地理学报 ›› 2020, Vol. 75 ›› Issue (3): 647-661.doi: 10.11821/dlxb202003015
左秀玲1,2,3, 苏奋振2(), 张宇2, 吴文周2, 吴迪4
收稿日期:
2019-04-19
修回日期:
2019-12-20
出版日期:
2020-03-25
发布日期:
2020-05-25
作者简介:
左秀玲(1986-), 女, 山东济南人, 博士, 讲师, 主要从事海洋海岸带资源环境遥感与GIS研究。E-mail: zuoxl@gxu.edu.cn
基金资助:
ZUO Xiuling1,2,3, SU Fenzhen2(), ZHANG Yu2, WU Wenzhou2, WU Di4
Received:
2019-04-19
Revised:
2019-12-20
Published:
2020-03-25
Online:
2020-05-25
Supported by:
摘要:
全球变化下,珊瑚礁保护区是保护生物多样性、增强珊瑚礁对气候变暖抵抗力的有效方式,而维持珊瑚礁弹性是其核心内容。针对珊瑚礁最具有威胁性的热压力因子,基于南海1982—2009年卫星观测海表面温度(SST)数据和CMIP5加拿大地球系统模式CanESM2模型预估的2006—2100年南海SST数据构建热压力强度模型,从维持珊瑚礁弹性的角度识别IPCC RCP 4.5和RCP 8.5情景下南海诸岛保护优先区。结果表明:RCP 4.5和RCP 8.5情景下13%左右的南海诸岛珊瑚礁识别为保护优先区。根据热压力强度与珊瑚抵抗力及避难所关系,西沙群岛七连屿和晋卿岛近年观测与未来预估的热压力强度均比较低,在保障其服务功能的基础上建议实施完全保护;东沙群岛东沙环礁和中沙环礁排洪滩近年观测急性热压力强度较高但未来预估热压力强度较低,建议实施50%禁止利用保护;中沙群岛黄岩岛近年观测和未来预估的急性热压力强度均比较低,建议实施50%多用途保护。南沙群岛有14%左右的珊瑚礁识别为保护优先区,根据其热压力强度可实施30%~100%禁止利用保护或30%~50%多用途保护。RCP 4.5和RCP 8.5情景下的南海诸岛保护优先区及保护对策,可为维持珊瑚礁生态弹性及应对全球气候变化提供重要的参考价值。
左秀玲, 苏奋振, 张宇, 吴文周, 吴迪. 全球气候变化下南海诸岛保护优先区识别分析[J]. 地理学报, 2020, 75(3): 647-661.
ZUO Xiuling, SU Fenzhen, ZHANG Yu, WU Wenzhou, WU Di. Identifying priority conservation areas for South China Sea Islands under the global climate change[J]. Acta Geographica Sinica, 2020, 75(3): 647-661.
[1] | IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013: 33-115. |
[2] | Hoegh-Guldberg O . Climate change, coral bleaching and the future of the world's coral reefs. Marine & Freshwater Research, 1999,50(8):839-866. |
[3] | Hooidonk R V, Maynard J A, Planes S . Temporary refugia for coral reefs in a warming world. Nature Climate Change, 2013,3(5):508-511. |
[4] | Sheppard C, Sheppard A, Mogg A , et al. Coral bleaching and mortality in the Chagos Archipelago. Atoll Research Bulletin, 2017,613:1-26. |
[5] | Zhao Huanting, Wang Lirong, Yuan Jiayi . Sustainable development of the coral reefs in the South China Sea Islands. Tropical Geography, 2016,36(1):55-65. |
[ 赵焕庭, 王丽荣, 袁家义 . 南海诸岛珊瑚礁可持续发展. 热带地理, 2016,36(1):55-65.] | |
[6] | Strain E M A, Edgar G J, Ceccarelli D , et al. A global assessment of the direct and indirect benefits of marine protected areas for coral reef conservation. Diversity and Distributions, 2019,25(1):9-20. |
[7] | Magris R A, Heron S F, Pressey R L . Conservation planning for coral reefs accounting for climate warming disturbances. Plos One, 2015,10:e0140828. |
[8] | Soong K, Dai C, Lee C . Status of Pratas Atoll in South China Sea//Proceedings of the IUCN/WCPA-EA-4 Conference on the Protected Areas of East Asia. Taipei, China, 2002. |
[9] | Li S, Yu K, Chen T , et al. Assessment of coral bleaching using symbiotic zooxanthellae density and satellite remote sensing data in the Nansha Islands, South China Sea. Chinese Science Bulletin, 2011,56(10):1031-1037. |
