地理学报 ›› 2020, Vol. 75 ›› Issue (5): 949-960.doi: 10.11821/dlxb202005005
张琨1, 吕一河2,3(), 傅伯杰2,4, 尹礼唱2,5, 于丹丹1
收稿日期:
2019-03-22
修回日期:
2020-02-07
出版日期:
2020-05-25
发布日期:
2020-07-25
作者简介:
张琨(1988-), 男, 山东济南人, 博士, 助理研究员,主要从事生态恢复与生态系统服务研究。E-mail: zhangkun@nies.org
基金资助:
ZHANG Kun1, LYU Yihe2,3(), FU Bojie2,4, YIN Lichang2,5, YU Dandan1
Received:
2019-03-22
Revised:
2020-02-07
Published:
2020-05-25
Online:
2020-07-25
Supported by:
摘要:
黄土高原是退耕还林工程的核心区域,是中国生态恢复成效最显著的区域。明确黄土高原植被恢复对生态系统服务的影响,识别植被影响的阈值效应,是学术研究和管理实践共同的需求。然而,目前相关研究仍存在研究空缺,特别是在区域尺度对生态系统服务随植被变化阈值进行识别的研究较少。本文选择植被覆盖度(FVC)为指标表征2000—2015年黄土高原植被恢复情况,以土壤保持服务、产水服务和碳固定服务为指标表征研究区生态系统服务情况,对二者的时空变化及交互作用进行分析,评估植被覆盖变化对生态系统服务的影响,并对影响的阈值进行定量识别。结果显示:① 2000—2015年黄土高原植被显著恢复;生态系统服务变化差异明显,碳固定服务明显增强,土壤保持服务得到一定改善,产水服务较为稳定。② 植被覆盖变化与生态系统服务变化的相关程度存在差异,植被覆盖与碳固定服务的关联性最强,其次为土壤保持服务。③ 植被覆盖增加能够促进区域生态系统服务总体提升,但促进作用存在阈值效应。植被覆盖影响的阈值在林地区、林地—草地区、草地区和草地—沙漠区分别为44%、32%、34%和34%,超过上述阈值,植被覆盖增加的促进作用趋于减弱。
张琨, 吕一河, 傅伯杰, 尹礼唱, 于丹丹. 黄土高原植被覆盖变化对生态系统服务影响及其阈值[J]. 地理学报, 2020, 75(5): 949-960.
ZHANG Kun, LYU Yihe, FU Bojie, YIN Lichang, YU Dandan. The effects of vegetation coverage changes on ecosystem service and their threshold in the Loess Plateau[J]. Acta Geographica Sinica, 2020, 75(5): 949-960.
[1] |
Gerla P, Cornett M, Ekstein J , et al. Talking big: Lessons learned from a 9000 hectare restoration in the northern tallgrass prairie. Sustainability, 2012,4(12):3066-3087.
doi: 10.3390/su4113066 |
[2] | Anwar M M . Recreational opportunities and services from ecosystem services generated by public parks in megacity Karachi-Pakistan. Sindh University Research Journal-Science Series, 2012,44(1):23-28. |
[3] | Reyers B, O'farrell P J, Cowling R M, , et al. Ecosystem services, land-cover change, and stakeholders: Finding a sustainable foothold for a semiarid biodiversity hotspot. Ecology and Society, 2009,14(1):38-61. |
[4] |
Tang Haiping, Chen Jiao, Xue Haili . Ecological thresholds: Concept, methods and research outlooks. Chinese Journal of Plant Ecology, 2015,39(9):932-940.
doi: 10.17521/cjpe.2015.0090 |
[ 唐海萍, 陈姣, 薛海丽 . 生态阈值: 概念、方法与研究展望. 植物生态学报, 2015,39(9):932-940.]
doi: 10.17521/cjpe.2015.0090 |
|
[5] |
Foudi S, Spadaro J V, Chiabai A , et al. The climatic dependencies of urban ecosystem services from green roofs: Threshold effects and non-linearity. Ecosyst Services, 2017,24(2017):223-233.
doi: 10.1016/j.ecoser.2017.03.004 |
[6] | Peng J, Tian L, Liu Y X , et al. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Science of the Total Environment, 2017,607(2017):706-714. |
[7] |
Collins S L, Carpenter S R, Swinton S M , et al. An integrated conceptual framework for long-term social-ecological research. Frontiers in Ecology & the Environment, 2011,9(6):351-357.
