地理学报 ›› 2019, Vol. 74 ›› Issue (9): 1758-1776.doi: 10.11821/dlxb201909005
彭文甫1,2,张冬梅1,2,罗艳玫1,2,陶帅1,2,徐新良3
收稿日期:
2018-04-19
修回日期:
2019-07-25
出版日期:
2019-09-25
发布日期:
2019-09-25
作者简介:
彭文甫(1964-), 男, 四川乐山人, 博士, 副教授, 主要从事国土资源遥感研究。E-mail: pwfzh@126.com
基金资助:
PENG Wenfu1,2,ZHANG Dongmei1,2,LUO Yanmei1,2,TAO Shuai1,2,XU Xinliang3
Received:
2018-04-19
Revised:
2019-07-25
Online:
2019-09-25
Published:
2019-09-25
Supported by:
摘要:
许多研究已表明基于遥感的植被指数在地表过程和全球变化研究中具有重要作用,对认识植被变化的驱动因素具有重要意义,但自然因子对植被变化影响仍然难以量化。应用地理探测器模型,研究四川地区自然因子变化对植被分布的空间模式和植被变化的交互影响,并确定了促进植被生长的各主要自然因子最适宜特征。结果表明:① 2000-2015年,四川植被覆盖度状况良好,中高、高植被覆盖面积之和均超过94%;归一化植被指数(NDVI)转化表现为NDVI > 0.4以上区域转化明显,中高和高植被覆盖区面积分别呈显著下降和上升趋势;植被覆盖时空变化差异显著,植被覆盖较高区域位于四川盆地东北部、川西北高原地区,植被覆盖较低区域分布于四川盆地中部城市密集区域。② 土壤类型、高程和年均温度变化等因子较好地解释了植被状况的可变性。③ 自然因子对植被NDVI影响存在交互作用,自然因子协同效应呈现相互增强和非线性增强关系,两种因子交互作用增强了单因子的影响。④ 研究揭示的促进植被生长的各主要因子最适宜特征,有助于更好地理解自然因素对植被NDVI变化的影响及其驱动机制。
彭文甫, 张冬梅, 罗艳玫, 陶帅, 徐新良. 自然因子对四川植被NDVI变化的地理探测[J]. 地理学报, 2019, 74(9): 1758-1776.
PENG Wenfu, ZHANG Dongmei, LUO Yanmei, TAO Shuai, XU Xinliang. Influence of natural factors on vegetation NDVI using geographical detection in Sichuan Province[J]. Acta Geographica Sinica, 2019, 74(9): 1758-1776.
表2
2000-2015年四川植被NDVI动态变化"
年份 | 2000年 | 2015年 | 2000-2015年 | |||
---|---|---|---|---|---|---|
植被NDVI等级 | 面积(km2) | 比例(%) | 面积(km2) | 比例(%) | 面积变化(km2) | 比例(%) |
≤ 0.2 | 2072.104 | 0.429 | 1703.75 | 0.353 | -368.354 | -0.076 |
0.2~0.4 | 5358.020 | 1.110 | 4655.25 | 0.964 | -702.770 | -0.146 |
0.4~0.6 | 19194.216 | 3.975 | 17313.5 | 3.586 | -1880.716 | -0.390 |
0.6~0.8 | 119556.267 | 24.761 | 92525.75 | 19.163 | -27030.517 | -5.598 |
> 0.8 | 336651.193 | 69.724 | 366633.5 | 75.934 | 29982.307 | 6.210 |
表3
2000-2015年四川省植被NDVI变化转移矩阵(km2)"
植被NDVI等级 | ≤ 0.2 | 0.2~0.4 | 0.4~0.6 | 0.6~0.8 | > 0.8 | 2015年合计 | 转入 |
---|---|---|---|---|---|---|---|
≤ 0.2 | 1487.75 | 182.01 | 7.50 | 2.25 | 0 | 1703.75 | 216.00 |
0.2~0.4 | 536.75 | 3059.65 | 1008.05 | 50.00 | 1.00 | 4655.25 | 1595.75 |
0.4~0.6 | 41.25 | 1931.10 | 11377.55 | 3739.19 | 225.26 | 17313.5 | 10826.75 |
0.6~0.8 | 4 | 154.76 | 6487.06 | 67633.64 | 18250.92 | 92525.75 | 24895.50 |
> 0.8 | 2.25 | 30.50 | 314.02 | 48131.17 | 318173.97 | 366633.5 | 48475.50 |
2000年合计 | 2072 | 5358.02 | 19194.17 | 119556.25 | 336651.15 | ||
转出 | 584.25 | 2298.25 | 7816.25 | 51920 | 18476.25 | ||
变化量 | -368.25 | -702.5 | -1 879.75 | -27 024.5 | 29 999.25 |
