地理学报 ›› 2020, Vol. 75 ›› Issue (5): 961-974.doi: 10.11821/dlxb202005006
金凯1,2, 王飞1,3,4(), 韩剑桥1,3, 史尚渝3,5, 丁文斌1
收稿日期:
2019-09-18
修回日期:
2020-03-03
出版日期:
2020-05-25
发布日期:
2020-07-25
通讯作者:
王飞
E-mail:wafe@ms.iswc.ac.cn
作者简介:
金凯(1988-), 男, 山东平邑人, 博士, 讲师, 主要从事土地利用/覆被变化及其生态效应研究。E-mail: jinkai- 2014@outlook.com; jinkai@qau.edu.cn
基金资助:
JIN Kai1,2, WANG Fei1,3,4(), HAN Jianqiao1,3, SHI Shangyu3,5, DING Wenbin1
Received:
2019-09-18
Revised:
2020-03-03
Online:
2020-05-25
Published:
2020-07-25
Contact:
WANG Fei
E-mail:wafe@ms.iswc.ac.cn
Supported by:
摘要:
基于中国603个气象站的地表气温和降水观测资料以及GIMMS NDVI3g数据,采用变化趋势分析和多元回归残差分析等方法研究了1982—2015年中国植被NDVI变化特征及其主要驱动因素(即气候变化和人类活动)的相应贡献。结果表明:① 1982—2015年中国植被恢复明显,在选择的32个省级行政区中,山西、陕西和重庆的生长季NDVI增加最快,仅上海生长季NDVI呈减小趋势。② 气候变化和人类活动的共同作用是中国植被NDVI呈现整体快速增加和巨大空间差异的主要原因,其中气候变化对各省生长季NDVI变化的影响在-0.01×10 -3~1.05×10 -3 a -1之间,而人类活动的影响在-0.32×10 -3~1.77×10 -3 a -1之间。③ 气候变化和人类活动分别对中国近34年来植被NDVI的增加贡献了40%和60%;人类活动贡献率超过80%的区域主要集中在黄土高原中部、华北平原以及中国东北和西南等地;人类活动贡献率大于50%的省份有22个,其中贡献率最大的3个地区为上海、黑龙江和云南。研究结果建议应更加重视人类活动在植被恢复中的作用。
金凯, 王飞, 韩剑桥, 史尚渝, 丁文斌. 1982—2015年中国气候变化和人类活动对植被NDVI变化的影响[J]. 地理学报, 2020, 75(5): 961-974.
JIN Kai, WANG Fei, HAN Jianqiao, SHI Shangyu, DING Wenbin. Contribution of climatic change and human activities to vegetation NDVI change over China during 1982-2015[J]. Acta Geographica Sinica, 2020, 75(5): 961-974.
表3
1982—2015年中国32个省级行政区生长季NDVI平均变化趋势及其驱动因素的影响(10-3 a-1)"
地区 | slope (NDVIobs)a | 对植被恢复的作用 | 驱动力 | 地区 | slope(NDVIobs)a | 对植被恢复的作用 | 驱动力 | |||
---|---|---|---|---|---|---|---|---|---|---|
CCb | HAc | CCb | HAc | |||||||
上海 | -0.33 | 基本无影响 | 轻微抑制 | CC & HA | 海南 | 1.18 | 轻微促进 | 轻微促进 | CC & HA | |
西藏 | 0.04 | 基本无影响 | 基本无影响 | CC | 甘肃 | 1.39 | 轻微促进 | 轻微促进 | CC & HA | |
吉林 | 0.26 | 基本无影响 | 基本无影响 | CC & HA | 河南 | 1.41 | 轻微促进 | 轻微促进 | CC & HA | |
黑龙江 | 0.44 | 基本无影响 | 轻微促进 | CC & HA | 湖北 | 1.42 | 轻微促进 | 轻微促进 | CC & HA | |
青海 | 0.47 | 轻微促进 | 基本无影响 | CC & HA | 湖南 | 1.43 | 轻微促进 | 轻微促进 | CC & HA | |
四川 | 0.51 | 轻微促进 | 基本无影响 | CC & HA | 江西 | 1.46 | 轻微促进 | 轻微促进 | CC & HA | |
内蒙古 | 0.55 | 基本无影响 | 轻微促进 | CC & HA | 贵州 | 1.54 | 轻微促进 | 中度促进 | CC & HA | |
云南 | 0.64 | 基本无影响 | 轻微促进 | CC & HA | 宁夏 | 1.55 | 轻微促进 | 轻微促进 | CC & HA | |
浙江 | 0.68 | 轻微促进 | 基本无影响 | CC & HA | 安徽 | 1.58 | 轻微促进 | 轻微促进 | CC & HA | |
新疆 | 0.7 | 轻微促进 | 轻微促进 | CC & HA | 广西 | 1.62 | 轻微促进 | 中度促进 | CC & HA | |
