地理学报 ›› 2019, Vol. 74 ›› Issue (9): 1733-1744.doi: 10.11821/dlxb201909003
谢林环1,江涛1(),曹英杰2,3,张得胜1,黎坤1,唐常源1,2,3
收稿日期:
2018-04-25
修回日期:
2019-07-14
出版日期:
2019-09-25
发布日期:
2019-09-25
作者简介:
谢林环(1993-), 女, 广东汕头人, 硕士, 主要从事水文与水环境方向研究。E-mail: xielh8@mail2.sysu.edu.cn
基金资助:
XIE Linhuan1,JIANG Tao1(),CAO Yingjie2,3,ZHANG Desheng1,LI Kun1,TANG Changyuan1,2,3
Received:
2018-04-25
Revised:
2019-07-14
Published:
2019-09-25
Online:
2019-09-25
Supported by:
摘要:
为研究人类活动影响下河流降水径流响应特征,以珠江三角洲典型城镇化流域石马河为研究对象,采集2017年1-12月日降水、河水样品和3场台风期间的时段降水、洪水样品,通过测定其氢氧稳定同位素组成(δD、δ 18O),分析流域降水、径流氢氧同位素组成特征,并利用同位素二元混合模型,分割3场台风降水事件中事前水及事件水对流量过程的贡献。结果表明,研究区域大气降水δD、δ 18O的变化范围分别为-105.10‰~+9.98‰和-14.80‰~-0.55‰,年加权平均值为-57.88‰和-8.61‰,大气降水线为δD = 7.70δ 18O+8.61(R 2= 0.98);河水δD、δ 18O的变化范围分别为-91.23‰~-15.96‰和-12.66‰~-4.01‰,δD-δ 18O基本落在局地大气降水线上,表明降水是石马河径流的主要来源。3场台风期间,事件水占洪水总径流量的比例分别为59.7%、55.0%和69.4%,均高于事前水占比。洪水涨水初期事前水和事件水同步增长,涨水后期事件水比例逐渐增大,洪峰期间比例大于80%,成为径流主导成分,表明流域城镇化过程中下垫面不透水面积的增加会显著改变水文循环过程。本研究成果可为珠江三角洲城镇化流域水文预报提供理论基础。
谢林环, 江涛, 曹英杰, 张得胜, 黎坤, 唐常源. 城镇化流域降水径流氢氧同位素特征及洪水径流分割[J]. 地理学报, 2019, 74(9): 1733-1744.
XIE Linhuan, JIANG Tao, CAO Yingjie, ZHANG Desheng, LI Kun, TANG Changyuan. Characteristics of hydrogen and oxygen isotopes in precipitation and runoff and flood hydrograph separation in an urbanized catchment[J]. Acta Geographica Sinica, 2019, 74(9): 1733-1744.
表4
事前水、事件水δ18O及分割结果不确定性
洪水编号 | NO.1702 | NO.1714 | NO.1720 | |||
---|---|---|---|---|---|---|
事前水 | 事件水 | 事前水 | 事件水 | 事前水 | 事件水 | |
δ18O平均值(‰) | -5.09 | -12.87 | -6.99 | -15.89 | -6.21 | -10.14 |
na | 6 | 4 | 4 | 8 | 4 | 6 |
标准差 | 0.04 | 0.93 | 0.08 | 0.96 | 0.06 | 1.12 |
t/70%b | 1.156 | 1.250 | 1.250 | 1.119 | 1.250 | 1.156 |
t/95%b | 2.571 | 3.182 | 3.182 | 2.365 | 3.182 | 2.571 |
Wi/70%c | 0.04 | 1.16 | 0.10 | 1.08 | 0.08 | 1.30 |
Wi/95%c | 0.09 | 2.96 | 0.25 | 2.28 | 0.20 | 2.89 |
W/70%(%)d | 7 | 6 | 12 | |||
W/95%(%)d | 19 | 12 | 27 |
[1] | Yang Shengtian, Yu Xinyi, Ding Jianli , et al. A review of water issues research in Central Asia. Acta Geographica Sinica, 2017,72(1):79-93. |
[ 杨胜天, 于心怡, 丁建丽 , 等. 中亚地区水问题研究综述. 地理学报, 2017,72(1):79-93.] | |
[2] | Xia Jun, Zuo Qiting . China's decade summary and prospect of water resources academic exchange. Journal of Natural Resources, 2013,28(9):1488-1497. |
[ 夏军, 左其亭 . 我国水资源学术交流十年总结与展望. 自然资源学报, 2013,28(9):1488-1497.] | |
[3] | Xu Guanglai, Xu Youpeng, Xu Hongliang . Advance in hydrologic process response to urbanization. Journal of Natural Resources, 2010,25(12):2171-2178. |
[ 徐光来, 许有鹏, 徐宏亮 . 城市化水文效应研究进展. 自然资源学报, 2010,25(12):2171-2178.] | |
[4] | He Daming, Liu Changming, Feng Yan , et al. Progress and perspective of international river researches in China. Acta Geographica Sinica, 2014,69(9):1284-1294. |
[ 何大明, 刘昌明, 冯彦 , 等. 中国国际河流研究进展及展望. 地理学报, 2014,69(9):1284-1294.] | |
[5] | Ala-aho P, Soulsby C, Pokrovsky O S , et al. Using stable isotpes to assess surface water source dynamics and hydrological connectivity in a high-latitude wetland and permafrost influenced landscape. Journal of Hydrology, 2018,556:279-293. |
[6] | Wang Jiyang, Chen Jiansheng, Lu Baohong , et al. Review and prospect of isotope hydrology. Journal of Hohai University (Natural Sciences), 2015,43(5):406-413. |
[ 汪集旸, 陈建生, 陆宝宏 , 等. 同位素水文学的若干回顾与展望. 河海大学学报(自然科学版), 2015,43(5):406-413.] | |
[7] | Yang Q, Mu H, Wang H , et al. Quantitative evaluation of groundwater recharge and evaporation intensity with stable oxygen and hydrogen isotopes in a semi-arid region, Northwest China. Hydrological Processes, 2018,32:1130-1136. |