[10] | Zuo X, Su F, Wu W , et al. Spatial and temporal variability of thermal stress to China's coral reefs in South China Sea. Chinese Geographical Science, 2015,25(2):159-173. |
[11] | Wu Zhongjie, Wang Daoru, Tu Zhigang , et al. The analysis on the reason of hermatypic coral degradation in Xisha. Acta Oceanologica Sinica, 2011,33(4):140-146. |
[ 吴钟解, 王道儒, 涂志刚 , 等. 西沙生态监控区造礁石珊瑚退化原因分析. 海洋学报, 2011,33(4):140-146.] | |
[12] | Zhang Zhendong, Shao Kuishuang, Yang Zhengxian , et al. Evaluation of the Xisha coral reef ecosystem carrying capacity. Marine Environmental Science, 2018,37(4):487-492. |
[ 张振冬, 邵魁双, 杨正先 , 等. 西沙珊瑚礁生态承载状况评价研究. 海洋环境科学, 2018,37(4):487-492.] | |
[13] | Pan Ziliang . Interspecies and spatial diversity of symbiodinium density in coral species from the Huangyan Island, and its ecological significance[D]. Nanning: Guangxi University, 2017. |
[ 潘子良 . 黄岩岛造礁石珊瑚共生藻密度的种间、空间差异及其生态意义[D]. 南宁: 广西大学, 2017.] | |
[14] | Tong Fei, Chen Pimao, Qin Chuanxin , et al. Species diversity and scleractinian corals distribution at two shoals of Zhongsha Islands, South China Sea. Journal of Applied Oceanography, 2015,34(4):535-541. |
[ 佟飞, 陈丕茂, 秦传新 , 等. 南海中沙群岛两海域造礁石珊瑚物种多样性与分布特点. 应用海洋学学报, 2015,34(4):535-541.] | |
[15] | Mumby P J, Wolff N H, Bozec Y M , et al. Operationalizing the resilience of coral reefs in an era of climate change. Conservation Letters, 2014,7(3):176-187. |
[16] | Walker B, Salt D . Resilience Thinking: Sustaining Ecosystems and People in a Changing World. Washington: Island Press, 2006: 12-72. |
[17] | Wu Chunyou . Resource Efficiency and Eco-planning Management. Beijing: Tsinghua University Press, 2006. |
[ 武春友 . 资源效率与生态规划管理. 北京: 清华大学出版社, 2006.] | |
[18] | Zhang Zhendong, Wen Quan, Fan Jingfeng , et al. Exploring resilience thinking for its application in coral reef management and protection. Ocean Development and Management, 2013,30(7):61-64. |
[ 张振冬, 温泉, 樊景凤 , 等. 弹性思维在珊瑚礁资源管护中的应用. 海洋开发与管理, 2013,30(7):61-64.] | |
[19] | Donner S D, Carilli J . Resilience of central Pacific reefs subject to frequent heat stress and human disturbance. Scientific Reports, 2019,9:3484. |
[20] | Zhang Qiaomin, Yu Kefu, Shi Qi , et al. A review of monitoring conservation and management of global coral reefs. Journal of Tropical Oceanography, 2006,25(2):71-78. |
[ 张乔民, 余克服, 施祺 , 等. 全球珊瑚礁监测与管理保护评述. 热带海洋学报, 2006,25(2):71-78.] | |
[21] | Meissner K, Lippmann T, Gupta A S . Large-scale stress factors affecting coral reefs: Open ocean sea surface temperature and surface seawater aragonite saturation over the next 400 years. Coral Reefs, 2012,31(2):309-319. |