台湾 | 0.83 | 轻微促进 | 轻微促进 | CC & HA | 北京 | 1.7 | 轻微促进 | 中度促进 | CC & HA | |
天津 | 0.85 | 轻微促进 | 轻微促进 | CC & HA | 山东 | 1.74 | 轻微促进 | 中度促进 | CC & HA | |
广东 | 0.9 | 基本无影响 | 轻微促进 | CC & HA | 河北 | 1.78 | 轻微促进 | 中度促进 | CC & HA | |
福建 | 0.91 | 轻微促进 | 轻微促进 | CC & HA | 重庆 | 2.16 | 中度促进 | 中度促进 | CC & HA | |
江苏 | 1 | 轻微促进 | 轻微促进 | CC & HA | 陕西 | 2.24 | 轻微促进 | 中度促进 | CC & HA | |
辽宁 | 1.1 | 基本无影响 | 轻微促进 | CC & HA | 山西 | 2.71 | 轻微促进 | 中度促进 | CC & HA |
[1] | IPCC. Summary for policymakers//Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, USA: Cambridge University Press, 2013. |
[2] |
Sun Hongyu, Wang Changyao, Niu Zheng , et al. Analysis of the vegetation cover change and the relationship between NDVI and environmental factors by using NOAA time series data. Journal of Remote Sensing, 1998,2(3):204-210.
doi: 10.11834/jrs.19980309 |
[ 孙红雨, 王长耀, 牛铮 , 等. 中国地表植被覆盖变化及其与气候因子关系: 基于NOAA时间序列数据分析. 遥感学报, 1998,2(3):204-210.]
doi: 10.11834/jrs.19980309 |
|
[3] | Fang J Y, Song Y C, Liu H Y , et al. Vegetation-climate relationship and its application in the division of vegetation zone in China. Acta Botanica Sinica, 2002,44(9):1105-1122. |
[4] |
Piao S, Friedlingstein P, Ciais P , et al. Effect of climate and CO2 changes on the greening of the Northern Hemisphere over the past two decades. Geophysical Research Letters, 2006,33:L23402. Doi: 10.1029/2006GL028205.
doi: 10.1029/2006GL028205 |
[5] |
Kong D, Zhang Q, Singh V P , et al. Seasonal vegetation response to climate change in the Northern Hemisphere (1982-2013). Global and Planetary Change, 2017,148:1-8.
doi: 10.1016/j.gloplacha.2016.10.020 |
[6] |
Liu Y, Li Y, Li S , et al. Spatial and temporal patterns of global NDVI trends: Correlations with climate and human factors. Remote Sensing, 2015,7(10):13233-13250.
doi: 10.3390/rs71013233 |
[7] | Yang Xuemei, Yang Taibao, Liu Haimeng , et al. Vegetation variation in the North Hemisphere under climate warming in the last 30 years. Arid Zone Research, 2016,33(2):379-391. |
[ 杨雪梅, 杨太保, 刘海猛 , 等. 气候变暖背景下近30a北半球植被变化研究综述. 干旱区研究, 2016,33(2):379-391.] | |
[8] |
Zhou L, Tucker C J, Kaufmann R K , et al. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. Journal of Geophysical Research: Atmospheres, 2001,106(D17):20069-20083.