表5
四川不同地貌类型的自然因子的PD值"
地貌类型 | X1 | X2 | X3 | X4 | X6 | X7 | X8 | X9 | X10 | X11 | X12 |
---|---|---|---|---|---|---|---|---|---|---|---|
平原 | 0.1133 | 0.0357 | 0.0781 | 0.0333 | 0.0495 | 0.0628 | 0.0125 | 0.0748 | 0.0557 | 0.0121 | 0.0288 |
台地 | 0.0503 | 0.0690 | 0.0203 | 0.0922 | 0.0815 | 0.1222 | 0.0115 | 0.0782 | 0.1080 | 0.0067 | 0.0061 |
小起伏山地 | 0.1998 | 0.1715 | 0.0103 | 0.1861 | 0.1953 | 0.3339 | 0.0829 | 0.2367 | 0.2903 | 0.0162 | 0.0210 |
中起伏山地 | 0.1810 | 0.2927 | 0.0200 | 0.2554 | 0.3004 | 0.3351 | 0.0898 | 0.3246 | 0.3715 | 0.0383 | 0.0087 |
大起伏山地 | 0.1379 | 0.2905 | 0.0048 | 0.2340 | 0.4532 | 0.0893 | 0.2011 | 0.3617 | 0.4620 | 0.0384 | 0.0096 |
极大起伏山地 | 0.2429 | 0.0489 | 0.1104 | 0.0080 | 0.2084 | 0.0942 | 0.4068 | 0.5262 | 0.2625 | 0.1055 | 0.0617 |
表6
四川不同土壤类型的自然因子的PD值"
土壤类型 | X1 | X2 | X3 | X4 | X6 | X7 | X8 | X9 | X10 | X11 | X12 |
---|---|---|---|---|---|---|---|---|---|---|---|
淋溶土 | 0.0059 | 0.0276 | 0.0201 | 0.0618 | 0.0546 | 0.0602 | 0.0454 | 0.0876 | 0.0648 | 0.0645 | 0.0126 |
半淋溶土 | 0.1914 | 0.1081 | 0.0435 | 0.2581 | 0.3155 | 0.0607 | 0.0500 | 0.2898 | 0.4194 | 0.1006 | 0.0752 |
初育土 | 0.0104 | 0.0185 | 0.0238 | 0.0501 | 0.0270 | 0.1072 | 0.0177 | 0.0357 | 0.0432 | 0.0182 | 0.0082 |
半水成土 | 0.4057 | 0.0143 | 0.0512 | 0.0487 | 0.0252 | 0.0207 | 0.0234 | 0.0298 | 0.0137 | 0.0070 | 0.1748 |
水成土 | 0.1098 | 0.1619 | 0.1231 | 0.0063 | 0.1338 | 0.2520 | 0.0063 | 0.3365 | 0.1579 | 0.0877 | 0.4586 |
人为土 | 0.1351 | 0.0003 | 0.1245 | 0.0151 | 0.0011 | 0.0084 | 0.0133 | 0.1026 | 0.0000 | 0.0362 | 0.0118 |
高山土 | 0.0392 | 0.0930 | 0.0441 | 0.0321 | 0.2360 | 0.0207 | 0.0454 | 0.1097 | 0.2729 | 0.0257 | 0.0188 |
铁铝土 | 0.0303 | 0.0048 | 0.0292 | 0.0624 | 0.0410 | 0.1712 | 0.0206 | 0.0449 | 0.0171 | 0.0487 | 0.0149 |
表7
四川不同气候区自然因子的PD值"
一级气候区 | 二级名称 | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
北亚热带 | 秦巴区 | 0.0735 | 0.1949 | 0.0624 | 0.2074 | 0.3250 | 0.0559 | 0.0291 | 0.0676 | 0.3193 | 0.4073 | 0.0563 | 0.0715 |
中亚热带 | 四川区 | 0.0678 | 0.1162 | 0.0403 | 0.1084 | 0.1805 | 0.0509 | 0.0145 | 0.2444 | 0.2129 | 0.2034 | 0.0407 | 0.0058 |
贵州区 | 0.0172 | 0.0022 | 0.9004 | 0.0509 | 0.0022 | 0.9175 | 0.8952 | 0.0038 | 0.9014 | 0.0009 | 0.0540 | 0.0460 | |
滇北区 | 0.0047 | 0.0165 | 0.1901 | 0.1260 | 0.0645 | 0.2739 | 0.1082 | 0.1213 | 0.2928 | 0.4317 | 0.4048 | 0.3876 | |
高原气候区 | 昌都区 | 0.0739 | 0.1438 | 0.0414 | 0.0887 | 0.2085 | 0.0048 | 0.1408 | 0.1243 | 0.1878 | 0.3188 | 0.1186 | 0.1354 |
