water Resources of the People's Republic of China. China Water Resources Bulletin. 1997-2016. |
[ 中华人民共和国水利部. 中国水资源公报. 1997—2016.] | |
[9] | Sun Si'ao, Ren Yufei, Zhang Qiang. Multi-scale perspective on water scarcity assessment in Tibetan Plateau. Journal of Geo-information Science, 2019,21(9):1308-1317. |
[ 孙思奥, 任宇飞, 张蔷. 多尺度视角下的青藏高原水资源短缺估算及空间格局. 地球信息科学学报, 2019,21(9):1308-1317.] | |
[10] | Zhuo Macuo, Feng Qi, Li Jinxiu. The study on water resources exploitation and regional economy of Hehuang areas in Qinghai. Journal of Arid Land Resources and Environment, 2007,21(2):95-99. |
[ 卓玛措, 冯起, 李锦秀. 青海河湟地区水资源综合开发与区域经济发展研究. 干旱区资源与环境, 2007,21(2):95-99.] | |
[11] | Da Wa. Analysis of water resources utilization in Tibet. Journal of Yangtze River Scientific Research Institute, 2010,27(3):74-78. |
[ 达娃. 西藏地区水资源利用分析. 长江科学院院报, 2010,27(3):74-78.] | |
[12] | Zhao M, Kong Q, Wang H, et al. Mitochondrial genome evidence reveals successful Late Paleolithic settlement on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2009,106:21230-21235. |
[13] | Liu Tianchou, Qimeiduoji. Characteristics, development and utilization prospects of water resources of the international river area in Qinghai-Tibet Plateau. Acta Geographica Sinica, 1999,54(Suppl.):11-20. |
[ 刘天仇, 其美多吉. 青藏高原国际河流区水资源特征及开发利用前景. 地理学报, 1999,54(增刊):11-20.] | |
[14] | Allan J A. Fortunately there are substitutes for water: Otherwise our hydropolitical futures would be impossible//Priorities for Water Resources Allocation and Management. London, UK: ODA, 1993. |
[15] | Hoekstra A Y. Virtual water trade: Proceedings of the International Expert Meeting on Virtual Water Trade, IHE Delft, The Netherlands, 12-13 February 2003. |
[16] | Chapagain A K, Hoekstra A Y. The global component of freshwater demand and supply: An assessment of virtual water flows between nations as a result of trade in agricultural and industrial products. Water International, 2008,33(1):19-32. |
[17] | Hoekstra A Y. Sustainable, efficient and equitable water use: The three pillars under wise freshwater allocation. Wiley Interdisciplinary Reviewers: Water, 2013,1(1):31-40. |
[18] | Zhao Xu, Yang Zhifeng, Chen Bin. Study on Chinese virtual water trade and consumption in an input-output framework. Journal of Natural Resources, 2009,24(2):286-294. |
[ 赵旭, 杨志峰, 陈彬. 基于投入产出分析技术的中国虚拟水贸易及消费研究. 自然资源学报, 2009,24(2) : 286-294.] | |
[19] | Huang Min, Huang Wei. Measurement of virtual water trade and its impact factors in China. China Population, Resources and Environment, 2016,26(4):100-106. |
[ 黄敏, 黄炜. 中国虚拟水贸易的测算及影响因素研究. 中国人口·资源与环境, 2016,26(4):100-106.] | |
[20] | Cao Tao, Wang Saige, Chen Bin. Virtual water analysis for the Jing-Jin-Ji region based on multiregional input-outputmodel. Acta Ecologica Sinica, 2018,38(3):788-799. |
[ 曹涛, 王赛鸽, 陈彬. 基于多区域投入产出分析的京津冀地区虚拟水核算. 生态学报, 2018,38(3):788-799.] | |
[21] | Hoekstra A Y, Chapagain A K, Aldaya M M, et al. The Water Footprint Assessment Manual: Setting the Global Standard. London, UK: Earthscan, 2011. |
[22] | Hoekstra A Y, Mekonnen M M. The water footprint of humanity. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(9):3232. |
[23] | Mekonnen M, Hoekstra A Y. National water footprint accounts: The green, blue and grey water footprint of production and consumption//UNESCO-IHE Institute for Water Education, Delft, the Netherlands. Value of Water Research Report No.50. 2011. |
[24] | Zhou Lingling, Wang Lin, Wang Jin. Review on study of water footprint theory. Journal of Water Resources & Water Engineering, 2013,24(5):106-111. |
[ 周玲玲, 王琳, 王晋. 水足迹理论研究综述. 水资源与水工程学报, 2013,24(5):106-111.] | |
[25] | Xu Zhongmin, Long Aihua, Zhang Zhiqiang. Virtual water consumption calculation and analysis of Gansu Province in 2000. Acta Geographica Sinica, 2003,58(6):861-869. |
[ 徐中民, 龙爱华, 张志强, 等. 虚拟水的理论方法及在甘肃省的应用. 地理学报, 2003,58(6):861-869.] | |
[26] | Long Aihua, Zhang Zhiqiang, Xu Zhongmin, et al. Analysis of water footprint and consumption pattern in Gansu Province. Advances in Water Science, 2005,16(3):418-425. |
[ 龙爱华, 张志强, 徐中民, 等. 甘肃省水资源足迹与消费模式分析. 水科学进展, 2005,16(3):418-425.] | |
[27] | Guan D, Hubacek K. Assessment of regional trade and virtual water flows in China. Ecological Economics, 2007,61(1):159-170. |
[28] | Zhang C, Anadon L D. A multi-regional input-output analysis of domestic virtual water trade and provincial water footprint in China. Ecological Economics, 2014,100(2):159-172. |
[29] |
Sun S, Fang C. Factors governing variations of provincial consumption-based water footprints in China: An analysis based on comparison with national average. Science of the Total Environment, 2019,654:914-923.