doi: 10.1029/2000JD000115 |
[9] |
Sun W, Song X, Mu X , et al. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agricultural and Forest Meteorology, 2015, 209- 210(1):87-99.
doi: 10.1016/j.agrformet.2015.05.002 |
[10] |
Dana E D, Vivas S, Mota J F . Urban vegetation of Almería City: A contribution to urban ecology in Spain. Landscape and Urban Planning, 2002,59:203-216.
doi: 10.1016/S0169-2046(02)00039-7 |
[11] |
Jin K, Wang F, Li P . Responses of vegetation cover to environmental change in large cities of China. Sustainability, 2018,10(1):270. Doi: 10.3390/su10010270.
doi: 10.3390/su10010270 |
[12] |
Zhao A, Zhang A, Liu X , et al. Spatiotemporal changes of normalized difference vegetation index (NDVI) and response to climate extremes and ecological restoration in the Loess Plateau, China. Theoretical and Applied Climatology, 2018,132:555-567.
doi: 10.1007/s00704-017-2107-8 |
[13] |
Myneni R B, Hall F G, Sellers P J , et al. The interpretation of spectral vegetation indexes. IEEE Transactions on Geoscience and Remote Sensing, 1995,33(2):481-486.
doi: 10.1109/TGRS.36 |
[14] |
Lucht W, Prentice I C, Myneni R B , et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science, 2002,296(31):1687-1689.
doi: 10.1126/science.1071828 |
[15] |
Wang J, Meng J J, Cai Y L . Assessing vegetation dynamics impacted by climate change in the southwestern karst region of China with AVHRR NDVI and AVHRR NPP time-series. Environmental Geology, 2008,54(6):1185-1195.
doi: 10.1007/s00254-007-0901-9 |
[16] |
Zhang Y, Zhu Z, Liu Z , et al. Seasonal and interannual changes in vegetation activity of tropical forests in Southeast Asia. Agricultural and Forest Meteorology, 2016,224:1-10.
doi: 10.1016/j.agrformet.2016.04.009 |
[17] |
Tucker C, Pinzόn J, Brown M , et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 2005,26:4485-4498.
doi: 10.1080/01431160500168686 |
[18] | Cheng Fangyan, Liu Shiliang, Yi Yijie , et al. The dynamics and main driving factors of coastal vegetation in Guangxi based on MODIS NDVI. Acta Ecologica Sinica, 2017,37(3):788-797. |
[ 成方妍, 刘世梁, 尹艺洁 , 等. 基于MODIS NDVI的广西沿海植被动态及其主要驱动因素. 生态学报, 2017,37(3):788-797.] | |
[19] |
Fensholt R, Proud S R . Evaluation of earth observation based global long term vegetation trends: Comparing GIMMS and MODIS global NDVI time series. Remote Sensing of Environment, 2012,119(16):131-147.
doi: 10.1016/j.rse.2011.12.015 |
[20] |
Munyati C, Mboweni G . Variation in NDVI values with change in spatial resolution for semi-arid savanna vegetation: A case study in northwestern South Africa. International Journal of Remote Sensing, 2013,34(7):2253-2267.
doi: 10.1080/01431161.2012.743692 |
[21] |
Jin K, Wang F, Yu Q , et al. Varied degrees of urbanization effects on observed surface air temperature trends in China. Climate Research, 2018,76(2):131-143.
doi: 10.3354/cr01531 |
[22] |
Piao S, Ciais P, Huang Y , et al. The impacts of climate change on water resources and agriculture in China. Nature, 2010,467:43-51.
doi: 10.1038/nature09364 |
[23] |
Pang G, Wang X, Yang M . Using the NDVI to identify variations in, and responses of, vegetation to climate change on the Tibetan Plateau from 1982 to 2012. Quaternary International, 2017,444(2017):87-96.
