地理学报 ›› 2020, Vol. 75 ›› Issue (3): 589-606.doi: 10.11821/dlxb202003011
任宇飞1,2, 方创琳1,2(), 李广东1, 孙思奥1, 鲍超1, 刘若文1,2
收稿日期:
2018-12-05
修回日期:
2019-11-10
出版日期:
2020-03-25
发布日期:
2020-05-25
作者简介:
任宇飞(1990-), 男, 甘肃兰州人, 博士生, 中国地理学会会员(S110012498M), 研究方向为城市群地区城镇化的资源环境效应。E-mail: renyuf@126.com
基金资助:
REN Yufei1,2, FANG Chuanglin1,2(), LI Guangdong1, SUN Si'ao1, BAO Chao1, LIU Ruowen1,2
Received:
2018-12-05
Revised:
2019-11-10
Published:
2020-03-25
Online:
2020-05-25
Supported by:
摘要:
城镇化与生态环境近远程耦合关系研究是国际人地系统研究的前沿和热点领域,对于如何协调中国城镇化与生态环境的关系问题也具有重要的参考价值。本文紧扣城镇化与生态环境近远程耦合关系研究主题,在对国际研究进行梳理的基础上,集中从城镇化与生态环境近远程耦合关系理论、方法以及关键应用领域三个方面,对城镇化与生态环境近远程耦合关系研究国际前沿与进展进行评述。分析发现,国际上近远程耦合概念提出时间不长,其理论的完备性与系统性尚显薄弱,对实证研究统领性指导还略显不足。而从其他研究视角出发,国际上对互为远端的人地系统间关联现象进行了大量研究,实证内容充足,内涵丰富。展望未来,关注城市群地区城镇化与生态环境近远程耦合关系、挖掘城镇化与生态环境近远程耦合主导路径与动态演变特征、加强中国城镇化与生态环境近远程耦合理论研究,是推动中国城镇化与生态环境耦合研究迈向新的发展阶段的重要方向。
任宇飞, 方创琳, 李广东, 孙思奥, 鲍超, 刘若文. 城镇化与生态环境近远程耦合关系研究进展[J]. 地理学报, 2020, 75(3): 589-606.
REN Yufei, FANG Chuanglin, LI Guangdong, SUN Si'ao, BAO Chao, LIU Ruowen. Progress in local and tele-coupling relationship between urbanization and eco-environment[J]. Acta Geographica Sinica, 2020, 75(3): 589-606.
表1
远程耦合研究框架内容及未来研究方向(资料来源:文献[21])
组件名称 | 包含内容 | 未来亟待解决问题 |
---|---|---|
系统(Systems) | 发送系统(Sending) 接受系统(Receiving) 溢出系统(Spillover) | 远程耦合中的发送、接受、溢出系统的性质和演变原因是什么?系统的空间关系是怎样影响到发送、接受或溢出系统的功能定位和远程耦合作用力的? |
流(Flows) | 物质流或能量流(Material/Energy) 信息流(Information) … | 远程耦合要素流是怎样在空间和时间上演变的?远程耦合要素流是怎样影响两个系统的?不同的远程要素流间的相似与差别? |
中介(Agents) | 政府(Governments) 劳工(Labors) 公司(Companies) … | 中介是怎样在空间和时间上变化的?中介是如何影响两个系统?中介为了回应远程耦合效应和动态变化将做出怎样的改变?中介间的社会网络是怎样构成的,他们又是如何维持的? |
原因(Causes) | 经济原因(Economic) 政治原因(Political) 技术原因(Technological) 环境原因(Environmental) 文化原因(Cultural) … | 影响远程耦合动态变化和系统胁迫作用强度的主控因素是哪些?影响远程耦合形式的多种因素中相对来说哪个更重要?这些因素是怎样随着时间影响和变化的? |
效应(Effects) | 环境效应(Environmental) 社会经济效应(Socioeconomic) … | 远程耦合作用是怎样从本地至全球层面实现社会经济和环境可持续发展的?对于可持续发展问题,远程耦合和近程耦合哪一个更重要?时间对于过程的滞后性和后续效应是怎样的?三系统间的相互反馈作用是怎样的?远程耦合效应是怎样改变远程耦合系统的弹性和脆弱性的? |
[1] | Huang Gengzhi, Leng Shuying . The development of human geography in China under the support of National Natural Science Foundation of China (1986-2017). Acta Geographica Sinica, 2018,73(3):578-594. |
[ 黄耿志, 冷疏影 . 国家自然科学基金推动下的中国人文地理学发展. 地理学报, 2018,73(3):578-594.] | |
[2] | Fu Bojie . Geography: From knowledge, science to decision making support. Acta Geographica Sinica, 2017,72(11):1923-1932. |
[ 傅伯杰 . 地理学: 从知识、科学到决策. 地理学报, 2017,72(11):1923-1932.] | |
[3] | Fang Chuanglin, Zhou Chenghu, Gu Chaolin , et al. Theoretical analysis of interactive coupled effects between urbanization and eco-environment in mega-urban agglomerations. Acta Geographica Sinica, 2016,71(4):531-550. |
[ 方创琳, 周成虎, 顾朝林 , 等. 特大城市群地区城镇化与生态环境交互耦合效应解析的理论框架及技术路径. 地理学报, 2016,71(4):531-550.] | |
[4] | Steffen W, Broadgate W, Deutsch L , et al. The trajectory of the Anthropocene: The great acceleration. The Anthropocene Review, 2015,2(1):81-98. |
[5] | Bai X M, Van Der Leeuw S, O'brien K , et al. Plausible and desirable futures in the Anthropocene: A new research agenda. Global Environmental Change, 2016,39:351-362. |
[6] | Adger W N, Eakin H, Winkels A . Nested and teleconnected vulnerabilities to environmental change. Frontiers in Ecology & the Environment, 2009,7(3):150-157. |