doi: 10.1890/100068 |
[8] |
Zhang J Z, Luo M T, Yue H , et al. Critical thresholds in ecological restoration to achieve optimal ecosystem services: An analysis based on forest ecosystem restoration projects in China. Land Use Policy, 2018,76(2018):675-678.
doi: 10.1016/j.landusepol.2018.02.050 |
[9] |
Yang G, Zhong B B, Yue H , et al. A degradation threshold for irreversible loss of soil productivity: A long-term case study in China. Journal of Applied Ecology, 2011,48(5):1145-1154.
doi: 10.1111/j.1365-2664.2011.02011.x |
[10] | Cao S X, Lu C X, Yue H . Optimal tree canopy cover during ecological restoration: A case study of possible ecological thresholds in Changting, China. Bioscience, 2017,67(3):221-232. |
[11] |
Fu B J, Liu Y, Lü Y H , et al. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecological Complexity, 2011,8(4):284-293.
doi: 10.1016/j.ecocom.2011.07.003 |
[12] |
Jiang W G, Yuan L H, Wang W J , et al. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecological Indicators, 2015,51:117-126.
doi: 10.1016/j.ecolind.2014.07.031 |
[13] |
Lü Y H, Fu B J, Feng X M , et al. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the Loess Plateau of China. PLoS ONE, 2012,7(2):e31782.
doi: 10.1371/journal.pone.0031782 |
[14] |
Xin Z B, Ran L S, Lu X X . Soil erosion control and sediment load reduction in the Loess Plateau: Policy perspectives. International Journal of Water Resources Development, 2012,28(2):325-341.
doi: 10.1080/07900627.2012.668650 |
[15] |
Chen H S, Shao M A, Li Y Y . Soil desiccation in the Loess Plateau of China. Geoderma, 2008,143(1-2):91-100.
doi: 10.1016/j.geoderma.2007.10.013 |
[16] |
Wang Y Q, Shao M A, Shao H B . A preliminary investigation of the dynamic characteristics of dried soil layers on the Loess Plateau of China. Journal of Hydrology, 2010,381:9-17.
doi: 10.1016/j.jhydrol.2009.09.042 |
[17] |
Cao S X, Chen L, Shankman D , et al. Excessive reliance on afforestation in China's arid and semi-arid regions: Lessons in ecological restoration. Earth-Science Reviews, 2011,104(4):240-245.
doi: 10.1016/j.earscirev.2010.11.002 |
[18] |
Wang Y Q, Shao M A, Zhu Y J , et al. Impacts of land use and plant characteristics on dried soil layers in different climatic regions on the Loess Plateau of China. Agricultural and Forest Meteorology, 2011,151(4):437-448.
doi: 10.1016/j.agrformet.2010.11.016 |
[19] |
Chen F, Yuan Y J, Zhang R B , et al. A tree-ring based drought reconstruction (AD 1760-2010) for the Loess Plateau and its possible driving mechanisms. Global and Planetary Change, 2014,122:82-88.
doi: 10.1016/j.gloplacha.2014.08.008 |
[20] |
Cai Q G . Soil erosion and management on the Loess Plateau. Journal of Geographical Sciences, 2001,11(1):53-70.
doi: 10.1007/BF02837376 |
[21] |
Bai Y, Jiang B, Wang M , et al. New ecological redline policy (ERP) to secure ecosystem services in China. Land Use Policy, 2015,55:348-351.
doi: 10.1016/j.landusepol.2015.09.002 |
[22] |
Feng X M, Fu B J, Lu N , et al. How ecological restoration alters ecosystem services: An analysis of carbon sequestration in China's Loess Plateau. Scientific Reports, 2013,3:2846. Doi: 10.1038/srep02846
doi: 10.1038/srep02846 |
[23] |
Lü Y H, Zhang L W, Feng X M , et al. Recent ecological transitions in China: Greening, browning, and influential factors. Scientific Reports, 2015,5:8732. Doi: 10.1038/srep08732.
doi: 10.1038/srep08732 |
[24] |
Zhang K, Lü Y H, Fu B J , et al. The effects of restoration on vegetation trends: Spatiotemporal variability and influencing factors. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2019,109(2019):473-481.
doi: 10.1017/S1755691018000518 |
[25] |
Jiang Z Y, Huete A R . Linearization of NDVI based on its relationship with vegetation fraction. Photogrammetric Engineering and Remote Sensing, 2010,76(8):965-975.