doi: 10.1016/j.quaint.2016.08.038 |
[24] |
Zhang Chunsen, Hu Yan, Shi Xiaoliang . Analysis of spatial-temporal evolution of vegetation cover in Loess Plateau in recent 33 years based on AVHRR NDVI and MODIS NDVI. Journal of Applied Sciences, 2016,34(6):702-712.
doi: 10.3969/j.issn.0255-8297.2016.06.006 |
[ 张春森, 胡艳, 史晓亮 . 基于AVHRR和MODIS NDVI数据的黄土高原植被覆盖时空演变分析. 应用科学学报, 2016,34(6):702-712.]
doi: 10.3969/j.issn.0255-8297.2016.06.006 |
|
[25] |
Mao D, Wang Z, Luo L , et al. Integrating AVHRR and MODIS data to monitor NDVI changes and their relationships with climatic parameters in Northeast China. International Journal of Applied Earth Observations and Geoinformation, 2012,18:528-536.
doi: 10.1016/j.jag.2011.10.007 |
[26] | Zhang Yuecong, Zhao Zhiqiang, Li Shuangcheng , et al. Indicating variation of surface vegetation cover using SPOT NDVI in the northern part of North China. Geographical Research, 2008,27(4):745-754. |
[ 张月丛, 赵志强, 李双成 , 等. 基于SPOT NDVI的华北北部地表植被覆盖变化趋势. 地理研究, 2008,27(4):745-754.] | |
[27] |
Piao S, Yin G, Tan J , et al. Detection and attribution of vegetation greening trend in China over the last 30 years. Global Change Biology, 2015,21(4):1601-1609.
doi: 10.1111/gcb.12795 |
[28] | Deng Chenhui, Bai Hongying, Gao Shan , et al. Spatial-temporal variation of the vegetation coverage in Qinling Mountains and its dual response to climate change and human activities. Journal of Natural Resources, 2018,33(3):425-438. |
[ 邓晨晖, 白红英, 高山 , 等. 秦岭植被覆盖时空变化及其对气候变化与人类活动的双重响应. 自然资源学报, 2018,33(3):425-438.] | |
[29] |
Zheng Jingyun, Bian Juanjuan, Ge Quansheng , et al. The climate regionalization in China for 1981-2010. Chinese Science Bulletin, 2013,58(30):3088-3099.
doi: 10.1007/s11434-013-5948-2 |
[ 郑景云, 卞娟娟, 葛全胜 , 等. 1981—2010年中国气候区划. 科学通报, 2013,58(30):3088-3099.]
doi: 10.1007/s11434-013-5948-2 |
|
[30] |
Zhu Z C, Bi J, Pan Y Z , et al. Global data sets of vegetation Leaf Area Index (LAI)3g and Fraction of Photo synthetically Active Radiation (FPAR)3g derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the period 1981 to 2011. Remote Sensing, 2013,5(2):927-948.
doi: 10.3390/rs5020927 |
[31] |
Anyamba A, Small J, Tucker C , et al. Thirty-two years of Sahelian zone growing season non-stationary NDVI3g patterns and trends. Remote Sensing, 2014,6(4):3101-3122.
doi: 10.3390/rs6043101 |
[32] | Du Jiaqiang, Shu Jianmin, Zhao Chenxi , et al. Comparison of GIMMS NDVI3g and GIMMS NDVIg for monitoring vegetation activity and its responses to climate changes in Xinjiang during 1982-2006. Acta Ecologica Sinica, 2016,36(21):6738-6749. |
[ 杜加强, 舒俭民, 赵晨曦 , 等. 两代AVHRR GIMMS NDVI 数据集的对比分析: 以新疆地区为例. 生态学报, 2016,36(21):6738-6749.] | |
[33] | Jin Kai . Spatio-temporal variations of vegetation cover and its relationships between climate change and human activities over China[D]. Yangling: Northwest A&F University, 2019. |
[ 金凯 . 中国植被覆盖时空变化及其与气候和人类活动的关系[D]. 杨凌: 西北农林科技大学, 2019.] | |
[34] |
Wang F, Ge Q S . A new estimation of urbanization's contribution to the warming trend in China. Journal of Climate, 2015,28:8923-8938.