[7] | Duit A, Galaz V, Eckerberg K , et al. Governance, complexity, and resilience. Global Environmental Change, 2010,20(3):137-139. |
[8] | Kissinger M, Rees W E . An interregional ecological approach for modelling sustainability in a globalizing world: Reviewing existing approaches and emerging directions. Ecological Modelling, 2010,221(21):2615-2623. |
[9] | Seto K C, Reenberg A, Boone C G , et al. Urban land teleconnections and sustainability. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(20):7687-7692. |
[10] | Meyfroidt P, Lambin E F, Erb K H , et al. Globalization of land use: Distant drivers of land change and geographic displacement of land use. Current Opinion in Environmental Sustainability, 2013,5(5):438-444. |
[11] | Fang C L, Ren Y F . Analysis of emergy-based metabolic efficiency and environmental pressure on the local coupling and telecoupling between urbanization and the eco-environment in the Beijing-Tianjin-Hebei urban agglomeration. Science China Earth Sciences, 2017,60(6):1-15. |
[12] | Liu J G, Mooney H, Hull V , et al. Sustainability. Systems integration for global sustainability. Science, 2015,347(6225):963-975. |
[13] | Seto K C, Golden J S, Alberti M , et al. Sustainability in an urbanizing planet. Proceedings of the National Academy of Sciences, 2017,114(34):8935-8938. |
[14] | Trenberth K E, Branstator G W, Karoly D , et al. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. Journal of Geophysical Research Oceans, 1998,103(C7):14291-14324. |
[15] | Clark D . Urban World/Global City. London: Routledge, 1996. |
[16] | Sassen S . The Global City. Princeton: Princeton University Press, 2001. |
[17] | Eakin H, Winkels A, Sendzimir J . Nested vulnerability: Exploring cross-scale linkages and vulnerability teleconnections in Mexican and Vietnamese coffee systems. Environmental Science & Policy, 2009,12(4):398-412. |
[18] | Crona B I, Holt T V, Petersson M , et al. Using social-ecological syndromes to understand impacts of international seafood trade on small-scale fisheries. Global Environmental Change, 2015,35(11):162-175. |
[19] | Lenschow A, Newig J, Challies E . Globalization's limits to the environmental state? Integrating telecoupling into global environmental governance. Environmental Politics, 2016,25(1):136-159. |
[20] | Challies E, Newig J, Lenschow A . What role for social-ecological systems research in governing global teleconnections? Global Environmental Change, 2014,27(1):32-40. |
[21] | Moser S C, Hart J A F . The long arm of climate change: Societal teleconnections and the future of climate change impacts studies. Climatic Change, 2015,129(1/2):13-26. |
[22] | Liu J G, Hull V, Batistella M , et al. Framing sustainability in a telecoupled world. Ecology and Society, 2013,18(2):26-45. |
[23] | Liu J G . Integration across a metacoupled world. Ecology and Society, 2017,22(4):29. |
[24] | Eakin H, Defries R, Kerr S , et al. Significance of Telecoupling for Exploration of Land-use Change. Rethinking Global Land Use in an Urban Era. Boston: Massachusetts Institute of Technology Press, 2014. |
[25] | Eakin H, Rueda X, Mahanti A . Transforming governance in telecoupled food systems. Ecology and Society, 2017,22(4):32. |
[26] | Hatfielddodds S, Schandl H, Adams P D , et al. Australia is 'free to choose' economic growth and falling environmental pressures. Nature, 2015,527(7576):49-53. |
