地理学报 ›› 2020, Vol. 75 ›› Issue (1): 68-81.doi: 10.11821/dlxb202001006
高星1, 康世昌2, 刘青松3, 陈鹏飞2, 段宗奇1,4()
收稿日期:
2019-09-25
修回日期:
2019-11-13
出版日期:
2020-01-25
发布日期:
2020-03-25
作者简介:
高星(1966-), 男, 山东济南人, 研究员, 博导, 主要从事地震地质灾害及环境磁学方面研究。E-mail: gxing@igsnrr.ac.cn
基金资助:
GAO Xing1, KANG Shichang2, LIU Qingsong3, CHEN Pengfei2, DUAN Zongqi1,4()
Received:
2019-09-25
Revised:
2019-11-13
Published:
2020-01-25
Online:
2020-03-25
Supported by:
摘要:
重金属污染物因具有持久性和难降解性,严重影响生态系统健康。青藏高原湖泊远离人类污染区,是研究人类污染物远端效应的理想区域。基于定年数据,湖泊沉积物可以追踪近百年内的人类污染物变化趋势。环境磁学具有经济、快捷和无损耗的特点,被广泛证实可以有效指示重金属污染;但目前还缺乏对青藏高原湖泊沉积物中的相关环境磁学研究。为此,选取青藏高原南部枪勇错1899—2011年的沉积物,进行系统的环境磁学分析,探讨磁性矿物与重金属Hg的相关关系及环境指示意义。结果表明:1899—2011年磁性矿物的类型没有发生变化,可分为4类组分,其中:组分C1(赤铁矿)占比不断增多,C2(针铁矿)占比相应减少,C3和C4(磁铁矿)的占比基本保持不变。样品的饱和等温剩磁和低频磁化率与Hg含量相关性较低。然而C1组分与Hg含量呈现良好的正相关关系。本文认为在近百年全球和青藏高原气温不断增高的趋势下,枪勇错的主要补给——枪勇冰川融化加速,导致原来被冰川或冰尘封存的人类污染产生的Hg重新释放。在这个过程中,C1(赤铁矿)组分因表面积大而易于富集Hg,最终二者一同随融水进入到枪勇错。本研究表明,环境磁学可以应用于青藏高原南部湖泊的重金属研究,并为揭示Hg在青藏高原南部湖泊中的富集过程提供新的视角。
高星, 康世昌, 刘青松, 陈鹏飞, 段宗奇. 1899—2011年青藏高原南部枪勇错沉积物磁性矿物的环境意义[J]. 地理学报, 2020, 75(1): 68-81.
GAO Xing, KANG Shichang, LIU Qingsong, CHEN Pengfei, DUAN Zongqi. Magnetic characteristics of Qiangyong Co Lake sediments, southern Tibetan Plateau and its environmental significance during 1899-2011[J]. Acta Geographica Sinica, 2020, 75(1): 68-81.
