地理学报 ›› 2020, Vol. 75 ›› Issue (3): 607-619.doi: 10.11821/dlxb202003012
收稿日期:
2018-12-20
修回日期:
2019-12-16
出版日期:
2020-03-25
发布日期:
2020-05-25
作者简介:
戴尔阜(1972-), 男, 甘肃平凉人, 博士, 研究员, 主要从事土地利用与气候变化对生态系统的影响研究。E-mail: daief@igsnrr.ac.cn
基金资助:
Received:
2018-12-20
Revised:
2019-12-16
Published:
2020-03-25
Online:
2020-05-25
Supported by:
摘要:
包括产水服务在内的生态系统服务已被纳入区域土地利用规划以及可持续发展决策中,识别其空间分异特征及影响因素是进行决策的基础,而空间分异的定量归因研究仍需进一步加强。以空间异质性明显的中国横断山区为研究区,借助InVEST模型模拟产水服务空间分布,选择气候、地形、土壤、植被、土地利用等因子,采用地理探测器开展产水服务空间异质性归因分析。结果表明,① 气候类因子是产水服务空间异质性的主要控制因子,其中以降水量和蒸散量为主。② 在不同地貌及气候分区中,各因子对产水的空间分异的解释能力存在显著差异:平缓地区,蒸散量解释能力远高于降水量,随着起伏度的增大,降水量解释能力逐步增强,最终成为主要因子;在高原气候区,以蒸散量解释能力最强,而在中亚热带气候区,降水量为主要的控制因子。③ 值得注意的是,平缓地区土地利用类型因子的解释能力较为突出,在山区发展中应注意土地利用的合理规划,以减轻土地利用变化对产水服务空间变化的影响。④ 风险探测识别的产水服务重要区主要为初育土及人为土分布区、灌木林区以及坡度在≤ 5°和25°~35°区域,而其对应的高程值则在不同区域之间存在差异,因此,在横断山区产水服务的维持与保护工作中应充分考虑不同分区的具体情况。
戴尔阜, 王亚慧. 横断山区产水服务空间异质性及归因分析[J]. 地理学报, 2020, 75(3): 607-619.
DAI Erfu, WANG Yahui. Spatial heterogeneity and driving mechanisms of water yield service in the Hengduan Mountain region[J]. Acta Geographica Sinica, 2020, 75(3): 607-619.
表2
不同地貌、气候类型区产水服务空间影响因子交互作用探测
分区 | 主要交互作用 |
---|---|
整个山区 | 降水∩蒸散 降水∩土地利用类型 降水∩土壤类型 |
平原 | 降水∩蒸散 降水∩土地利用类型 蒸散∩土壤类型/蒸散∩高程 |
台地 | 降水∩蒸散 降水∩土地利用类型 蒸散∩MESH指数 |
丘陵 | 降水∩蒸散 蒸散∩高程 降水∩土地利用类型 |
小起伏山地 | 降水∩蒸散 降水∩土地利用类型 降水∩土壤类型 |
中起伏山地 | 降水∩蒸散 降水∩土地利用类型 降水∩土壤类型 |
大起伏山地 | 降水∩蒸散 降水∩土地利用类型 降水∩土壤类型 |
极大起伏山地 | 降水∩蒸散 降水∩土地利用类型 降水∩PLAND(草地) |
昌都区 | 降水∩蒸散 蒸散∩其他因子 |
波密—川西区 | 降水∩蒸散 降水∩土地利用类型 蒸散∩其他因子 |
四川区 | 降水∩蒸散 蒸散∩土地利用类型 |
金沙江—楚雄、玉溪区 | 降水∩蒸散 蒸散∩土地利用类型 |
滇北区 | 降水∩蒸散 降水∩土地利用类型 降水∩土壤类型 |
表3
横断山区不同分区产水服务重要区识别
分区 | 高程(m) | 坡度(°) | 土壤类型 | NDVI | 土地利用类型 |
---|---|---|---|---|---|
整个山区 | 1591~2484 | 25~35 | 初育土 | 0.78~0.94 | 灌木林 |
平原 | 2069~2484 | 0.72~0.78 | 灌木林 | ||
台地 | 2069~2484 | 初育土 | 0.78~0.94 | 灌木林 | |
丘陵 | 3377~3797 | 初育土 | 0.78~0.94 | 疏林地、灌木林 | |
小起伏山地 | 2069~2484 | 25~35 | 初育土 | 0.78~0.94 | 灌木林 |
中起伏山地 | 2069~2484 | 25~35 | 初育土 | 0.78~0.94 | 灌木林 |
大起伏山地 | 2069~2484 | 初育土 | 0.78~0.94 | 灌木林 | |
极大起伏山地 | 2924~3377 | 25~35 | 0.78~0.94 | 灌木林 | |
昌都区 | 3797~6808 | 0~5 | 初育土 | 0.78~0.94 | 灌木林 |
波密—川西区 | 347~1591 | 0~5 | 初育土、人为土 | 0.78~0.94 | 灌木林 |
四川 | 347~1591 | 0~5 | 初育土、人为土 | 灌木林、其他林地 | |
金沙江—楚雄、玉溪区 | 1591~2069 | 0~5 | 初育土 | 0.72~0.78 | 灌木林 |
滇北区 | 3797~4548 | 25~35 | 初育土 | 0.78~0.94 | 低覆盖度草地 |
[1] | Fu Bojie, Zhou Guoyi, Bai Yongfei , et al. The main terrestrial ecosystem services and ecological security in China. Advances in Earth Science, 2009,24(6):571-576. |
[ 傅伯杰, 周国逸, 白永飞 , 等. 中国主要陆地生态系统服务功能与生态安全. 地球科学进展, 2009,24(6):571-576.] | |
[2] | Daily, G C . Nature's Services: Societal Dependence on Natural Ecosystems. Washington DC: Island Press, 1997. |
[3] | Díaz S, Demissew S, Carabias J , et al. The IPBES conceptual framework: Connecting nature and people. Current Opinion in Environmental Sustainability, 2015,14:1-16. |
[4] | TEEB. The Economics of Ecosystems and Biodiversity for Water and Wetlands. IEEP, London and Brussels; Ramsar Secretariat, Gland, 2013. |