[8] | Lv Yuxiang, Hu Wei, Luo Shunqing , et al. Research progress in hydrograph separation based on isotope and hydrochemical methods. Journal of China Hydrology, 2010,30(1):7-13. |
[ 吕玉香, 胡伟, 罗顺清 , 等. 流量过程线划分的同位素和水文化学方法研究进展. 水文, 2010,30(1):7-13.] | |
[9] | Buttle J M . Isotope hydrograph separations and rapid delivery of pre-event water from drainage basins. Process in Physical Geography, 1994,18(1):16-41. |
[10] | Sklash M G, Farvolden R N, Fritz P . A conceptual model of watershed response to rainfall, developed through the use of oxygen-18 as a natural tracer. Canadian Journal of Earth Sciences, 1976,13:271-283. |
[11] | Sklash M G, Farvolden R N . The role of groundwater in storm runoff. Journal of Hydrology, 1979,43:45-65. |
[12] | Blume T, Zehe E, Bronstert A . Investigation of runoff generation in a pristine, poorly gauged catchment in the Chilean Andes II: Qualitative and quantitative use of tracers at three spatial scales. Hydrological Processes, 2008,22(18):3676-3688. |
[13] | Dewalle D R, Swistock B R, Sharpe W E . Three-component tracer model for stormflow on a small Appalachian forested catchment. Journal of Hydrology, 1988,104:301-310. |
[14] | Ogunkoya O O, Jenkins A . Analysis of storm hydrograph and flow pathways using a three-component hydrograph separation model. Journal of Hydrology, 1993,142:71-88. |
[15] | Hooper R P, Christophersen N, Peters J . Modelling streamwater chemistry as a mixture of soilwater end-members: An application to the Panola Mountain catchment, Georgia, U.S.A. Journal of Hydrology, 1990,116:321-343. |
[16] | Phillips D L, Gregg J W . Source partitioning using stable isotopes: coping with too many sources. Oecologia, 2003,136:261-269. |
[17] | Fischer B M C, van Meerveld H J, Seibert J . Spatial variability in the isotopic composition of rainfall in a small headwater catchment and its effect on hydrograph separation. Journal of Hydrology, 2017,547:775-769. |
[18] | McDonnell J J, Stewart M K, Owens I F . Effect of catchment-scale subsurface mixing on stream isotopic response. Water Resources Research, 1991,27(12):3065-3073. |
[19] | Delsman J R, Oude Essink G H P, Beven K J , et al. Uncertainty estimation of end-member mixing using generalized likelihood uncertainty estimation (GLUE), applied in a lowland catchment. Water Resources Research, 2013,49:4792-4806. |
[20] | Genereux D . Quantifying uncertainty in tracer-based hydrograph separations. Water Resources Research, 1998,34(4):915-919. |
[21] | Bansah S, Ali G . Evaluating the effects of tracer choice and end-member definitions on hydrograph separation results across nested, seasonally cold watersheds. Water Resources Research, 2017,53(11):8851-8871. |
[22] | Genereux D P, Hopper R P . Chapter 10: Oxygen and hydrogen isotopes in rainfall-runoff studies. Isotope Tracers in Catchment Hydrology, 1998, 319-346. |
[23] | Sharma A, Kumar K, Laskar A , et al. Oxygen, deuterium, and strontium isotope characteristics of the Indus River water system. Geomorphology, 2017,284:5-16. |
[24] | Renshaw C E, Feng X, Sinclair K J , et al. The use of stream flow routing for direct channel precipitation with isotopically-based hydrograph separations: The role of new water in stormflow generation. Journal of Hydrology, 2003,273(1):205-216. |
[25] | Brown V A, McDonnell J J, Burns D A , et al. The role of event water, a rapid shallow flow component, and catchment size in summer stormflow. Journal of Hydrology, 1999,217:171-190. |