青南区 | 0.1819 | 0.1419 | 0.0166 | 0.1012 | 0.3245 | 0.0428 | 0.2432 | 0.1330 | 0.3749 | 0.3339 | 0.0312 | 0.0146 |
表9
自然因子适宜限制(置信水平95%)"
自然因子 | 植被NDVI适宜类型或范围 | 植被NDVI均值 |
---|---|---|
年均降水量(mm) | 1394~1739 | 0.906 |
干燥度指数 | 0~0.2 | 0.908 |
湿润指数 | 96~186 | 0.906 |
≥ 10 °C积温(℃) | 3638~4709 | 0.907 |
年均温(℃) | 11.48~16.40 | 0.911 |
总辐射(MJ/m2) | 3779.82~4215.35 | 0.912 |
高程(m) | 1885~2852 | 0.902 |
坡度(°) | 4.64~9.63 | 0.881 |
坡向(°) | 0~22.5、157.5~202.5 | 0.881 |
植被类型 | 针叶林、阔叶林 | 0.907 |
地貌类型 | 丘陵、小起伏山地和中起伏山地等 | 0.902 |
土壤类型 | 红壤、黄壤、暗棕壤、草甸土、褐土、棕壤 | 0.903 |
表10
自然因子交互作用探测"
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | 0.103 | |||||||||||
X2 | 0.294 | 0.234 | ||||||||||
X3 | 0.125 | 0.266 | 0.008 | |||||||||
X4 | 0.277 | 0.246 | 0.238 | 0.201 | ||||||||
X5 | 0.383 | 0.331 | 0.360 | 0.325 | 0.317 | |||||||
X6 | 0.211 | 0.263 | 0.191 | 0.239 | 0.355 | 0.134 | ||||||
X7 | 0.198 | 0.314 | 0.133 | 0.295 | 0.377 | 0.291 | 0.096 | |||||
X8 | 0.300 | 0.327 | 0.208 | 0.307 | 0.400 | 0.288 | 0.300 | 0.174 | ||||
X9 | 0.398 | 0.381 | 0.380 | 0.377 | 0.432 | 0.373 | 0.380 | 0.423 | 0.340 | |||
X10 | 0.415 | 0.344 | 0.366 | 0.354 | 0.374 | 0.386 | 0.400 | 0.426 | 0.446 | 0.332 | ||
X11 | 0.136 | 0.265 | 0.034 | 0.229 | 0.346 | 0.167 | 0.167 | 0.207 | 0.378 | 0.372 | 0.004 | |
X12 | 0.123 | 0.250 | 0.017 | 0.218 | 0.329 | 0.159 | 0.122 | 0.189 | 0.372 | 0.342 | 0.022 | 0.004 |
表11
影响植被NDVI变化的自然因子之间的交互作用"
两因子交互作用 | 两因子PD值相加 | 结果 | 解释 | 两因子交互作用 | 两因子PD值相加 | 结果 | 解释 |
---|---|---|---|---|---|---|---|
X1∩X2=0.294 | <0.337=X1+X2 | C<A+B | 相互增强 | X4∩X8=0.307 | <0.375=X4+X8 | C<A+B | 相互增强 |
X1∩X3=0.125 | >0.121=X1+X3 | C>A+B | 非线性增强 | X4∩X9=0.377 | <0.541=X4+X9 | C<A+B | 相互增强 |
X1∩X4=0.277 | <0.304=X1+X4 | C<A+B | 相互增强 | X4∩X10=0.354 | <0.533=X4+X10 | C<A+B | 相互增强 |
X1∩X5=0.383 | <0.420=X1+X5 | C<A+B | 相互增强 | X4∩X11=0.229 | >0.205=X4+X11 | C>A+B | 非线性增强 |
X1∩X6=0.211 | <0.237=X1+X6 | C<A+B | 相互增强 | X4∩X12=0.218 | >0.205=X4+X12 | C>A+B | 非线性增强 |
X1∩X7=0.198 | <0.199=X1+X7 | C<A+B | 相互增强 | X5∩X6=0.355 | <0.451=X5+X6 | C<A+B | 相互增强 |
X1∩X8=0.300 | >0.277=X1+X8 | C>A+B | 非线性增强 | X5∩X7=0.377 | <0.413=X5+X7 | C<A+B | 相互增强 |
X1∩X9=0.398 | <0.443=X1+X9 | C<A+B | 相互增强 | X5∩X8=0.400 | <0.491=X5+X8 | C<A+B | 相互增强 |
X1∩X10=0.415 | <0.435=X1+X10 | C<A+B | 相互增强 | X5∩X9=0.432 | <0.675=X5+X9 | C<A+B | 相互增强 |