[5] | Millennium Ecosystem Assessment. Ecosystems and Human Well-Being. Washington DC: Island Press, 2005. |
[6] | Li Wenhua, Zhang Biao, Xie Gaodi . Research on ecosystem services in China: Progress and perspectives. Journal of Natural Resources, 2009,24(1):1-10. |
[ 李文华, 张彪, 谢高地 . 中国生态系统服务研究的回顾与展望. 自然资源学报, 2009,24(1):1-10.] | |
[7] | Sánchez-Canales M, Benito A L, Passuello A , et al. Sensitivity analysis of ecosystem service valuation in a Mediterranean watershed. Science of the Total Environment, 2012,440(1):140-153. |
[8] | Ajaz Ahmed M A, Abd-Elrahman A, Escobedo F J , et al. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the southeastern United States. Journal of Environmental Management, 2017,199:158-171. |
[9] | Qian Caiyun, Gong Jie, Zhang Jinxi , et al. Change and tradeoffs-synergies analysis on watershed ecosystem services: A case study of Bailongjiang Watershed, Gansu. Acta Geographica Sinica, 2018,73(5):868-879. |
[ 钱彩云, 巩杰, 张金茜 , 等. 甘肃白龙江流域生态系统服务变化及权衡与协同关系. 地理学报, 2018,73(5):868-879.] | |
[10] | Jiang C, Zhang H, Zhang Z . Spatially explicit assessment of ecosystem services in China's Loess Plateau: Patterns, interactions, drivers, and implications. Global and Planetary Change, 2018,161:41-52. |
[11] | Lin Shiwei, Wu Ruidong . The spatial pattern of water supply ecosystem services in the Three Parallel Rivers Region. Journal of West China Forestry Science, 2015,44(3):8-15. |
[ 林世伟, 武瑞东 . “三江并流”区生态系统供水服务的空间分布特征. 西部林业科学, 2015,44(3):8-15.] | |
[12] | Liu Moucheng, Sun Xueping, Lin Huifeng , et al. Establishment of eco-compensation fund based on the consumption of ecosystem services for Beijing-Chengde. Resources Science, 2015,37(8):1536-1542. |
[ 刘某承, 孙雪萍, 林惠凤 , 等. 基于生态系统服务消费的京承生态补偿基金构建方式. 资源科学, 2015,37(8):1536-1542.] | |
[13] | Hu Y, Peng J, Liu Y , et al. Integrating ecosystem services trade-offs with paddy land-to-dry land decisions: A scenario approach in Erhai Lake Basin, Southwest China. Science of the Total Environment, 2018,625:849-860. |
[14] | Guerry , A D, Polasky S, Lubchenco J , et al. Natural capital and ecosystem services informing decisions: From promise to practice. Proceedings of the National Academy of Sciences of the United States of America, 2015,112:7348-7355. |
[15] | Bateman I J, Harwood A R, Mace G M , et al. Bringing ecosystem services into economic decision-making: Land use in the United Kingdom. Science, 2013,341:45-50. |
[16] | Goldstein , J H, Caldarone G, Duarte T K , et al. Integrating ecosystem-service tradeoffs into land-use decisions. Proceedings of the National Academy of Sciences of the United States of America, 2012,109:7565-7570. |
[17] | Liu Chunfang, Wang Chuan, Liu Licheng . Spatio-temporal variation on habitat quality and its mechanism within the transitional area of the Three Natural Zones: A case study in Yuzhong count. Geographical Research, 2018,37(2):419-432. |
[ 刘春芳, 王川, 刘立程 . 三大自然区过渡带生境质量时空差异及形成机制: 以榆中县为例. 地理研究, 2018,37(2):419-432.] | |
[18] | Larondelle N, Haase D . Urban ecosystem services assessment along a rural-urban gradient: A cross-analysis of European cities. Ecological Indicators, 2013,29:179-190. |