[1] | Zheng Du, Yao Tandong. Uplifting of Tibetan Plateau with its Environmental Effects. Beijing: Science Press, 2004. |
[ 郑度, 姚檀栋 . 青藏高原隆升与环境效应. 北京: 科学出版社, 2004.] | |
[2] | Yin Xiufeng, de Foy Benjamin, Wu Kunpeng , et al. Gaseous and particulate pollutants in Lhasa, Tibet during 2013-2017: Spatial variability, temporal variations and implications. Environmental Pollution, 2019,253:68-77. |
[3] | Yao Tandong, Piao Shilong, Shen Miaogen , et al. Chained impacts on modern environment of interaction between Westerlies and Indian Monsoon on Tibetan Plateau. Bulletin of Chinese Academy of Sciences, 2017,32(9):976-984. |
[ 姚檀栋, 朴世龙, 沈妙根 , 等. 印度季风与西风相互作用在现代青藏高原产生连锁式环境效应. 中国科学院院刊, 2017,32(9):976-984.] | |
[4] | Zhu L P, Lü X M, Wang J , et al. Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM. Scientific Reports, 2015,5(1):13318. Doi: 10.1038/srep13318. |
[5] | Guo Chao, Meng Hongwei, Ma Yuzhen , et al. Environmental variations recorded by chemical element in the sediments of Lake Yamzhog Yumco on the southern Tibetan Plateau over the past 2000 years. Acta Geographica Sinica, 2019,74(7):1345-1362. |
[ 郭超, 蒙红卫, 马玉贞 , 等. 藏南羊卓雍错沉积物元素地球化学记录的过去2000年环境变化. 地理学报, 2019,74(7):1345-1362.] | |
[6] | Li Chaoliu, Kang Shichang, Cong Zhiyuan . Elemental composition of aerosols collected in the glacier area on Nyainqêntanglha Range, Tibetan Plateau, during summer monsoon season. Chinese Science Bulletin, 2007,52(24):3436-3442. |
[7] | Cong Zhiyuan, Kang Shichang, Zheng Wei , et al. Modern process and historical reconstruction of Pb and Hg in remote areas: A critical review. Acta Geographica Sinica, 2010,65(3):351-360. |
[ 丛志远, 康世昌, 郑伟 , 等. 偏远地区铅和汞的现代过程与历史记录研究综述. 地理学报, 2010,65(3):351-360.] | |
[8] | Kang S C, Zhang Q G, Qian Y , et al. Linking atmospheric pollution to cryospheric change in the Third Pole region: Current progress and future prospects. National Science Review, 2019,6(4):796-809. |
[9] | Wang X, Ren J, Gong P , et al. Spatial distribution of the persistent organic pollutants across the Tibetan Plateau and its linkage with the climate systems: A 5-year air monitoring study. Atmospheric Chemistry and Physics, 2016,16(11):6901-6911. |
[10] | Zhang Weiling, Zhang Gan, Qi Shihua , et al. A preliminary study of organochlorine pesticides in water and sediments from two Tibetan lakes. Geochimica, 2003,32(4):363-367. |
[ 张伟玲, 张干, 祁士华 , 等. 西藏错鄂湖和羊卓雍湖水体及沉积物中有机氯农药的初步研究. 地球化学, 2003,32(4):363-367.] | |
[11] | Huang J, Kang S, Ma M , et al. Accumulation of atmospheric mercury in glacier cryoconite over western China. Environmental Science & Technology, 2019,53(13):6632-6639. |
[12] | Yang H D, Battarbee R W, Turner S D , et al. Historical reconstruction of mercury pollution across the Tibetan Plateau using lake sediments. Environmental Science & Technology, 2010,44:2918-2924. |
[13] | Kang S C, Huang J, Wang F Y , et al. Atmospheric mercury depositional chronology reconstructed from lake sediments and ice core in the Himalayas and Tibetan Plateau. Environmental Science & Technology, 2016,50(6):2859-2869. |