X1∩X11=0.136 | >0.107=X1+X11 | C>A+B | 非线性增强 | X5∩X10=0.374 | <0.649=X5+X10 | C<A+B | 相互增强 |
X1∩X12=0.123 | >0.107=X1+X12 | C>A+B | 非线性增强 | X5∩X11=0.346 | >0.321=X5+X11 | C>A+B | 非线性增强 |
X2∩X3=0.266 | >0.242=X2+X3 | C>A+B | 非线性增强 | X5∩X12=0.329 | >0.324=X5+X12 | C>A+B | 非线性增强 |
X2∩X4=0.246 | <0.435=X2+X4 | C<A+B | 相互增强 | X6∩X7=0.291 | >0.230=X6+X7 | C>A+B | 非线性增强 |
X2∩X5=0.331 | <0.551=X2+X5 | C<A+B | 相互增强 | X6∩X8=0.288 | <0.308=X6+X8 | C<A+B | 相互增强 |
X2∩X6=0.263 | <0.368=X2+X6 | C<A+B | 相互增强 | X6∩X9=0.373 | <0.474=X6+X9 | C<A+B | 相互增强 |
X2∩X7=0.314 | <0.330=X2+X7 | C<A+B | 相互增强 | X6∩X10=0.386 | <0.466=X6+X10 | C<A+B | 相互增强 |
X2∩X8=0.327 | <0.408=X2+X8 | C<A+B | 相互增强 | X6∩X11=0.167 | >0.138=X6+X11 | C>A+B | 非线性增强 |
X2∩X9=0.381 | <0.574=X2+X9 | C<A+B | 相互增强 | X6∩X12=0.159 | >0.138=X6+X12 | C>A+B | 非线性增强 |
X2∩X10=0.344 | <0.566=X2+X10 | C<A+B | 相互增强 | X7∩X8=0.300 | >0.270=X7+X8 | C<A+B | 非线性增强 |
X2∩X11=0.265 | >0.238=X2+X11 | C>A+B | 非线性增强 | X7∩X9=0.380 | <0.436=X7+X9 | C<A+B | 相互增强 |
X2∩X12=0.250 | >0.238=X2+X12 | C>A+B | 非线性增强 | X7∩X10=0.400 | <0.428=X7+X10 | C<A+B | 相互增强 |
X3∩X4=0.238 | >0.209=X3+X4 | C>A+B | 非线性增强 | X7∩X11=0.167 | >0.100=X7+X11 | C>A+B | 非线性增强 |
X3∩X5=0.360 | >0.325=X3+X5 | C>A+B | 非线性增强 | X7∩X12=0.122 | >0.100=X7+X12 | C>A+B | 非线性增强 |
X3∩X6=0.191 | >0.142=X3+X6 | C>A+B | 非线性增强 | X8∩X9=0.423 | <0.541=X8+X9 | C<A+B | 相互增强 |
X3∩X7=0.133 | >0.104=X3+X7 | C>A+B | 非线性增强 | X8∩X10=0.426 | <0.506=X8+X10 | C<A+B | 相互增强 |
X3∩X8=0.208 | >0.182=X3+X8 | C>A+B | 非线性增强 | X8∩X11=0.207 | >0.178=X8+X11 | C>A+B | 非线性增强 |
X3∩X9=0.380 | >0.348=X3+X9 | C>A+B | 非线性增强 | X8∩X12=0.189 | >0.178=X8+X12 | C>A+B | 非线性增强 |
X3∩X10=0.366 | >0.340=X3+X10 | C>A+B | 非线性增强 | X9∩X10=0.446 | >0.672=X9+X10 | C>A+B | 非线性增强 |
X3∩X11=0.034 | >0.012=X3+X11 | C>A+B | 非线性增强 | X9∩X11=0.378 | >0.344=X9+X11 | C>A+B | 非线性增强 |
X3∩X12=0.017 | >0.012=X3+X12 | C>A+B | 非线性增强 | X9∩X12=0.342 | >0.344=X9+X12 | C>A+B | 非线性增强 |
X4∩X5=0.325 | <0.518=X4+X5 | C<A+B | 相互增强 | X10∩X11=0.372 | >0.336=X10+X11 | C>A+B | 非线性增强 |
X4∩X6=0.239 | <0.335=X4+X6 | C<A+B | 相互增强 | X10∩X12=0.342 | >0.336=X10+X12 | C>A+B | 非线性增强 |
X4∩X7=0.295 | <0.297=X4+X7 | C<A+B | 相互增强 | X11∩X12=0.022 | <0.044=X11+X12 | C<A+B | 相互增强 |
表12
土壤类型每2个分区的植被NDVI均值及其统计显著性(置信水平95%)"
分区 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | |||||||||||||
2 | Y | ||||||||||||
3 | N | Y | |||||||||||
4 | Y | N | Y | ||||||||||