[22] | Mcclanahan T R, Ateweberhan M, Muhando C A , et al. Effects of climate and seawater temperature variation on coral bleaching and mortality. Ecological Monographs, 2007,77(4):503-525. |
[23] | Oliver T A, Palumbi S R . Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs, 2011,30(2):429-440. |
[24] | Guest J R, Baird A H, Maynard J A , et al. Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PloS One, 2012,7(3):e33353. |
[25] | Thompson D M, Woesik R V . Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proceedings of the Royal Society Biological Sciences, 2009,276(1669):2893-2901. |
[26] | Zhang Qiaomin . Status of tropical biological coasts of China: Implications on ecosystem restoration and reconstruction. Oceanologia et Limnologia Sinica, 2001,32(4):454-465. |
[ 张乔民 . 我国热带生物海岸的现状及生态系统的修复与重建. 海洋与湖沼, 2001,32(4):454-465.] | |
[27] | Dai C F, Fan T Y, Wu C S . Coral fauna of Tungsha Tao (Pratas Islands). Acta Oceanographica Taiwanica, 1995,34:1-16. |
[28] | Huang Hui, You Feng, Lian Jiansheng , et al. Species diversity and distribution of scleractinian coral at Xisha Islands, China. Biodiversity Science, 2011,19(6):710-715. |
[ 黄晖, 尤丰, 练健生 , 等. 西沙群岛海域造礁石珊瑚物种多样性与分布特点. 生物多样性, 2011,19(6):710-715.] | |
[29] | McManus J W . The Sprately Islands: A marine park? AMBIO, 1994,23:181-186. |
[30] | Selig E R, Casey K S, Bruno J F . New insights into global patterns of ocean temperature anomalies: Implications for coral reef health and management. Global Ecology & Biogeography, 2010,19(3):397-411. |
[31] | Jia Dandan, Chen Zhenghua, Zhang Wei , et al. Analysis of temporal and spatial characteristics of sea surface temperature variabilities over the past 34 years. Acta Oceanologica Sinica, 2018,40(3):112-120. |
[ 贾丹丹, 陈正华, 张威 , 等. 南海珊瑚礁区34年卫星遥感海表温度变化的时空特征分析. 海洋学报, 2018,40(3):112-120.] | |
[32] | Huang Chuanjiang, Qiao Fangli, Song Yajuan , et al. The Simulation and forecast of SST in the South China Sea by CMIP5 models. Acta Oceanologica Sinica, 2014(1):38-47. |
[ 黄传江, 乔方利, 宋亚娟 , 等. CMIP5模式对南海SST的模拟和预估. 海洋学报, 2014(1):38-47.] | |
[33] | Zhang Fang, Dong Min, Wu Tongwen . Evaluation of the ENSO features simulations as done by the CMIP5 models. Acta Meterologica Sinica, 2014,74(1):30-48. |
[ 张芳, 董敏, 吴统文 . CMIP5模式对ENSO现象的模拟能力评估. 气象学报, 2014,74(1):30-48.] | |
[34] | Liu G, Strong A E, Skirving W . Remote sensing of sea surface temperatures during 2002 Barrier Reef coral bleaching. Eos Transactions American Geophysical Union, 2003,84(15):137-141. |
[35] | Gleeson M W, Strong A E . Applying MCSST to coral reef bleaching. Advances in Space Research, 1995,16(10):151-154. |