[14] | Guo Bixi, Liu Yongqin, Zhang Fan , et al. Characteristics and risk assessment of heavy metals in core sediments from lakes of Tibet. Environmental Science, 2016,37(2):490-498. |
[ 郭泌汐, 刘勇勤, 张凡 , 等. 西藏湖泊沉积物重金属元素特征及生态风险评估. 环境科学, 2016,37(2):490-498.] | |
[15] | Xie Ting, Zhang Shujuan, Yang Ruiqiang . Contamination levels and source analysis of polycyclic aromatic hydrocarbons and organochlorine pesticides in soils and grasses from lake catchments in the Tibetan Plateau. Environmental Science, 2014,35(7):2680-2690. |
[ 谢婷, 张淑娟, 杨瑞强 . 青藏高原湖泊流域土壤与牧草中多环芳烃和有机氯农药的污染特征与来源解析. 环境科学, 2014,35(7):2680-2690.] | |
[16] | Wan X, Kang S C, Li Q L , et al. Organic molecular tracers in the atmospheric aerosols from Lumbini, Nepal, in the northern Indo-Gangetic Plain: Influence of biomass burning. Atmospheric Chemistry and Physics, 2017,17:8867-8885 |
[17] | Xu B, Cao J, Hansen J , et al. Black soot and the survival of Tibetan glaciers. Proceedings of the National Academy of Sciences, 2009,106(52):22114-22118. |
[18] | Wang Mo, Xu Baiqing, Kaspari Susan , et al. Variation of black carbon from a Muztagata ice core during 1868-2000 and its biomass contribution. Atmospheric Environment, 2015,115:79-88. |
[19] | Li C, Bosch C, Kang S , et al. Sources of black carbon to the Himalayan-Tibetan Plateau glaciers. Nature Communications, 2016,7:12574. Doi: 10.1038/nomms12574. |
[20] | Chen P F, Kang S C, Li C L , et al. Carbonaceous aerosol characteristics on the Third Pole: A primary study based on the Atmospheric Pollution and Cryospheric Change (APCC) network. Environmental Pollution, 2019,253:49-60. |
[21] | Wu G M, Wan X, Gao S P , et al. Humic-like substances (HULIS) in aerosols of Central Tibetan Plateau (Nam Co, 4730 m asl): Abundance, light absorption properties, and sources. Environmental Science & Technology, 2018,52:7203-7211. |
[22] | Lv Jianshu, Zhang Zulu, Liu Yang , et al. Sources identification and hazardous risk delineation of heavy metals contamination in Rizhao City. Acta Geographica Sinica, 2012,67(7):971-984. |
[ 吕建树, 张祖陆, 刘洋 , 等. 日照市土壤重金属来源解析及环境风险评价. 地理学报, 2012,67(7):971-984.] | |
[23] | Mamattursun Eziz, Ajigul Mamut, Anwar Mohammad , et al. Assessment of heavy metal pollution and its potential ecological risks of farmland soils of oasis in Bostan Lake basin. Acta Geographica Sinica, 2017,72(9):1680-1694. |
[ 麦麦提吐尔逊·艾则孜, 阿吉古丽·马木提, 艾尼瓦尔·买买提 , 等. 博斯腾湖流域绿洲农田土壤重金属污染及潜在生态风险评价. 地理学报, 2017,72(9):1680-1694.] | |
[25] | Sun Xi, Liu Heman, Zhou Tong , et al. Preliminary study on soil fertility and heavy metal concentrations of croplands in Nyingchi valley of Tibet. Soils, 2016,48(1):131-138. |
[ 孙曦, 刘合满, 周通 , 等. 林芝河谷地区典型农田土壤主要性质及重金属状况初探. 土壤, 2016,48(1):131-138.] | |
[26] | Xiao Cunde, Qin Dahe, Yao Tandong , et al. The global pollution revealed by Pb, Cd in the surface snow of Antarctic, Arctic and Qinghai-Xizang Plateau. Chinese Science Bulletin, 1999,44(23):2558-2663. |