5 | Y | Y | Y | Y | |||||||||
6 | Y | N | Y | Y | Y | ||||||||
7 | Y | Y | Y | Y | N | Y | |||||||
8 | Y | Y | N | Y | Y | Y | Y | ||||||
9 | Y | Y | Y | Y | Y | Y | Y | Y | |||||
10 | N | N | N | N | N | N | N | N | N | ||||
11 | N | Y | N | Y | Y | Y | Y | N | Y | N | |||
12 | Y | N | Y | N | Y | Y | Y | Y | Y | N | Y | ||
13 | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | |
NDVI均值 | 0.898 | 0.824 | 0.902 | 0.845 | 0.829 | 0.869 | 0.746 | 0.903 | 0.651 | 0.648 | 0.897 | 0.866 | 0.167 |
[1] | Gong Z, Zhao S, Gu J . Correlation analysis between vegetation coverage and climate drought conditions in North China during 2001-2013. Journal of Geographical Sciences, 2017,27(2):143-160. |
[2] | Zhao Jie, Du Ziqiang, Wu Zhitao , et al. Seasonal variations of day- and nighttime warming and their effects on vegetation dynamics in China's temperate zone. Acta Geographica Sinica, 2018,73(3):395-404. |
[ 赵杰, 杜自强, 武志涛 , 等. 中国温带昼夜增温的季节性变化及其对植被动态的影响. 地理学报, 2018,73(3):395-404.] | |
[3] | Parmesan C, Yohe G . A globally coherent fingerprint of climate change impacts across natural systems. Nature, 2003,421(6918):37-42. |
[4] | He Bin, Chen Aifang, Jiang Weiguo , et al. The response of vegetation growth to shifts in trend of temperature in China. Journal of Geographical Sciences, 2017,27(7):801-816. |
[5] | Zhao Lin, Dai Aiguo, Dong Bo . Changes in global vegetation activity and its driving factors during 1982-2013. Agricultural and Forest Meteorology, 2018,249:198-209. |
[6] | Fu Gang, Sun Wei, Li Shaowei , et al. Modeling aboveground biomass using MODIS images and climatic data in grasslands on the Tibetan Plateau. Journal of Resources and Ecology, 2017,8(1):42-49. |
[7] | Kong Dongdong, Zhang Qiang, Huang Wenlin , et al. Vegetation phenology change in Tibetan Plateau from 1982 to 2013 and its related meteorological factors. Acta Geographica Sinica, 2017,72(1):39-52. |
[ 孔冬冬, 张强, 黄文琳 , 等. 1982-2013年青藏高原植被物候变化及气象因素影响. 地理学报, 2017,72(1):39-52.] | |
[8] | Luan Jinkai, Liu Dengfeng, Huang Qiang , et al. Analysis of the spatial-temporal change and impact factors of the vegetation index in Yulin, Shaanxi Province, in the last 17 years. Acta Ecologica Sinica, 2018,38(8):2780-2790. |
[ 栾金凯, 刘登峰, 黄强 , 等. 近17年陕西榆林植被指数的时空变化及影响因素. 生态学报, 2018,38(8):2780-2790.] | |