[27] | Riahi K . Fifth Assessment Report, IPCC. 2014. |
[28] | Sun Xinzhang . China's strategy to participating in the 2030 Agenda for Sustainable Development. China Population Resources and Environment, 2016,26(1):1-7. |
[ 孙新章 . 中国参与2030年可持续发展议程的战略思考. 中国人口·资源与环境, 2016,26(1):1-7.] | |
[29] | Kurian M, Ardakanian R . Governing the Nexus. Switzerland: Springer International Publishing, 2015. |
[30] | Pahl-Wostl C, Bhaduri A, Bruns A . Editorial special issue: The Nexus of water, energy and food: An environmental governance perspective. Environmental Science Policy, 2018,90:161-163. |
[31] | Zhang P P, Zhang L X, Chang Y , et al. Food-energy-water (FEW) nexus for urban sustainability: A comprehensive review. Resources, Conservation and Recycling, 2019,142:215-224. |
[32] | Liu D D, Guo S L, Liu P , et al. Optimisation of water-energy nexus based on its diagram in cascade reservoir system. Journal of Hydrology, 2019,569:347-358. |
[33] | Märker C, Venghaus S, Hake J-F . Integrated governance for the food-energy-water nexus: The scope of action for institutional change. Renewable and Sustainable Energy Reviews, 2018,97:290-300. |
[34] | Beck M B, Walker R V . On water security, sustainability, and the water-food-energy-climate nexus. Frontiers of Environmental Science & Engineering, 2013,7(5):626-639. |
[35] | Scott C A, Sugg Z P . Global energy development and climate-induced water scarcity-physical limits, sectoral constraints, and policy imperatives. Energies, 2015,8(8):8211-8225. |
[36] | Friis C, Nielsen J Ã S, Otero I , et al. From teleconnection to telecoupling: Taking stock of an emerging framework in land system science. Journal of Land Use Science, 2016,11(2):131-153. |
[37] | Abson D J, Fischer J, Leventon J , et al. Leverage points for sustainability transformation. Ambio, 2017,46(1):1-10. |
[38] | Friis Cecilie, Nielsen J . On the system, boundary choices, implications, and solutions in telecoupling land use change research. Sustainability, 2017,9(6):974. |
[39] | Baird I G, Fox J . How land concessions affect places elsewhere: Telecoupling, political ecology, and large-scale plantations in Southern Laos and Northeastern Cambodia. Land, 2015,4(2):436-453. |
[40] | Hulu E, Hewings G J D . The development and use of interregional input‐output models for indonesia under conditions of limited information. Review of Urban & Regional Development Studies, 2010,5(2):135-153. |
[41] | Deng G Y, Ma Y, Li X . Regional water footprint evaluation and trend analysis of China: Based on interregional input-output model. Journal of Cleaner Production, 2015,112:4674-4682. |
[42] | Cazcarro I, Duarte R, Sánchez C J . Multiregional input-output model for the evaluation of Spanish water flows. Environmental Science & Technology, 2013,47(21):12275-12283. |
[43] | Guo S, Shen G Q . Multiregional input-output model for China's farm land and water use. Environmental Science & Technology, 2015,49(1):403-414. |
[44] | Lin J Y, Hu Y C, Zhao X F , et al. Developing a city-centric global multiregional input-output model (CCG-MRIO) to evaluate urban carbon footprints. Energy Policy, 2017,108:460-466. |
[45] | Yang X, Zhang W Z, Fan J , et al. Transfers of embodied PM2.5 emissions from and to the North China region based on a multiregional input-output model. Environmental Pollution, 2018,235:381-393. |