[19] | Hou Wenjuan, Gao Jiangbo, Dai Erfu , et al. The runoff generation simulation and its spatial variation analysis in Sanchahe basin as the south source of Wujiang. Acta Geographica Sinica, 2018,73(7):1268-1282. |
[ 侯文娟, 高江波, 戴尔阜 , 等. 基于SWAT模型模拟乌江三岔河生态系统产流服务及其空间变异. 地理学报, 2018,73(7):1268-1282.] | |
[20] | Wang Jinfeng, Xu Chengdong . Geodetector: Principle and prospective. Acta Geographica Sinica, 2017,72(1):116-134. |
[ 王劲峰, 徐成东 . 地理探测器: 原理与展望. 地理学报, 2017,72(1):116-134.] | |
[21] | Tao Haiyan, Pan Zhongzhe, Pan Maolin , et al. Mixing spatial-temporal transmission patterns of metropolis dengue fever: A case study of Guangzhou, China. Acta Geographica Sinica, 2016,71(9):1653-1662. |
[ 陶海燕, 潘中哲, 潘茂林 , 等. 广州大都市登革热时空传播混合模式. 地理学报, 2016,71(9):1653-1662.] | |
[22] | Wang Shaojian, Wang Yang, Lin Xueqin , et al. Spatial differentiation patterns and influencing mechanism of housing prices in China: Based on data of 2872 counties. Acta Geographica Sinica, 2016,71(8):1329-1342. |
[ 王少剑, 王洋, 蔺雪芹 , 等. 中国县域住宅价格的空间差异特征与影响机制. 地理学报, 2016,71(8):1329-1342.] | |
[23] | Lou C R, Liu H Y, Li Y F , et al. Socioeconomic drivers of PM2.5 in the accumulation phase of air pollution episodes in the Yangtze River Delta of China. International Journal of Environmental Research and Public Health, 2016,13:1-19. |
[24] | Liang P, Yang X P . Landscape spatial patterns in the Maowusu (Mu Us) Sandy Land, northern China and their impact factors. Catena, 2016,145:321-333. |
[25] | Turner M G, Donato D C, Romme W H . Consequences of spatial heterogeneity for ecosystem services in changing forest landscapes: Priorities for future research. Landscape Ecology, 2013,28:1081-1097. |
[26] | Wang J, Peng J, Zhao M , et al. Significant trade-off for the impact of Grain-for-Green Programme on ecosystem services in north-western Yunnan, China. Science of the Total Environment, 2017,574:57-64. |
[27] | Chen L, Xie G, Zhang C , et al. Modelling ecosystem water supply services across the Lancang River Basin. Journal of Resources and Ecology, 2011,2(4):322-327. |
[28] | Zhang Rongzu, Zheng Du, Yang Qingye , et al. Physical Geography of Hengduan Mountain Area. Beijing: China Science Press, 1997. |
[ 张荣祖, 郑度, 杨勤业 , 等. 横断山区自然地理. 北京: 科学出版社, 1997.] | |
[29] | Liu J, Zhang Z, Xu X , et al. Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 2010,20(4):483-494. |
[30] | Zhou Chenghu, Cheng Weiming, Qian Jinkai , et al. Research on the classification system of digital land geomorphology of 1:1000000 in China. Journal of Geo-information Science, 2009,11(6):707-724. |
[ 周成虎, 程维明, 钱金凯 , 等. 中国陆地1:100万数字地貌分类体系研究. 地球信息科学学报, 2009,11(6):707-724.] | |
[31] | Budyko M I . Climate and Life. San Diego: Academic Press, 1974. |
[32] | Zhang L, Dawes W R, Walker G R . Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, 2001,37(3):701-708. |
[33] | Zhou W, Liu G, Pan J , et al. Distribution of available soil water capacity in China. Journal of Geographical Sciences, 2005,15(1):3-12. |
