地理学报 ›› 2019, Vol. 74 ›› Issue (9): 1878-1889.doi: 10.11821/dlxb201909013
收稿日期:
2018-05-31
修回日期:
2019-07-31
出版日期:
2019-09-25
发布日期:
2019-09-25
作者简介:
路路(1985-), 男, 博士, 主要从事土地利用变化下的环境效应研究。E-mail: lulu@igsnrr.ac.cn
基金资助:
LU Lu1,2,DAI Erfu2(),CHENG Qianding3,WU Zhenzhen3
Received:
2018-05-31
Revised:
2019-07-31
Published:
2019-09-25
Online:
2019-09-25
Supported by:
摘要:
识别复杂土地利用类型对地下水体氮素归趋的影响一直是非点源污染研究中的重点及难点。本文采用水环境化学及同位素联合示踪法对具有复杂地类的三江平原阿布胶河流域地下水体中氮素归趋进行解析研究。结果表明:研究区域内地下水体中存在严重的氮素污染,部分点位超出标准限值近4倍。土地利用类型不仅是氮素浓度和水化学类型演变的主导因素,而且对地下水体氮素循环过程及氮素来源产生了重要的影响。其中:在林地区域内,硝态氮占主导,氮素主要来源于土壤有机氮硝化;在城镇区域内,硝态氮超标,具有较高的氯离子浓度,主要来源于粪便及废水,受硝化过程所控制;在水田区域:铵态氮超标,具有较高的硝酸盐同位素值(δ 15N-NO3 -和δ 18O-NO3 -)且二者存在显著的线性关系,表明存在着显著的反硝化过程。在旱田区域,硝态氮占主导,氮素来源及循环过程较为复杂,受反硝化及雨水混合过程等多重影响,难以单一使用同位素示踪法进行溯源解析。通过联合水化学解析法能进一步揭示该区域氮素污染主要来源于肥料施用。因此,通过联合示踪法能够补充复杂土地利用区域氮素来源识别工作的缺陷,提升地下水体氮素归趋识别的精度。
路路, 戴尔阜, 程千钉, 邬真真. 基于水环境化学及稳定同位素联合示踪的土地利用类型对地下水体氮素归趋影响[J]. 地理学报, 2019, 74(9): 1878-1889.
LU Lu, DAI Erfu, CHENG Qianding, WU Zhenzhen. The sources and fate of nitrogen in groundwater under different land use types: Stable isotope combined with a hydrochemical approach[J]. Acta Geographica Sinica, 2019, 74(9): 1878-1889.
表4
主成分分析成分矩阵以及旋转成分矩阵结果
变量 | 成分矩阵 | 旋转成分矩阵a | ||
---|---|---|---|---|
主成分1 | 主成分2 | 主成分1 | 主成分2 | |
SO42- | 0.907 | 0.200 | 0.931 | -0.099 |
Mg2+ | 0.873 | 0.338 | 0.898 | -0.237 |
NO3- | 0.861 | -0.062 | 0.861 | -0.189 |
Cl- | 0.853 | -0.126 | 0.844 | 0.031 |
Na+ | 0.852 | 0.226 | 0.770 | -0.076 |
K+ | 0.737 | 0.414 | 0.738 | -0.449 |
Ca2+ | 0.719 | 0.285 | 0.701 | -0.502 |
HCO3- | 0.102 | 0.782 | -0.257 | 0.861 |
NH4+ | -0.578 | 0.664 | -0.211 | 0.855 |
Fe2+ | -0.622 | 0.648 | -0.212 | 0.760 |
Mn2+ | -0.536 | 0.579 | 0.449 | 0.649 |
累积贡献率(%) | 53.275 | 74.056 | 46.481 | 74.056 |
[1] |
Jiang Y, Yuan D, Xie S , et al. Groundwater quality and land use change in a typical karst agricultural region: A case study of Xiao jiang watershed, Yunnan. Journal of Geographical Sciences, 2006,16(4):405-414.