[46] | Feng K, Davis S J, Sun L , et al. Outsourcing CO2 within China. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(28):11654-11659. |
[47] | Liang S, Chao Z, Wang Y F , et al. Virtual atmospheric mercury emission network in China. Environmental Science & Technology, 2014,48(5):2807-2815. |
[48] | Liu Q L, Wang Q . Sources and flows of China's virtual SO2 emission transfers embodied in interprovincial trade: A multiregional input-output analysis. Journal of Cleaner Production, 2017,161:735-747. |
[49] | Zhang B, Qiao H, Chen Z M , et al. Growth in embodied energy transfers via China's domestic trade: Evidence from multi-regional input-output analysis. Applied Energy, 2016,184:1093-1105. |
[50] | Ali Y . Carbon, water and land use accounting: Consumption vs production perspectives. Renewable & Sustainable Energy Reviews, 2017,67:921-934. |
[51] | Tobler W R . A computer movie simulating urban growth in the Detroit Region. Economic Geography, 1970,46(Suppl.):234-240. |
[52] | Anselin L, Gallo J L, Jayet H . Spatial Panel Econometrics. Berlin Heidelberg: Springer, 2008. |
[53] | Lesage J P, Pace R K . Spatial econometric models//Fischer M M, Getis A. Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications. Berlin, Heidelberg; Springer, 2010: 355-376. |
[54] | Pace R K, Lesage J P . Spatial Econometric Models, Prediction. Springer US, 2008. |
[55] | Li G D, Sun S A, Fang C L . The varying driving forces of urban expansion in China: Insights from a spatial-temporal analysis. Landscape & Urban Planning, 2018,174:63-77. |
[56] | Liu H M, Fang C L, Zhang X L , et al. The effect of natural and anthropogenic factors on haze pollution in Chinese cities: A spatial econometrics approach. Journal of Cleaner Production, 2017,165:323-333. |
[57] | Barles S . Urban metabolism of Paris and its region. Journal of Industrial Ecology, 2010,13(6):898-913. |
[58] | Niza S, Rosado L, Ferrão P . Urban metabolism: Methodological advances in urban material flow accounting based on the Lisbon case. Journal of Industrial Ecology, 2009,13(3):384-405. |
[59] | Odum H T . System Ecology: An Introduction. New York: John Wiley, 1983. |
[60] | Kennedy C A, Stewart I, Facchini A , et al. Energy and material flows of megacities. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(19):5985-5990. |
[61] | Huang S L, Lee C L, Chen C W . Socioeconomic metabolism in Taiwan: Emergy synthesis versus material flow analysis. Resources Conservation & Recycling, 2006,48(2):166-196. |
[62] | Bodini A, Bondavalli C . Towards a sustainable use of water resources: A whole-ecosystem approach using network analysis. International Journal of Environment & Pollution, 2002,18(5):463-485. |
[63] | Fath B D, Patten B C . Review of the foundations of network environ analysis. Ecosystems, 1999,2(2):167-179. |
[64] | Tollner E W, Schramski J R, Kazanci C , et al. Implications of network particle tracking (NPT) for ecological model interpretation. Ecological Modelling, 2009,220(16):1904-1912. |
[65] | Macarthur R H . Fluctuations of animal populations and a measure of community stability. Ecology, 1955,36(3):533-536. |
[66] | Ulanowicz R E, Holt R D, Barfield M . Limits on ecosystem trophic complexity: Insights from ecological network analysis. Ecology Letters, 2014,17(2):127-136. |