doi: 10.1175/JCLI-D-14-00427.1 |
[35] | Song Fuqiang, Kang Muyi, Yang Peng , et al. Comparison and validation of GIMMS, SPOT-VGT and MODIS global NDVI products in the Loess Plateau of northern Shaanxi Province, northwestern China. Journal of Beijing Forestry University, 2010,32(4):72-80. |
[ 宋富强, 康慕谊, 杨朋 , 等. 陕北地区GIMMS、SPOT-VGT和MODIS归一化植被指数的差异分析. 北京林业大学学报, 2010,32(4):72-80.] | |
[36] | Fang Jingyun, Piao Shilong, He Jinsheng , et al. Vegetation of China invigorated in last 20 years. Science in China: Series C, 2003,33(6):554-565. |
[ 方精云, 朴世龙, 贺金生 , 等. 近20年来中国植被活动在增强. 中国科学(C辑), 2003,33(6):554-565.] | |
[37] |
Zhao Jie, Du Ziqiang, Wu Zhitao , et al. Seasonal variations of day and nighttime warming and their effects on vegetation dynamics in China's temperate zone. Acta Geographica Sinica, 2018,73(3):395-404.
doi: 10.11821/dlxb201803001 |
[ 赵杰, 杜自强, 武志涛 , 等. 中国温带昼夜增温的季节性变化及其对植被动态的影响. 地理学报, 2018,73(3):395-404.]
doi: 10.11821/dlxb201803001 |
|
[38] |
Evans J, Geerken R . Discrimination between climate and human-induced dryland degradation. Journal of Arid Environments, 2004,57(4):535-554.
doi: 10.1016/S0140-1963(03)00121-6 |
[39] |
Wessels K J, Prince S D, Malherbe J , et al. Can human-induced land degradation be distinguished from the effects of rainfall variability? A case study in South Africa. Journal of Arid Environments, 2007,68(2):271-297.
doi: 10.1016/j.jaridenv.2006.05.015 |
[40] |
Li Jing, Liu Hongbing, Li Caiyun , et al. Changes of green-up day of vegetation growing season based on GIMMS 3g NDVI in northern China in recent 30 years. Scientia Geographica Sinica, 2017,37(4):620-629.
doi: 10.13249/j.cnki.sgs.2017.04.016 |
[ 李净, 刘红兵, 李彩云 , 等. 基于GIMMS 3g NDVI 的近30年中国北部植被生长季始期变化研究. 地理科学, 2017,37(4):620-629.]
doi: 10.13249/j.cnki.sgs.2017.04.016 |
|
[41] | Xin Z B, Xu J X, Zheng W . Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau (1981-2006): Impacts of climate changes and human activities. Science in China Series D: Earth Sciences, 2008,51(1):67-78. |
[42] | An Youzhi . Vegetation NDVI and phenology change in Northern China based on remote sensing[D]. Shanghai: East China Normal University, 2014. |
[ 安佑志 . 基于遥感的中国北部植被NDVI和物候变化研究[D]. 上海: 华东师范大学, 2014.] | |
[43] | Xie Baoni . Vegetation dynamics and climate change on the Loess Plateau, China: 1982-2014[D]. Yangling: Northwest A&F University, 2016. |
[ 谢宝妮 . 黄土高原近30年植被覆盖变化及其对气候变化的响应[D]. 杨凌: 西北农林科技大学, 2016.] | |
[44] | Zhang Qian . Contributions of climate change and human activities to vegetation dynamics of Loess Plateau[D]. Lanzhou: Lanzhou Jiaotong University, 2014. |
[ 张倩 . 气候和人类因素在黄土高原植被覆盖变化中的贡献率研究[D]. 兰州: 兰州交通大学, 2014.] | |
[45] |
Luo L H, Ma W, Zhuang Y L , et al. The impacts of climate change and human activities on alpine vegetation and permafrost in the Qinghai-Tibet Engineering Corridor. Ecological Indicators, 2018,93:24-35.