doi: 10.1007/s11442-006-0403-9 |
[2] | Song K S, Liu D W, Wang Z M , et al. Land use change in Sanjiang Plain and its driving forces analysis since 1954. Acta Geographica Sinica, 2008,63(1):93-104. |
[ 宋开山, 刘殿伟, 王宗明 , 等. 1954年以来三江平原土地利用变化及驱动力. 地理学报, 2008,63(1):93-104.] | |
[3] | Dan W, Wei H, Shuwen Z , et al. Processes and prediction of land use/land cover changes (LUCC) driven by farm construction: The case of Naoli River Basin in Sanjiang Plain. Environmental earth sciences, 2015,73(8):4841-4851. |
[4] | Cao Y, Tang C, Song X , et al. Characteristics of nitrate in major rivers and aquifers of the Sanjiang Plain, China. Journal of Environmental Monitoring, 2012,14(10):2624-2633. |
[5] | Lu L, Cheng H G, Pu X , et al. Identifying organic matter sources using isotopic ratios in a watershed impacted by intensive agricultural activities in Northeast China . Agriculture, Ecosystems & Environment, 2016,222:48-59. |
[6] | Pan Xiaofeng, Yan Baixing, Zhu Hui , et al. Iron species and output flux in the agricultural irrigation drainage system in the Sanjiang Plain. Acta Scientiae Circumstantiae, 2010,30(5):1087-1092. |
[ 潘晓峰, 阎百兴, 祝惠 , 等. 三江平原水田灌溉-排水过程中铁形态变化及输出贡献. 环境科学学报, 2010,30(5):1087-1092.] | |
[7] | Zou Yuanchun, Yu Xiaofei, Huo Lili , et al. Waterborne iron migration by groundwater irrigation pumping in a typical irrigation district of Sanjiang Plain. Environmental Science, 2012,33(4):1209-1215. |
[ 邹元春, 于晓菲, 霍莉莉 , 等. 三江平原典型灌区井灌地下水中铁的随水迁移特征. 环境科学, 2012,33(4):1209-1215.] | |
[8] | Li Qiao, Zhou Jinglong, Jia Ruiliang . Research status and prospect on agricultural non-point source pollution of groundwater. Groundwater, 2011,33(2):73-76. |
[ 李巧, 周金龙, 贾瑞亮 . 地下水农业面源污染研究现状与展望. 地下水, 2011,33(2):73-76.] | |
[9] | Balestrini R, Sacchi E, Tidili D , et al. Factors affecting agricultural nitrogen removal in riparian strips: Examples from groundwater-dependent ecosystems of the Po Valley (Northern Italy). Agriculture, Ecosystems & Environment, 2016,221:132-144. |
[10] | Lawniczak A E, Zbierska J, Nowak B , et al. Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environmental monitoring and assessment, 2016,188(3):1-10. |
[11] | Matiatos I . Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos Basin (Central Greece). Science of the Total Environment, 2016,541:802-814. |
[12] | Wang S, Zheng W, Currell M , et al. Relationship between land-use and sources and fate of nitrate in groundwater in a typical recharge area of the North China Plain. Science of the Total Environment, 2017,609:607-620. |
[13] | Kendall C, Elliott E M, Wankel S D . Tracing anthropogenic inputs of nitrogen to ecosystems//Michener R H, Lajtha K. Stable Isotopes in Ecology and Environmental Science. Malden: Blackwell, 2007: 375-449. |
[14] |
Xue D, Botte J, De Baets B , et al. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface-and groundwater. Water Research, 2009,43(5):1159-1170.
doi: 10.1016/j.watres.2008.12.048 |
[15] | Wang X L, Li J S, Li S M , et al. A study on removing nitrogen from paddy field rainfall runoff by an ecological ditch-zeolite barrier system. Environmental Science and Pollution Research, 2017,24(35):27090-27103. |
[16] |
Cheong J, Hamm S, Lee J , et al. Groundwater nitrate contamination and risk assessment in an agricultural area, South Korea. Environmental Earth Sciences, 2012,66(4):1127-1136.
doi: 10.1007/s12665-011-1320-5 |
[17] | Amano H, Nakagawa K, Berndtsson R . Groundwater geochemistry of a nitrate-contaminated agricultural site. Environmental Earth Sciences, 2016,75(15):1145. |
[18] | Mao Xumei, Luo Zejiao, Li Yongyong , et al. Bacterial denitrification: A new method for nitrogen isotopic analysis of nitrate in groundwater. Acta Geoscientica Sinica, 2005,26(B09):44-47. |
[ 毛绪美, 罗泽娇, 李永勇 , 等. 地下水硝酸盐氮同位素分析最新方法: 细菌反硝化法. 地球学报, 2005,26(B09):44-47.] | |
[19] | Hosono T, Tokunaga T, Kagabu M , et al. The use of δ 15N and δ 18O tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution . Water Research, 2013,47(8):2661-2675. |
[20] | Townsend M A . Use of the nitrogen-15 isotope natural abundance method and chemical ratios to determine sources of potential nitrate contamination of ground water, northeastern kansas. Geological Society of America Abstracts with Programs, 2009,41(4):67. |
[21] | Du Y, Ma T, Deng Y , et al. Sources and fate of high levels of ammonium in surface water and shallow groundwater of the Jianghan Plain, Central China. Environmental Science: Processes & Impacts, 2017,19(2):161-172. |
[22] | Liang T, Zhang X, Zhang S . Nitrogen elements transferring processes and fluxes under different land use in West Tiaoxi Catchment. Acta Geographica Sinica, 2002,57(4):389-396. |
[ 梁涛, 张秀梅, 章申 , 等. 西苕溪流域不同土地类型下氮元素输移过程. 地理学报, 2002,57(4):389-396.] | |
[23] | Xu Zhiwei, Zhang Xinyu, Yu Guirui , et al. Review of dual stable isotope technique for nitrate source identification in surface- and ground water in China. Environmental Science, 2014,35(8):3230-3238. |
[ 徐志伟, 张心昱, 于贵瑞 , 等. 中国水体硝酸盐氮氧双稳定同位素溯源研究进展. 环境科学, 2014,35(8):3230-3238.] | |
[24] | Lu L, Cheng H G, Pu X , et al. Nitrate behaviors and source apportionment in an aquatic system from a watershed with intensive agricultural activities. Environmental Science: Processes & Impacts, 2015,17(1):131-144. |
[25] | Ding J T, Xi B, Gao R , et al. Identifying diffused nitrate sources in a stream in an agricultural field using a dual isotopic approach. Science of the Total Environment, 2014,484(24):10-18. |
[26] | Barnes R T, Raymond P A . Land-use controls on sources and processing of nitrate in small watersheds: Insights from dual isotopic analysis. Ecological Applications, 2010,20(7):1961-1978. |
[27] |
Nestler A, Berglund M, Accoe F , et al. Isotopes for improved management of nitrate pollution in aqueous resources: review of surface water field studies. Environmental Science and Pollution Research, 2011,18(4):519-533.