[67] | Fang D L, Chen B . Ecological network analysis for a virtual water network. Environmental Science & Technology, 2015,49(11):6722-6730. |
[68] | Chen S Q, Chen B . Urban energy consumption: Different insights from energy flow analysis, input-output analysis and ecological network analysis. Applied Energy, 2015,138:99-107. |
[69] | Small G E, Sterner R W, Finlay J C . An ecological network analysis of nitrogen cycling in the Laurentian Great Lakes. Ecological Modelling, 2014,293:150-160. |
[70] | Zhang Y, Zheng H M, Yang Z F , et al. Multi-regional input-output model and ecological network analysis for regional embodied energy accounting in China. Energy Policy, 2015,86:651-663. |
[71] | Wang S G, Chen B . Energy-water nexus of urban agglomeration based on multiregional input-output tables and ecological network analysis: A case study of the Beijing-Tianjin-Hebei region. Applied Energy, 2016,178:773-783. |
[72] | Mao X F, Yang Z F . Ecological network analysis for virtual water trade system: A case study for the Baiyangdian Basin in northern China. Ecological informatics, 2012,10:17-24. |
[73] | Fang D L, Chen B . Ecological network analysis for a virtual water network: A case study of the Heihe River Basin. Environmental Science & Technology, 2015,49(11):6722-6730. |
[74] | Yang Z F, Mao X F, Zhao X , et al. Ecological network analysis on global virtual water trade. Environmental Science & Technology, 2012,46(3):1796-1803. |
[75] | Deines J M, Liu X, Liu J . Telecoupling in urban water systems: An examination of Beijing's imported water supply. Water International, 2016,41(2):251-270. |
[76] | Fang B L, Tan Y, Li C B , et al. Energy sustainability under the framework of telecoupling. Energy, 2016,106:253-259. |
[77] | Carlson A K, Taylor W W, Liu J , et al. The telecoupling framework: An integrative tool for enhancing fisheries management. Fisheries, 2017,42(8):395-397. |
[78] | Liu J G . Forest sustainability in China and implications for a telecoupled world. Asia & the Pacific Policy Studies, 2014,1(1):230-250. |
[79] | Gasparri N I, Kuemmerle T, Meyfroidt P , et al. The emerging soybean production frontier in Southern Africa: Conservation challenges and the role of south‐south telecouplings. Conservation Letters, 2016,9(1):21-31. |
[80] | Lambin E F, Meyfroidt P . Inaugural article by a recently elected academy member: Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(9):3465-3472. |
[81] | Bruckner M, Fischer G, Tramberend S , et al. Measuring telecouplings in the global land system: A review and comparative evaluation of land footprint accounting methods. Ecological Economics, 2015,114:11-21. |
[82] | Bruckner M, Giljum S, Lutz C , et al. Materials embodied in international trade: Global material extraction and consumption between 1995 and 2005. Global Environmental Change, 2012,22(3):568-576. |
[83] | Krausmann F, Erb K H, Gingrich S , et al. Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints. Ecological Economics, 2008,65(3):471-487. |
[84] | Kastner T, Erb K H, Haberl H . Rapid growth in agricultural trade: Effects on global area efficiency and the role of management. Environmental Research Letters, 2014,9(9):034015. |