doi: 10.1016/j.ecolind.2018.04.067 |
[46] | Zhang Baoqing, Wu Pute, Zhao Xining . Detecting and analysis of spatial and temporal variation of vegetation cover in the Loess Plateau during 1982-2009. Transactions of the CSAE, 2011,27(4):287-293. |
[ 张宝庆, 吴普特, 赵西宁 . 近30a黄土高原植被覆盖时空演变监测与分析. 农业工程学报, 2011,27(4):287-293.] | |
[47] | Tian Haijing . Assessment of non-climate triggered vegetation trends in China from time series of remotely sensed data: A case study of government-dominated forest construction [D]. Beijing: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 2017. |
[ 田海静 . 非气候因素引起的中国植被变化遥感诊断: 以林业工程为例[D]. 北京: 中国科学院遥感与数字地球研究所, 2017.] | |
[48] |
Liu X, Zhu X, Pan Y , et al. Vegetation dynamics in Qinling-Daba Mountains in relation to climate factors between 2000 and 2014. Journal of Geographical Sciences, 2016,26(1):45-58.
doi: 10.1007/s11442-016-1253-8 |
[1] | 葛全胜, 方创琳, 江东. 美丽中国建设的地理学使命与人地系统耦合路径[J]. 地理学报, 2020, 75(6): 1109-1119. |
[2] | 魏素豪, 李晶, 李泽怡, 宗刚. 中国农业竞争力时空格局演化及其影响因素[J]. 地理学报, 2020, 75(6): 1287-1300. |
[3] | 王少剑, 高爽, 黄永源, 史晨怡. 基于超效率SBM模型的中国城市碳排放绩效时空演变格局及预测[J]. 地理学报, 2020, 75(6): 1316-1330. |
[4] | 李双双, 汪成博, 延军平, 刘宪锋. 面向事件过程的秦岭南北极端降水时空变化特征[J]. 地理学报, 2020, 75(5): 989-1007. |
[5] | 赵睿, 焦利民, 许刚, 徐智邦, 董婷. 城市空间增长与人口密度变化之间的关联关系[J]. 地理学报, 2020, 75(4): 695-707. |
[6] | 李涛, 王姣娥, 高兴川. 中国居民工作日与节假日的城际出行网络异同性研究[J]. 地理学报, 2020, 75(4): 833-848. |
[7] | 马彬, 张勃. 基于格点数据的1961—2016年中国气候季节时空变化[J]. 地理学报, 2020, 75(3): 458-469. |
[8] | 董治宝, 吕萍. 70年来中国风沙地貌学的发展[J]. 地理学报, 2020, 75(3): 509-528. |
[9] | 古恒宇, 孟鑫, 沈体雁, 崔娜娜. 中国城市流动人口居留意愿影响因素的空间分异特征[J]. 地理学报, 2020, 75(2): 240-254. |
[10] | 武亚群, 李双双, 延军平, 汪成博. 中国高校地理研究发展与态势[J]. 地理学报, 2020, 75(2): 302-317. |
[11] | 鞠洪润, 左丽君, 张增祥, 赵晓丽, 汪潇, 温庆可, 刘芳, 徐进勇, 刘斌, 易玲, 胡顺光, 孙菲菲, 汤占中. 中国土地利用空间格局刻画方法研究[J]. 地理学报, 2020, 75(1): 143-159. |
[12] | 张凯煌, 千庆兰, 杨青生. 中国城市土地城镇化多层级影响因素分析[J]. 地理学报, 2020, 75(1): 179-193. |
[13] | 周玉科. 中国东北地区植被生产力控制因素分析[J]. 地理学报, 2020, 75(1): 53-67. |
[14] | 彭文甫, 张冬梅, 罗艳玫, 陶帅, 徐新良. 自然因子对四川植被NDVI变化的地理探测[J]. 地理学报, 2019, 74(9): 1758-1776. |
[15] | 萧凌波, 闫军辉. 基于地方志的1736-1911年华北秋粮丰歉指数序列重建及其与气候变化的关系[J]. 地理学报, 2019, 74(9): 1777-1788. |