[ 效存德, 秦大河, 姚檀栋 , 等. 南、北极和青藏高原现代降水中Pb, Cd反映的全球大气污染. 科学通报, 1999,44(23):2558-2663.] | |
[27] | Zhang Chunxia, Huang Baochun, Liu Qingsong . Magnetic properties of different pollution receptors around steel plants and their environmental significance. Chinese Journal of Geophysics, 2009,52(11):2826-2839. |
[ 张春霞, 黄宝春, 刘青松 . 钢铁厂周围不同污染介质的磁学性质及环境意义. 地球物理学报, 2009,52(11):2826-2839. | |
[28] | Liu Zhendong, Liu Qingsheng, Wan Hansheng , et al. Relationship between magnetic properties and heavy metals of sediments in Donghu Lake, Wuhan, China. Earth Science-Journal of China University of Geosciences, 2006,31(2):266-272. |
[ 刘振东, 刘庆生, 汪汉胜 , 等. 武汉市东湖沉积物的磁性特征与重金属含量之间的关系. 地球科学—中国地质大学学报, 2006,31(2):266-272.] | |
[29] | Zhang Chunxia, Huang Baochun, Luo Rensong , et al. Magnetic properties of tree ring samples close to a smelting factory and their environmental significance. Quaternary Sciences, 2007,27(6):1092-1104. |
[ 张春霞, 黄宝春, 骆仁松 , 等. 钢铁厂附近树木年轮的磁学性质及其环境意义. 第四纪研究, 2007,27(6):1092-1104.] | |
[30] | Li Peng, Qiang Xiaoke, Tang Yanrong , et al. Magnetic susceptibility of the dust of street in Xi'an and the implication on pollution. China Environmental Science, 2010,30(3):309-314. |
[ 李鹏, 强小科, 唐艳荣 , 等. 西安市街道灰尘磁化率特征及其污染指示意义. 中国环境科学, 2010,30(3):309-314.] | |
[31] | Wang X P, Yang H, Gong P , et al. One century sedimentary records of polycyclic aromatic hydrocarbons, mercury and trace elements in the Qinghai Lake, Tibetan Plateau. Environmental Pollution, 2010,158:3065-3070. |
[32] | Li Jiule, Xu Baiqing, Lin Shubiao , et al. Glacier and climate changes over the past millennium recorded by proglacial sediment sequence from Qiangyong Lake, Southern Tibetan Plateau. Journal of Earth Sciences and Environment, 2011,33(4):402-411. |
[ 李久乐, 徐柏青, 林树标 , 等. 青藏高原南部枪勇错冰前湖泊沉积记录的近千年来冰川与气候变化. 地球科学与环境学报, 2011,33(4):402-411.] | |
[33] | Liu Q, Roberts A P, Larrasoaña J C , et al. Environmental magnetism: Principles and applications. Reviews of Geophysics, 2012, 50(4): RG4002. Doi: 10.1029/2012RG000393. |
[34] | Ao Hong, Deng Chenglong . Review in the identification of magnetic minerals. Progress in Geophysics, 2007,22(2):432-442. |
[ 敖红, 邓成龙 . 磁性矿物的磁学鉴别方法回顾. 地球物理学进展, 2007,22(2):432-442.] | |
[35] | Duan Zongqi, Gao Xing, Liu Qingsong . Anhysteretic remanent magnetization (ARM) and its application to geoscience. Progress in Geophysics, 2012,27(5):1929-1938. |
[ 段宗奇, 高星, 刘青松 . 非磁滞剩磁(ARM)及其在地学中的应用. 地球物理学进展, 2012,27(5):1929-1938.] | |
[36] | Day R, Fuller M, Schmidt VA . Hysteresis properties of titanomagnetites: Grainsize and compositional dependence. Physics of the Earth and Planetary Interiors, 1977,13(4):260-267. |
[37] | Dunlop D J . Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research, 2002, 107(B3): EPM1-EPM4-22. Doi: 10.1029/2001JB000486. |
[38] | Dunlop D J . Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. Journal of Geophysical Research, 2002, 107(B3): EPM1-EPM5-15. Doi: 10.1029/2001JB000487. |