[85] | Tsai Y H, Huang Y H, Lin S Y , et al. Intercity transportation's role in affecting distal area's urbanization/green coverage: a high-speed rail's case in urban land teleconnections. Journal of Transport & Health, 2018,9:S7-S8. |
[86] | Hoekstra A Y, Hung P Q . Globalisation of water resources: International virtual water flows in relation to crop trade. Global Environmental Change, 2004,15(1):45-56. |
[87] | Morillo J G Díaz J A R, Camacho E , et al. Linking water footprint accounting with irrigation management in high value crops. Journal of Cleaner Production, 2015,87:594-602. |
[88] | Zhao X, Liu J G, Liu Q Y , et al. Physical and virtual water transfers for regional water stress alleviation in China. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(4):1031-1035. |
[89] | Zhao C F, Chen B . Driving force analysis of the agricultural water footprint in China based on the LMDI method. Environmental Science & Technology, 2014,48(21):12723-12731. |
[90] | Kumar M D, Singh O P . Virtual water in global food and water policy making: Is there a need for rethinking? Water Resources Management, 2005,19(6):759-789. |
[91] | Zhang Z Y, Shi M J, Hong Y . Understanding Beijing's water challenge: A decomposition analysis of changes in Beijing's water footprint between 1997 and 2007. Environmental Science & Technology, 2012,46(22):12373-12380. |
[92] | Quan Y, Wang C X, Yan Y , et al. Impact of inter‐basin water transfer projects on regional ecological security from a telecoupling perspective. Sustainability, 2016,8(2):162. |
[93] | Afgan N H, Carvalho M D G . Sustainable energy development. Renewable & Sustainable Energy Reviews, 2011,2(3):235-286. |
[94] | Farah P D, Cima E . Energy trade and the WTO: Implications for renewable energy and the OPEC Cartel. Journal of International Economic Law, 2013,16(3):707-740. |
[95] | Tang X, Snowden S, Höök M . Analysis of energy embodied in the international trade of UK. Energy Policy, 2013,57(1):418-428. |
[96] | Xia Y, Fan Y, Yang C H . Assessing the impact of foreign content in China's exports on the carbon outsourcing hypothesis. Applied Energy, 2015,150:296-307. |
[1] | 孙平军, 王柯文. 中国东北三省城市收缩的识别及其类型划分[J]. 地理学报, 2021, 76(6): 1366-1379. |
[2] | 王少剑, 崔子恬, 林靖杰, 谢金燕, 苏坤. 珠三角地区城镇化与生态韧性的耦合协调研究[J]. 地理学报, 2021, 76(4): 973-991. |
[3] | 马海涛, 孙湛. 中亚五国综合城镇化水平测度及其动力因素[J]. 地理学报, 2021, 76(2): 367-382. |
[4] | 宋周莺, 祝巧玲. 中国边境地区的城镇化格局及其驱动力[J]. 地理学报, 2020, 75(8): 1603-1616. |
[5] | 冯雨雪, 李广东. 青藏高原城镇化与生态环境交互影响关系分析[J]. 地理学报, 2020, 75(7): 1386-1405. |
[6] | 徐晨晨, 叶虎平, 岳焕印, 谭翔, 廖小罕. 城镇化区域无人机低空航路网迭代构建的理论体系与技术路径[J]. 地理学报, 2020, 75(5): 917-930. |
[7] | 董治宝, 吕萍. 70年来中国风沙地貌学的发展[J]. 地理学报, 2020, 75(3): 509-528. |
[8] | 刘玉洁, 葛全胜, 戴君虎. 全球变化下作物物候研究进展[J]. 地理学报, 2020, 75(1): 14-24. |
[9] | 张凯煌, 千庆兰, 杨青生. 中国城市土地城镇化多层级影响因素分析[J]. 地理学报, 2020, 75(1): 179-193. |
[10] | 谢林环, 江涛, 曹英杰, 张得胜, 黎坤, 唐常源. 城镇化流域降水径流氢氧同位素特征及洪水径流分割[J]. 地理学报, 2019, 74(9): 1733-1744. |
[11] | 刘海猛, 方创琳, 李咏红. 城镇化与生态环境“耦合魔方”的基本概念及框架[J]. 地理学报, 2019, 74(8): 1489-1507. |
[12] | 佟彪, 党安荣, 许剑. 300 BC-1900 AD无定河流域城镇时空格局演变[J]. 地理学报, 2019, 74(8): 1508-1524. |
[13] | 庄良,叶超,马卫,赵彪,胡森林. 中国城镇化进程中新区的空间生产及其演化逻辑[J]. 地理学报, 2019, 74(8): 1548-1562. |
[14] | 崔学刚,方创琳,刘海猛,刘晓菲,李咏红. 城镇化与生态环境耦合动态模拟理论及方法的研究进展[J]. 地理学报, 2019, 74(6): 1079-1096. |
[15] | 陈明星, 叶超, 陆大道, 隋昱文, 郭莎莎. 中国特色新型城镇化理论内涵的认知与建构[J]. 地理学报, 2019, 74(4): 633-647. |