pmid: 30453261 |
[30] | Zhao X, Liu J, Liu Q, et al. Physical and virtual water transfers for regional water stress alleviation in China. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(4):1031-1035. |
[31] | Liu Weidong, Tang Zhipeng, Han Mengyao, et al. The 2012 China Multi-Regional Input-Output Table of 31 provincial Units. Beijing: China Statistics Press, 2018. |
[ 刘卫东, 唐志鹏, 韩梦瑶, 等. 2012年中国31省区市区域间投入产出表. 北京: 中国统计出报社, 2018.] | |
[32] | Sun Caizhi, Liu Shubin. Consumptionpatterns of urban and rural residents in China based on virtual water theory. Journal of Economics of Water Resources, 2017,35(4):1-8. |
[ 孙才志, 刘淑彬. 基于虚拟水视角的中国城乡居民消费特征分析. 水利经济, 2017,35(4):1-8.] | |
[33] | National Bureau of Statistics of the People's Republic of China. China Economic Census Yearbook. Beijing: China Statistics Press, 2008. |
[ 国家统计局. 中国经济普查年鉴. 北京: 中国统计出版社, 2008.] | |
[34] |
Zhao C, Chen B. Driving force analysis of the agricultural water footprint in China based on the LMDI method. Environmental Science & Technology, 2014,48(21):12723-12731.
doi: 10.1021/es503513z pmid: 25289879 |
[35] | Zhang Chenjun, Zhang Hengquan, Zhang Lina. Analysis of water resources consumption change in China based on multilevel LMDI method. Statistics and Decision-making, 2016(3):98-102. |
[ 张陈俊, 章恒全, 张丽娜. 基于多层次LMDI方法的中国水资源消耗变化分析. 统计与决策, 2016(3):98-102.] | |
[36] | Liu Z, Davis S J, Feng K, et al. Targeted opportunities to address the climate-trade dilemma in China. Nature Climate Change, 2015(6):201-206. |
[37] | Sun S, Fang C, Lv J. Spatial inequality of water footprint in China: A detailed decomposition of inequality from water use types and drivers. Journal of Hydrology, 2017,553:398-407. |
[38] |
Sun S. Water footprints in Beijing, Tianjin and Hebei: A perspective from comparisons between urban and rural consumptions in different regions. Science of the Total Environment, 2019,647:507-515.
pmid: 30086502 |
[1] | 侯光良, 兰措卓玛, 朱燕, 庞龙辉. 青藏高原史前时期交流路线及其演变[J]. 地理学报, 2021, 76(5): 1294-1313. |
[2] | 黄海, 田尤, 刘建康, 张佳佳, 杨东旭, 杨顺. 藏东地区斜坡土壤冻融侵蚀力学机制及敏感性分析[J]. 地理学报, 2021, 76(1): 87-100. |
[3] | 封志明, 李文君, 李鹏, 肖池伟. 青藏高原地形起伏度及其地理意义[J]. 地理学报, 2020, 75(7): 1359-1372. |
[4] | 梁馨月, 徐梦珍, 吕立群, 崔一飞, 张风宝. 基于地貌特征的青藏高原边缘泥石流沟分类[J]. 地理学报, 2020, 75(7): 1373-1385. |
[5] | 冯雨雪, 李广东. 青藏高原城镇化与生态环境交互影响关系分析[J]. 地理学报, 2020, 75(7): 1386-1405. |
[6] | 许珺, 徐阳, 胡蕾, 王振波. 基于位置大数据的青藏高原人类活动时空模式[J]. 地理学报, 2020, 75(7): 1406-1417. |
[7] | 王楠, 王会蒙, 杜云艳, 易嘉伟, 刘张, 涂文娜. 青藏高原人口流入流出时空模式研究[J]. 地理学报, 2020, 75(7): 1418-1431. |
[8] | 戚伟, 刘盛和, 周亮. 青藏高原人口地域分异规律及“胡焕庸线”思想应用[J]. 地理学报, 2020, 75(2): 255-267. |
[9] | 高星, 康世昌, 刘青松, 陈鹏飞, 段宗奇. 1899—2011年青藏高原南部枪勇错沉积物磁性矿物的环境意义[J]. 地理学报, 2020, 75(1): 68-81. |
[10] | 范科科, 张强, 孙鹏, 宋长青, 余慧倩, 朱秀迪, 申泽西. 青藏高原土壤水分变化对近地面气温的影响[J]. 地理学报, 2020, 75(1): 82-97. |
[11] | 郭超,蒙红卫,马玉贞,李丹丹,胡彩莉,刘杰瑞,雒聪文,王凯. 藏南羊卓雍错沉积物元素地球化学记录的过去2000年环境变化[J]. 地理学报, 2019, 74(7): 1345-1362. |
[12] | 高兴川,曹小曙,李涛,吕敏娟. 1976-2016年青藏高原地区通达性空间格局演变[J]. 地理学报, 2019, 74(6): 1190-1204. |
[13] | 田原,余成群,查欣洁,高星,于明寨. 青藏高原西部、南部和东北部边界地区天然水的水化学性质及其成因[J]. 地理学报, 2019, 74(5): 975-991. |
[14] | 范科科, 张强, 孙鹏, 宋长青, 朱秀迪, 余慧倩, 申泽西. 青藏高原地表土壤水变化、影响因子及未来预估[J]. 地理学报, 2019, 74(3): 520-533. |
[15] | 孙思奥, 郑翔益, 刘海猛. 京津冀城市群虚拟水贸易的近远程分析[J]. 地理学报, 2019, 74(12): 2631-2645. |