[39] | Chen Xi, Zhang Weiguo, Yu Lizhong . The dependence of magnetic parameters on the mixing proportion of hematite and magnetite. Progress in Geophysics, 2009,24(1):82-88. |
[ 陈曦, 张卫国, 俞立中 . 赤铁矿与磁铁矿混合比例对磁性参数的影响. 地球物理学进展, 2009,24(1):82-88.] | |
[40] | Kruiver P P, Dekkers M J, Heslop D . Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetization. Earth and Planetary Science Letters, 2001,189(3/4):269-276. |
[41] | Heslop D, Dekkers M J, Kruiver P P , et al. Analysis of isothermal remanent magnetization acquisition curves using the expectation-maximization algorithm. Geophysical Journal International, 2002,148(1):58-64. |
[42] | Deng Chenglong, Zhu Rixiang, Yuan Baoyin . Rock magnetism of the Holocene eolian in the loess Plateau: Evidence for pedogenesis. 2002,11(2):37-45. |
[ 邓成龙, 朱日祥, 袁宝印 . 黄土全新世风成沉积的岩石磁学性质及其古气候意义. 海洋地质与第四纪地质, 2002,11(2):37-45.] | |
[43] | Jackson M, Carter-Stiglitz B, Egli R , et al. Characterizing the superparamagnetic grain distribution f (V, Hk) by thermal fluctuation tomography. Journal of Geophysical Research: Solid Earth 2006, 111, B12S07. Doi: 10.1029/2006jb004514. |
[44] | Verwey E J . Electronic conduction of magnetite (Fe3O4) and its transition point at low temperature. Nature, 1939,144:327-328. |
[45] | Kosterov A . Low-temperature magnetization and AC susceptibility of magnetite: Effect of thermomagnetic history. Geophysical Journal International, 2003,154:58-71. |
[46] | Muxworthy A R McClelland E . Review of the low-temperature magnetic properties of magnetite from a rock magnetic perspective. Geophysical Journal International, 2000,140:101-114. |
[47] | Torrent J, Barrón V . Diffuse reflectance spectroscopy//Ulery A L, Drees R. Methods of Soil Analysis Part 5: Mineralogical Methods. Madison, WI: Soil Science Society of America, Inc. 2008: 367-387. |
[48] | Torrent J, Barrón V . Diffuse reflectance spectroscopy of iron oxides//Somasundaran P. Encyclopedia of Surface and Colloid Science. New York: Marcel Dekker Inc, 2002: 1438-1446. |
[49] | Jiang Zhaoxia, Liu Qingsong . Quantification of hematite and its climatic significances. Quaternary Sciences, 2016,36(3):676-689. |
[ 姜兆霞, 刘青松 . 赤铁矿的定量化及其气候意义. 第四纪研究, 2016,36(3):676-689.] | |
[50] | Hu P, Liu Q, José Torrent , et al. Characterizing and quantifying iron oxides in Chinese loess/paleosols: Implications for pedogenesis. Earth & Planetary Science Letters, 2013, 369-370(3):271-283. |
[51] | Guo Wei, Huo Shouliang, Ding Wenjuan . Historical record of human impact in a lake of northern China: Magnetic susceptibility, nutrients, heavy metals and OCPs. Ecological Indicators, 2015,57:74-81. |
[52] | Hanesch M, Scholger R, Rey D . Mapping dust distribution around an industrial site by measuring magnetic parameters of tree leaves. Atmospheric Environment, 2003,37(36):5125-5133. |
[53] | Hu Shouyun, Duan Xuemei, Shen Mingjie , et al. Magnetic response to atmospheric heavy metal pollution recorded by dust-loaded leaves in Shougang industrial area, western Beijing. Chinese Science Bulletin, 2008,53(10):1555-1564. |