[36] | Hooidonk R V, Huber M . Quantifying the quality of coral bleaching predictions. Coral Reefs, 2009,28(3):579-587. |
[37] | Goreau T, McClanahan T, Hayes R , et al. Conservation of coral reefs after the 1998 global bleaching event. Conservation Biology, 2000,14(1):5-15. |
[38] | Tkachenko K S, Soong K . Dongsha Atoll: A potential thermal refuge for reef-building corals in the South China Sea. Marine Environmental Research, 2017,127:112-125. |
[39] | Jiang Youshan, Zhang Gaojie, Chen Mingcheng , et al. Evolution features of El Nino events simulated by 23 CMIP5 models. Transactions of Atmospheric Sciences, 2018,41(5):34-45. |
[ 姜有山, 张高杰, 陈明诚 , 等. 23个Cmip5模式对厄尔尼诺事件生命史模拟能力的评估. 大气科学学报, 2018,41(5):34-45.] | |
[40] | Li Yuanchao, Chen Shiquan, Zheng Xinqing , et al. Analysis of the change of hermatypic corals in Yongxing Island and Qilianyu Island in nearly a decade. Acta Oceanologica Sinica, 2018,40(8):99-111. |
[ 李元超, 陈石泉, 郑新庆 , 等. 永兴岛及七连屿造礁石珊瑚近10年变化分析. 海洋学报, 2018,40(8):99-111.] | |
[41] | Marubini F, Barnett H, Langdon C , et al. Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Marine Ecology Progress Series, 2001,220(1):153-162. |
[42] | Morse J W, Andersson A J, Mackenzie F T . Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and "ocean acidification": Role of high Mg-calcites. Geochimica et Cosmochimica Acta, 2006,70(23):5814-5830. |
[1] | 张涵, 黎夏, 石洪, 刘晓娟. 基于倾向得分匹配方法的中国自然保护区缓解人类活动压力评估[J]. 地理学报, 2021, 76(3): 680-693. |
[2] | 金凤君, 姚作林, 陈卓. 环南海区域发展特征与一体化经济区建设前景[J]. 地理学报, 2021, 76(2): 428-443. |
[3] | 韩冬梅, 曹国亮, 宋献方. 南海珊瑚礁人工岛淡水透镜体形成过程及影响因素[J]. 地理学报, 2020, 75(5): 1053-1064. |
[4] | 于贵瑞, 李文华, 邵明安, 张扬建, 王绍强, 牛书丽, 何洪林, 戴尔阜, 李发东, 马泽清. 生态系统科学研究与生态系统管理[J]. 地理学报, 2020, 75(12): 2620-2635. |
[5] | 孙晶, 刘建国, 杨新军, 赵福强, 覃驭楚, 姚莹莹, 王放, 伦飞, 王洁晶, 秦波, 刘涛, 张丛林, 黄宝荣, 程叶青, 石金莲, 张劲松, 唐华俊, 杨鹏, 吴文斌. 人类世可持续发展背景下的远程耦合框架及其应用[J]. 地理学报, 2020, 75(11): 2408-2416. |
[6] | 刘玉洁, 葛全胜, 戴君虎. 全球变化下作物物候研究进展[J]. 地理学报, 2020, 75(1): 14-24. |
[7] | 祝萍,黄麟,肖桐,王军邦. 中国典型自然保护区生境状况时空变化特征[J]. 地理学报, 2018, 73(1): 92-103. |
[8] | 朱诚, 姜逢清, 吴立, 曾蒙秀, 贾天骄, 周生路, 宁越敏, 于军, 冯学智. 对全球变化背景下长三角地区城镇化发展科学问题的思考[J]. 地理学报, 2017, 72(4): 633-645. |
[9] | 郑度, 吴绍洪, 尹云鹤, 杨勤业, 赵东升, 张雪芹. 全球变化背景下中国自然地域系统研究前沿[J]. 地理学报, 2016, 71(9): 1475-1483. |
[10] | 唐盟, 马劲松, 王颖, 夏非. 1947年中国南海断续线精准划定的地形依据[J]. 地理学报, 2016, 71(6): 914-927. |
[11] | 赵亮, 张争胜, 南文龙. 曾昭璇先生对南海地理研究的重要贡献[J]. 地理学报, 2016, 71(3): 515-523. |
[12] | 张君珏, 苏奋振, 周成虎, 左秀玲, 丁智, 李浩川. 不同海岸地貌背景下的南海周边岸带35年建设用地扩张分析[J]. 地理学报, 2016, 71(1): 104-117. |
[13] | 张镱锂, 胡忠俊, 祁威, 吴雪, 摆万奇, 李兰晖, 丁明军, 刘林山, 王兆锋, 郑度. 基于NPP数据和样区对比法的青藏高原自然保护区保护成效分析[J]. 地理学报, 2015, 70(7): 1027-1040. |
[14] | 张君珏, 苏奋振, 左秀玲, 方月, 杨娟. 南海周边海岸带开发利用空间分异[J]. 地理学报, 2015, 70(2): 319-332. |
[15] | 刘闯. 论全球变化科学研究数据出版[J]. 地理学报, 2014, 69(s1): 3-11. |