[34] | Wang J F, Li X H, Christakos G , et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. International Journal of Geographical Information Science, 2010,24(1):107-127. |
[35] | Wang J F, Hu Y . Environmental health risk detection with GeogDetector. Environmental Modelling & Software, 2012,33:114-115. |
[36] | Mcgarigal K, Marks B J . FRAGSTATS: Spatial pattern analysis program for quantifying landscape structure. Gen. Tech. Rep. PNW-GTR-351. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 1995: 122. |
[37] | Delphin S, Escobedo F J, Abd-Elrahman A , et al. Urbanization as a land use change driver of forest ecosystem services. Land Use Policy, 2016,54:188-199. |
[38] | Sun G, Caldwell P, Noormets A , et al. Upscaling key ecosystem functions across the conterminous United States by a water‐centric ecosystem model. Journal of Geophysical Research Biogeosciences, 2011,116:1-16. |
[39] | Lu Dadao, Chen Mingxing . Several viewpoints on the background of compiling the "National New Urbanization Planning (2014-2020)". Acta Geographica Sinica, 2015,70(2):179-185. |
[ 陆大道, 陈明星 . 关于“国家新型城镇化规划(2014—2020)”编制大背景的几点认识. 地理学报, 2015,70(2):179-185.] | |
[40] | Liu Yansui . Research on the urban-rural integration and rural revitalization in the new era in China. Acta Geographica Sinica, 2018,73(4):637-650. |
[ 刘彦随 . 中国新时代城乡融合与乡村振兴. 地理学报, 2018,73(4):637-650.] | |
[41] | Su S, Xiao R, Jiang Z L , et al. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Applied Geography, 2012,34:295-305. |
[42] | Jordan G, van Rompaey A, Szilassi P , et al. Historical land use changes and their impact on sediment fluxes in the Balaton basin (Hungary). Agriculture Ecosystems & Environment, 2005,108:119-133. |
[1] | 胡畔, 陈波, 史培军. 中国暴雨洪涝灾情时空格局及影响因素[J]. 地理学报, 2021, 76(5): 1148-1162. |
[2] | 周扬, 李寻欢, 童春阳, 黄晗. 中国村域贫困地理格局及其分异机理[J]. 地理学报, 2021, 76(4): 903-920. |
[3] | 郭付友, 佟连军, 仇方道, 李一鸣. 黄河流域生态经济走廊绿色发展时空分异特征与影响因素识别[J]. 地理学报, 2021, 76(3): 726-739. |
[4] | 郭泽呈, 魏伟, 石培基, 周亮, 王旭峰, 李振亚, 庞素菲, 颉斌斌. 中国西北干旱区土地沙漠化敏感性时空格局[J]. 地理学报, 2020, 75(9): 1948-1965. |
[5] | 彭立, 邓伟, 谭静, 林磊. 横断山区水土资源利用与经济增长的匹配关系[J]. 地理学报, 2020, 75(9): 1996-2008. |
[6] | 张静静, 朱文博, 朱连奇, 李艳红. 伏牛山地区森林生态系统服务权衡/协同效应多尺度分析[J]. 地理学报, 2020, 75(5): 975-988. |
[7] | 潘竟虎, 冯娅娅. 中国农村深度贫困的空间扫描与贫困分异机制的地理探测[J]. 地理学报, 2020, 75(4): 769-788. |
[8] | 刘敏, 郝炜. 山西省国家A级旅游景区空间分布影响因素研究[J]. 地理学报, 2020, 75(4): 878-888. |
[9] | 鲁大铭, 杨新军, 石育中, 王子侨. 黄土高原乡村体制转换与转型发展[J]. 地理学报, 2020, 75(2): 348-364. |
[10] | 彭文甫, 张冬梅, 罗艳玫, 陶帅, 徐新良. 自然因子对四川植被NDVI变化的地理探测[J]. 地理学报, 2019, 74(9): 1758-1776. |
[11] | 李瀚祺, 贾鹏, 费腾. 基于众源数据挖掘的中国饮食口味与慢性病的空间关联[J]. 地理学报, 2019, 74(8): 1637-1649. |
[12] | 宋雪茜,邓伟,周鹏,张少尧,万将军,刘颖. 两层级公共医疗资源空间均衡性及其影响机制——以分级诊疗改革为背景[J]. 地理学报, 2019, 74(6): 1178-1189. |
[13] | 王正雄,蒋勇军,张远嘱,段世辉,刘九缠,曾泽,曾思博. 基于GIS与地理探测器的岩溶槽谷石漠化空间分布及驱动因素分析[J]. 地理学报, 2019, 74(5): 1025-1039. |
[14] | 朱文博, 张静静, 崔耀平, 郑辉, 朱连奇. 基于土地利用变化情景的生态系统碳储量评估——以太行山淇河流域为例[J]. 地理学报, 2019, 74(3): 446-459. |
[15] | 周鹏, 邓伟, 彭立, 张少尧. 典型山地水土要素时空耦合特征及其成因[J]. 地理学报, 2019, 74(11): 2273-2287. |