doi: 10.14358/PERS.76.8.965 |
[26] |
Ivits E, Cherlet M, Sommer S , et al. Addressing the complexity in non-linear evolution of vegetation phenological change with time-series of remote sensing images. Ecological Indicators, 2013,26(2013):49-60.
doi: 10.1016/j.ecolind.2012.10.012 |
[27] |
Imukova K, Ingwersen J, Streck T . Determining the spatial and temporal dynamics of the green vegetation fraction of croplands using high-resolution RapidEye satellite images. Agricultural and Forest Meteorology, 2015,206:113-123.
doi: 10.1016/j.agrformet.2015.03.003 |
[28] |
Mu Shaojie, Li Jianlong, Chen Yizhao , et al. Spatial differences of variations of vegetation coverage in Inner Mongolia during 2001-2010. Acta Geographica Sinica, 2012,67(9):1255-1268.
doi: 10.11821/xb201209010 |
[ 穆少杰, 李建龙, 陈奕兆 , 等. 2001—2010年内蒙古植被覆盖度时空变化特征. 地理学报, 2012,67(9):1255-1268.]
doi: 10.11821/xb201209010 |
|
[29] |
Deng S F, Yang T B, Zeng B , et al. Vegetation cover variation in the Qilian Mountains and its response to climate change in 2000-2011. Journal of Mountain Science, 2013,10(6):1050-1062.
doi: 10.1007/s11629-013-2558-z |
[30] |
Zhang Y L, Gao J G, Liu L S , et al. NDVI-based vegetation changes and their responses to climate change from 1982 to 2011: A case study in the Koshi River Basin in the middle Himalayas. Global and Planetary Change, 2013,108(2013):139-148.
doi: 10.1016/j.gloplacha.2013.06.012 |
[31] | Fu B J, Zhao W W, Chen L D , et al. Assessment of soil erosion at large watershed scale using RUSLE and GIS: A case study in the Loess Plateau of China. Land Degradation & Development, 2005,16(1):73-85. |
[32] | Wischmeier W H, Smith D D . Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. Washington, DC: United States Department of Agriculture, 1978. |
[33] | Sharpley A N, Williams J R . EPIC-erosion/productivity impact calculator: Model documentation. Technical Bulletin-United States Department of Agriculture, 1990,329(1255):421-428. |
[34] | Mccool D, Brown L, Foster G , et al. Revised slope steepness factor for the universal soil loss equation. Transactions of the American Society of Agricultural and Biological Engineers, 1987,30(5):1387-1396. |
[35] |
Zhang L W, Fu B J, Lü Y H , et al. Balancing multiple ecosystem services in conservation priority setting. Landscape Ecology, 2015,30(3):535-546.
doi: 10.1007/s10980-014-0106-z |
[36] |
Zhang L, Dawes W R, Walker G R . Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 2001,37(3):701-708.
doi: 10.1029/2000WR900325 |
[37] |
Lü N, Sun G, Feng X M , et al. Water yield responses to climate change and variability across the North-South Transect of Eastern China (NSTEC). Journal of Hydrology, 2013,481(2013):96-105.
doi: 10.1016/j.jhydrol.2012.12.020 |
[38] | Hamon W R . Computation of direct runoff amounts from storm rainfall. International Association of Hydrological Sciences Publication, 1963,63(1963):52-62. |
[39] |
Lu J B, Sun G, Mcnulty S G , et al. A comparison of six potential evapotranspiration methods for regional use in the southeastern united states. Journal of the American Water Resources Association, 2005,41(3):621-633.
doi: 10.1111/jawr.2005.41.issue-3 |
[40] |
Li M, Yao W Y, Ding W F , et al. Effect of grass coverage on sediment yield in the hillslope-gully side erosion system. Journal of Geographical Sciences, 2009,19(3):321-330.
doi: 10.1007/s11442-009-0321-8 |
[41] |
Zheng F L . Effect of vegetation changes on soil erosion on the Loess Plateau. Pedosphere, 2006,16(4):420-427.
doi: 10.1016/S1002-0160(06)60071-4 |
[42] |
Feng X M, Sun G, Fu B J , et al. Regional effects of vegetation restoration on water yield across the Loess Plateau, China. Hydrology and Earth System Sciences, 2012,16(8):2617-2628.
doi: 10.5194/hess-16-2617-2012 |
[43] |
Fu B J, Wang S, Liu Y , et al. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annual Review of Earth and Planetary Sciences, 2017,45(1):223-243.