[9] | Liu Huiyu, Zhang Mingyang, Lin Zhenshan , et al. Spatial heterogeneity of the relationship between vegetation dynamics and climate change and their driving forces at multiple time scales in Southwest China. Agricultural and Forest Meteorology, 2018,256/257:10-21. |
[10] | Wang Tao, Bai Hongying . Variation of vegetation NDVI in response to climate changes and human activities in Qinling Mountains. Mountain Research, 2017,35(6):778-789. |
[ 王涛, 白红英 . 秦岭山地植被NDVI对气候变化与人类活动的响应. 山地学报, 2017,35(6):778-789.] | |
[11] | Leroux L, Bégué, Agnès, Lo Seen D , et al. Driving forces of recent vegetation changes in the Sahel: Lessons learned from regional and local level analyses. Remote Sensing of Environment, 2017,191:38-54. |
[12] | Zheng Jie, Feng Wanlan, Niu Xiaojun , et al. Vegetation change and its correlation with meteorogical factors. Bulletin of Soil and Water Conservation, 2016,36(2):99-104. |
[ 郑杰, 冯文兰, 牛晓俊 , 等. 四川省植被变化及其与气象因子的相关性分析. 水土保持通报, 2016,36(2):99-104.] | |
[13] | Zoungrana J B, Conrad C, Thiel M , et al. MODIS NDVI trends and fractional land cover change for improved assessments of vegetation degradation in Burkina Faso, West Africa. Journal of Arid Environments, 2018,153:66-75. |
[14] | ZhangYing, Zhang Chaobin, Wang Zhaoqi , et al. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Science of The Total Environment, 2016, 563-564:210-220. |
[15] | Qu Sai, Wang Lunche, Lin Aiwen , et al. What drives the vegetation restoration in Yangtze River basin, China: Climate change or anthropogenic factors? Ecological Indicators, 2018,90:438-450. |
[16] | Lamchin M, Lee W K, Jeon S W , et al. Long-term trend and correlation between vegetation greenness and climate variables in Asia based on satellite data. Science of The Total Environment, 2018,618:1089-1095. |
[17] | Zhang Jianliang, Liu Fangzheng, Cui Guofa . Spatio-temporal variation of vegetation and analysis of its driving factors in Changbai Mountain National Nature Reserve. Acta Ecologica Sinica, 2016,36(12):3525-3536. |
[ 张建亮, 刘方正, 崔国发 . 长白山国家级自然保护区植被时空变化及其驱动因子. 生态学报, 2016,36(12):3525-3536.] | |
[18] | Whetton R, Zhao Y, Shaddad S , et al. Nonlinear parametric modelling to study how soil properties affect crop yields and NDVI. Computers and Electronics in Agriculture, 2017,138:127-136. |
[19] | Wang Zhaoqi, Zhang Yanzhen, Yang Yue , et al. Quantitative assess the driving forces on the grassland degradation in the Qinghai-Tibet Plateau, in China. Ecological Informatics, 2016,33:32-44. |