doi: 10.1007/s11356-010-0422-z |
[28] |
Minet E, Coxon C E, Goodhue R , et al. Evaluating the utility of δ 15N and δ 18O isotope abundance analyses to identify nitrate sources: A soil zone study . Water Research, 2012,46(12):3723-3736.
doi: 10.1016/j.watres.2012.03.004 |
[29] | Kim H, Kaown D, Mayer B , et al. Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean Basin, Korea) using isotope and microbial community analyses. Science of the Total Environment, 2015,533:566-575. |
[30] | Yin Juan, Wang Nanjiang, Mian Shaoping . Experiment study of the nitrogen transportation and transformation regularity in the rice field of Yin nan Irrigation District. Journal of Irrigation and Drainage, 2005,24(3):5-7. |
[ 尹娟, 王南江, 勉韶平 . 稻田土壤中氮素运移转化规律的试验研究. 灌溉排水学报, 2005,24(3):5-7.] | |
[31] | Song X, Wang S, Wang Y , et al. Addition of Fe 2+ increase nitrate removal in vertical subsurface flow constructed wetlands . Ecological Engineering, 2016,91:487-494. |
[1] | 王可逸, 刘晓宏, 曾小敏, 徐国保, 张凌楠, 李春越. 树轮稳定氮同位素记录的进展与展望[J]. 地理学报, 2021, 76(5): 1193-1205. |
[2] | 张永强, 孔冬冬, 张选泽, 田静, 李聪聪. 2003—2017年植被变化对全球陆面蒸散发的影响[J]. 地理学报, 2021, 76(3): 584-594. |
[3] | 龙花楼, 陈坤秋. 基于土地系统科学的土地利用转型与城乡融合发展[J]. 地理学报, 2021, 76(2): 295-309. |
[4] | 彭诗尧, 陈绍宽, 许奇, 牛家祺. 基于POI的土地利用与轨道交通客流的空间特征[J]. 地理学报, 2021, 76(2): 459-470. |
[5] | 廖柳文, 高晓路, 龙花楼, 汤礼莎, 陈坤秋, 马恩朴. 基于农户利用效率的平原和山区耕地利用形态比较[J]. 地理学报, 2021, 76(2): 471-486. |
[6] | 杨微石, 戴尔阜, 郑度, 董玉祥, 尹乐, 马良, 王隽雄, 潘理虎, 秦世鹏. 基于多主体模型的典型区域退耕还林工程实施空间模拟[J]. 地理学报, 2020, 75(9): 1983-1995. |
[7] | 瞿诗进, 胡守庚, 李全峰. 中国城市建设用地转型阶段及其空间格局[J]. 地理学报, 2020, 75(7): 1539-1553. |
[8] | 田晶, 郭生练, 刘德地, 陈启会, 王强, 尹家波, 吴旭树, 何绍坤. 气候与土地利用变化对汉江流域径流的影响[J]. 地理学报, 2020, 75(11): 2307-2318. |
[9] | 宋小青, 申雅静, 王雄, 李心怡. 耕地利用转型中的生物灾害脆弱性研究[J]. 地理学报, 2020, 75(11): 2362-2379. |
[10] | 孙毅中, 杨静, 宋书颖, 朱杰, 戴俊杰. 多层次矢量元胞自动机建模及土地利用变化模拟[J]. 地理学报, 2020, 75(10): 2164-2179. |
[11] | 鞠洪润, 左丽君, 张增祥, 赵晓丽, 汪潇, 温庆可, 刘芳, 徐进勇, 刘斌, 易玲, 胡顺光, 孙菲菲, 汤占中. 中国土地利用空间格局刻画方法研究[J]. 地理学报, 2020, 75(1): 143-159. |
[12] | 谢林环, 江涛, 曹英杰, 张得胜, 黎坤, 唐常源. 城镇化流域降水径流氢氧同位素特征及洪水径流分割[J]. 地理学报, 2019, 74(9): 1733-1744. |
[13] | 苏伟忠,汝静静,杨桂山. 流域尺度土地利用调蓄视角的雨洪管理探析[J]. 地理学报, 2019, 74(5): 948-961. |
[14] | 赵鹏军,吕迪. 中国小城镇镇区土地利用结构特征[J]. 地理学报, 2019, 74(5): 1011-1024. |
[15] | 宋小青,李心怡. 区域耕地利用功能转型的理论解释与实证[J]. 地理学报, 2019, 74(5): 992-1010. |