[54] | Gautam P, Blaha U, Appel E . Magnetic susceptibility of dust-loaded leaves as a proxy of traffic-related heavy metal pollution in Kathmandu city, Nepal. Atmospheric Environment, 2005,39(12):2201-2211. |
[55] | Spiteri C, Kalinski V, Rösler W , et al. Magnetic screening of a pollution hotspot in the Lausitz area, Eastern Germany: Correlation analysis between magnetic proxies and heavy metal contamination in soils. Environmental Geology, 2005,49(1):1-9. |
[56] | Zhang Q, Huang J, Wang F , et al. Mercury distribution and deposition in glacier snow over western China. Environmental Science & Technology, 2012,46(10):5404-5413. |
[57] | Cong Z, Gao S, Zhao W , et al. Iron oxides in the cryoconite of glaciers on the Tibetan Plateau: Abundance, speciation and implications. Cryosphere Discussions, 2018,12:3177-3186. |
[58] | Duan Zongqi, Gao Xing, Liu Qingsong , et al. Magnetic characteristics of insoluble microparticles in ice core (Nojingkangsang) from the southern Tibetan Plateau and its environmental significance. Science China Earth Sciences, 2011,54(11):1635-1642. |
[24] | Zhang F, Yan X D, Zeng C , et al. Influence of traffic activity on heavy metal concentrations of roadside farmland soil in mountainous areas. International Journal of Environmental Research and Public Health, 2012,9(5):1715-1731. |
[59] | Huang Jie, Kang Shichang, Zhang Qianggong , et al. Characterizations of wet mercury deposition on a remote high-elevation site in the southeastern Tibetan Plateau. Environmental Pollution, 2015,206:518-526. |
[1] | 梁潇, 杨萍果, 姚娇, 张鹏, 张建辉, 孙鹏飞, 敖红. 16 ka以来黄土高原东亚夏季风变化的环境磁学记录[J]. 地理学报, 2021, 76(3): 539-549. |
[2] | 董广辉, 仇梦晗, 李若, 陈发虎. 探讨过去人地关系演变机制的“支点”概念模型[J]. 地理学报, 2021, 76(1): 15-29. |
[3] | 郭超,蒙红卫,马玉贞,李丹丹,胡彩莉,刘杰瑞,雒聪文,王凯. 藏南羊卓雍错沉积物元素地球化学记录的过去2000年环境变化[J]. 地理学报, 2019, 74(7): 1345-1362. |
[4] | 吴绍洪,刘路路,刘燕华,高江波,戴尔阜,冯爱青. “一带一路”陆域地理格局与环境变化风险[J]. 地理学报, 2018, 73(7): 1214-1225. |
[5] | 张云峰, 张振克, 任航, 高磊, 丁海燕. 近百年来长江口启东嘴潮滩沉积物质来源及定量估算[J]. 地理学报, 2018, 73(11): 2105-2116. |
[6] | 安成邦, 王伟, 段阜涛, 黄伟, 陈发虎. 亚洲中部干旱区丝绸之路沿线环境演化与东西方文化交流[J]. 地理学报, 2017, 72(5): 875-891. |
[7] | 刘昌明, 王中根, 杨胜天, 桑燕芳, 刘小莽, 李军. 地表物质能量交换过程中的水循环综合模拟系统(HIMS)研究进展[J]. 地理学报, 2014, 69(5): 579-587. |
[8] | 李育, 王乃昂, 李卓仑, 周雪花, 张成琦. 河西走廊盐池晚冰期以来沉积地层变化综合分析——来自夏季风西北缘一个关键位置的古气候证据[J]. 地理学报, 2013, 68(7): 933-944. |
[9] | 郎丽丽, 王训明, 哈斯, 花婷. 灌丛沙丘形成演化及环境指示意义研究的主要进展[J]. 地理学报, 2012, 67(11): 1526-1536. |
[10] | 丰华, 刘秀铭, 吕镔, 马明明, 李平原, 刘植, 赵国永, 毛学刚. 兰州市大气降尘磁学特征及其环境意义[J]. 地理学报, 2012, 67(1): 36-44. |
[11] | 张广胜1, 2, 朱诚1, 王吉怀3, 朱光耀4, 马春梅1, 郑朝贵5, 赵兰会6, 李中轩1, 朱青1, 金爱春7. 安徽蚌埠禹会村遗址4.5-4.0 ka BP龙山文化的环境考古[J]. 地理学报, 2009, 64(7): 817-827. |
[12] | 春喜,陈发虎,范育新,夏敦胜,赵晖. 乌兰布和沙漠腹地古湖存在的沙嘴证据及环境意义[J]. 地理学报, 2009, 64(3): 339-348. |
[13] | 蔡运龙,李双成,方修琦. 自然地理学研究前沿[J]. 地理学报, 2009, 64(11): 1363-1374. |
[14] | 谢曼平,朱立平,彭萍, 甄晓林, 汪勇,鞠建廷, Schwalb. 8.4 ka 以来纳木错湖芯介形类组合的环境变化意义[J]. 地理学报, 2008, 63(9): 931-944. |
[15] | 孙爱芝, 冯兆东, 唐领余, 马玉贞. 13 ka BP 以来黄土高原西部的植被与环境演化[J]. 地理学报, 2008, 63(3): 280-292. |