[20] | Hein L, de Ridder N, Hiernaux P , et al. Desertification in the Sahel: Towards better accounting for ecosystem dynamics in the interpretation of remote sensing images. Journal of Arid Environments, 2011,75(11):1164-1172. |
[21] |
Wang J F, Li X H, Christakos G , et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. International Journal of Geographical Information Science, 2010,24(1):107-127.
doi: 10.1080/13658810802443457 |
[22] | Peng Wenfu, Wang Guangjie, Zhou Jieming , et al. Dynamic monitoring of fractional vegetation cover along Minjiang River from Wenchuan County to Dujiangyan City using multi-temporal landsat 5 and 8 images. Acta Ecologica Sinica, 2016,36(7):1975-1988. |
[ 彭文甫, 王广杰, 徐新良 , 等. 基于多时相 Landsat5/8 影像的岷江汶川—都江堰段植被覆盖动态监测. 生态学报, 2016,36(7):1975-1988.] | |
[23] | Xu Jiceng, Tang Bin, Lu Tao . Monitoring the riparian vegetation cover after the Wenchuan Earthquake along the Minjiang River Valley based on multi-temporal Landsat TM images: A case study of the Yingxiu-Wenchuan section. Acta Ecologica Sinica, 2013,33(16):4966-4974. |
[ 许积层, 唐斌, 卢涛 . 基于多时相Landsat TM影像的汶川地震灾区河岸带植被覆盖动态监测: 以岷江河谷映秀—汶川段为例. 生态学报, 2013,33(16):4966-4974.] | |
[24] | Xiao Jianyong, Zhou Dequan, Bai Xiaoyong , et al. Analysis on spatial and temporal change and its future trend of vegetation cover in Sichuan Province. Yangtze River, 2018,49(5):16-21. |
[ 肖建勇, 周德全, 白晓永 , 等. 四川省植被覆盖时空演变及未来变化趋势分析. 人民长江, 2018,49(5):16-21.] | |
[25] | Zheng Jie, Feng Wenlan, Niu Xiaojun , et al. Vegetation change and its correclation with meteorological factonr in Sichuan Province. Bulletin of Soil and Water Conservation, 2016,36(2):99-104. |
[ 郑杰, 冯文兰, 牛晓俊 , 等. 四川省植被变化及其与气象因子的相关性分析. 水土保持通报, 2016,36(2):99-104.] | |
[26] | Du Yanxiu . Quantitative study on spatial and temporal variation and driving force of vegetation cover in Sichuan Province[D]. Chengdu: Chengdu Univerisity of Technology. |
[ 杜艳秀 . 四川省植被覆盖时空变化及驱动力定量研究[D]. 成都: 成都理工大学, 2016.] | |
[27] | Liu Yansui, Li Jintao . Geographic detection and optimizing decision of the differentiation mechanism of rural poverty in China. Acta Geographica Sinica, 2017,72(1):161-173. |
[ 刘彦随, 李进涛 . 中国县域农村贫困化分异机制的地理探测与优化决策. 地理学报, 2017,72(1):161-173.] | |
[28] | Wang Jinfeng, Xu Chengdong . Geodetector: Principle and prospective. Acta Geographica Sinica, 2017,72(1):116-134. |
[ 王劲峰, 徐成东 . 地理探测器: 原理与展望. 地理学报, 2017,72(1):116-134.] | |