doi: 10.1146/annurev-earth-063016-020552 |
[44] |
Sun Q H, Miao C Y, Duan Q Y , et al. Temperature and precipitation changes over the Loess Plateau between 1961 and 2011, based on high-density gauge observations. Global and Planetary Change, 2015,132(2015):1-10.
doi: 10.1016/j.gloplacha.2015.05.011 |
[45] |
Deng L, Kim D G, Li M , et al. Land-use changes driven by 'Grain for Green' Program reduced carbon loss induced by soil erosion on the Loess Plateau of China. Global and Planetary Change, 2019,177(2019):101-115.
doi: 10.1016/j.gloplacha.2019.03.017 |
[46] |
Wang Y Y, Deng L, Wu G L , et al. Estimates of carbon storage in grassland ecosystems on the Loess Plateau. Catena, 2018,164(2018):23-31.
doi: 10.1016/j.catena.2018.01.007 |
[47] |
Zhang J, Ding Z, Luo M . Risk analysis of water scarcity in artificial woodlands of semi-arid and arid China. Land Use Policy, 2017,63:324-330.
doi: 10.1016/j.landusepol.2017.02.008 |
[48] |
Martin J, Runge M C, Nichols J D , et al. Structured decision making as a conceptual framework to identify thresholds for conservation and management. Ecological Applications, 2009,19(5):1079-1090.
doi: 10.1890/08-0255.1 |
[1] | 张静静, 朱文博, 朱连奇, 李艳红. 伏牛山地区森林生态系统服务权衡/协同效应多尺度分析[J]. 地理学报, 2020, 75(5): 975-988. |
[2] | 刘焱序, 傅伯杰, 王帅, 赵文武, 李琰. 空间恢复力理论支持下的人地系统动态研究进展[J]. 地理学报, 2020, 75(5): 891-903. |
[3] | 鲁大铭, 杨新军, 石育中, 王子侨. 黄土高原乡村体制转换与转型发展[J]. 地理学报, 2020, 75(2): 348-364. |
[4] | 于贵瑞, 李文华, 邵明安, 张扬建, 王绍强, 牛书丽, 何洪林, 戴尔阜, 李发东, 马泽清. 生态系统科学研究与生态系统管理[J]. 地理学报, 2020, 75(12): 2620-2635. |
[5] | 李睿倩, 李永富, 胡恒. 生态系统服务对国土空间规划体系的理论与实践支撑[J]. 地理学报, 2020, 75(11): 2417-2430. |
[6] | 刘晓燕, 刘昌明, 党素珍. 黄土丘陵区雨强对水流含沙量的影响[J]. 地理学报, 2019, 74(9): 1723-1732. |
[7] | 刘立程, 刘春芳, 王川, 李鹏杰. 黄土丘陵区生态系统服务供需匹配研究——以兰州市为例[J]. 地理学报, 2019, 74(9): 1921-1937. |
[8] | 颜俨,姚柳杨,郎亮明,赵敏娟. 基于Meta回归方法的中国内陆河流域生态系统服务价值再评估[J]. 地理学报, 2019, 74(5): 1040-1057. |
[9] | 陈峰, 李红波, 张安录. 基于生态系统服务的中国陆地生态风险评价[J]. 地理学报, 2019, 74(3): 432-445. |
[10] | 曾莉,李晶,李婷,杨晓楠,王彦泽. 基于贝叶斯网络的水源涵养服务空间格局优化[J]. 地理学报, 2018, 73(9): 1809-1822. |
[11] | 曹祺文,张曦文,马洪坤,吴健生. 景观生态风险研究进展及基于生态系统服务的评价框架: ESRISK[J]. 地理学报, 2018, 73(5): 843-855. |
[12] | 钱彩云,巩杰,张金茜,柳冬青,马学成. 甘肃白龙江流域生态系统服务变化及权衡与协同关系[J]. 地理学报, 2018, 73(5): 868-879. |
[13] | 彭建, 李慧蕾, 刘焱序, 胡熠娜, 杨旸. 雄安新区生态安全格局识别与优化策略[J]. 地理学报, 2018, 73(4): 701-710. |
[14] | 文琦,施琳娜,马彩虹,王永生. 黄土高原村域多维贫困空间异质性研究——以宁夏彭阳县为例[J]. 地理学报, 2018, 73(10): 1850-1864. |
[15] | 祝萍,黄麟,肖桐,王军邦. 中国典型自然保护区生境状况时空变化特征[J]. 地理学报, 2018, 73(1): 92-103. |