[29] | Wang J F, Zhang T L, Fu B J . A measure of spatial stratified heterogeneity. Ecological Indicators, 2016,67:250-256. |
[30] | Guli Jiapaer, Liang S, Yi Q , et al. Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator. Ecological Indicators, 2015,58:64-76. |
[31] | Stanhill G, Cohen S . Solar radiation changes in the United States during the twentieth century: Evidence from sunshine duration measurements. Journal of Climate, 2005,18:1503-1512. |
[32] | Nicholson S E, Farrar T J . The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. I. NDVI response to rainfall. Remote Sensing of Environment, 1994,50:107-120. |
[33] | Trujillo E, Molotch N P, Goulden M L , et al. Elevation-dependent influence of snow accumulation on forest greening. Nature Geoscience, 2012,5:705-709. |
[34] | Sundqvist M K, Liu Z, Giesler R , et al. Plant and microbial responses to nitrogen and phosphorus addition across an elevational gradient in subarctic tundra. Ecology, 2014,95:1819-1835. |
[35] | Piao Shilong, Fang Jingyun . Dynamic vegetation cover change over the last 18 years in China. Quaternary Science, 2001,21(4):294-302. |
[ 朴世龙, 方精云 . 最近18年来中国植被覆盖的动态变化. 第四纪研究, 2001,21(4):294-302.] | |
[36] | Liu Xianfeng, Zhu Xiufang, Pan Yaozhong , et al. Spatiotemporal changes in vegetation coverage in China during 1982-2012. Acta Ecologica Sinica, 2015,35(16):5331-5342. |
[ 刘宪锋, 朱秀芳, 潘耀忠 , 等. 1982-2012年中国植被覆盖时空变化特征. 生态学报, 2015,35(16):5331-5342.] | |
[37] | Chen Huan, Ren Zhiyuan . Response of vegetation coverage to changes of precipitation and temperature in Chinese Mainland. Bulletin of Soil and Conservation, 2013,33(2):78-82. |
[ 陈欢, 任志远 . 中国大陆植被覆盖对降水与温度变化的响应. 水土保持通报, 2013,33(2):78-82.] | |
[38] | Wang Zhipeng, Zhangh Xianzhou, He Yongtao , et al. Responses of normalized difference vegetation index (NDVI) to precipitation changes on the grassland of Tibetan Plateau from 2000 to 2015. Chinese Journal of Applied Ecology, 2018,29(1):75-83. |
[ 王志鹏, 张宪洲, 何永涛 , 等. 2000-2015年青藏高原草地归一化植被指数对降水变化的响应. 应用生态学报, 2018,29(1):75-83.] |
[1] | 白燕, 廖顺宝, 孙九林. 栅格化属性精度损失的评估方法及其尺度效应分析——以四川省1:25 万土地覆被数据为例[J]. 地理学报, 2011, 66(5): 709-717. |
[2] | 王茂军, 杨雪春. 四川省制造产业关联网络的结构特征分析[J]. 地理学报, 2011, 66(2): 212-222. |
[3] | 史春云, 张捷, 尤海梅, 李东和, 王艳. 四川省旅游区域核心—边缘空间格局演变[J]. 地理学报, 2007, 62(6): 631-639. |
[4] | 杨国良,张捷,艾南山,刘波. 旅游流齐夫结构及空间差异化特征——以四川省为例[J]. 地理学报, 2006, 61(12): 1281-1289. |
|