[26] | Klaus J, McDonnell J J . Hydrograph separation using stable isotopes: Review and evaluation. Journal of Hydrology, 2013,505:47-64. |
[27] | Buda A R, DeWalle D R . Dynamics of stream nitrate sources and flow pathways during stormflows on urban, forest and agricultural watersheds in central Pennsylvania, USA. Hydrological Process, 2009,23:3292-3305. |
[28] | Meriano M, Howard K W F, Eyles N . The role of midsummer urban aquifer recharge in stormflow generation using isotopic and chemical hydrograph separation techniques. Journal of Hydrology, 2011,396:82-93. |
[29] | Xu Xueqiang, Li Xun . Review and preview of the urbanization in Pearl River Delta in the past 30 years of reform and opening up. Economic Ceography, 2009,29(1):13-18. |
[ 许学强, 李郇 . 改革开放30年珠江三角洲城镇化的回顾与展望. 经济地理, 2009,29(1):13-18.] | |
[30] | Gao Lei, Chen Jianyao, Wang Jiang , et al. Temporal-spatial variation and source identification of hydro-chemical characteristics in Shima River Catchment. Dongguan City. Environmental Science, 2015,36(5):1573-1581. |
[ 高磊, 陈建耀, 王江 , 等. 东莞石马河流域水化学特征时空差异及来源辨析. 环境科学, 2015,36(5):1573-1581.] | |
[31] | Liu Jianrong, Song Xianfang, Yuan Guofu , et al. Characteristics of δ 18O in precipitation over Northwest China and its water vapor sources . Acta Geographica Sinica, 2008,63(1):12-22. |
[ 柳鉴容, 宋献方, 袁国富 , 等. 西北地区大气降水δ 18O的特征及水汽来源 . 地理学报, 2008,63(1):12-22.] | |
[32] | Gu Weizu . On the hydrograph separation traced by environmental isotopes. Advances in Water Science, 1996,7(2):105-111. |
[ 顾慰祖 . 论流量过程线划分的环境同位素方法. 水科学进展, 1996,7(2):105-111.] | |
[33] | Hooper R P, Shoemaker C A . A comparison of chemical and isotopic hydrograph separation. Water Resources Research, 1986,22(10):1444-1454. |
[34] | Araguás-Araguás L, Froehlich K, Rozanski K . Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrological Processes, 2000,14:1341-1355. |
[35] | Liu J, Song X, Yuan G , et al. Stable isotopic compositions of precipitation in China. Tellus B, 2014,66:22567. |
[36] | Wei Keqin, Lin Ruifen . The influence of the monsoon climate on the isotopic composition of precipitation in China. Geochimica, 1994,23(1):33-41. |
[ 卫克勤, 林瑞芬 . 论季风气候对我国雨水同位素组成的影响. 地球化学, 1994,23(1):33-41.] | |
[37] | Clark I D, Fritz P . Environmental Isotopes in Hydrogeology Lewis. Springer-Verlag, 1997. |
[38] | Craig H . Isotopic Variations in Meteoric Waters. Science, 1961,133(3465):1702-1703. |
[39] | Liu Jianrong, Song Xianfang, Yuan Guofu , et al. Characteristics of δ 18O in precipitation over Eastern Monsoon China and the water vapor sources . Chinese Science Bulletin, 2009,54(22):3521-3531. |
[ 柳鉴容, 宋献方, 袁国富 , 等. 中国东部季风区大气降水δ 18O的特征及水汽来源 . 科学通报, 2009,54(22):3521-3531.] | |
[40] |
Dansgaard W . Stable isotopes in precipitation. Tellus, 1964,16(4):436-468.
doi: 10.1111/j.2153-3490.1964.tb00181.x |
[41] | Kendall C, Coplen T B . Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrological Processes, 2001,15:1363-1393. |
[42] | Nolan K M, Hill B R . Storm-runoff generation in the Permanente Creek drainage basin, west central California: An example of flood-wave effects on runoff composition. Journal of Hydrology, 1990,113:343-367. |
[43] | Li Jize . Identification of river flood wave types. Journal of Hydraulic Engineering, 1994,8:27-35. |
[ 李记泽 . 河道洪水波波型识别. 水利学报, 1994,8:27-35.] | |
[44] | Du Zhiwei, Li Xun . Growth or shrinkage: New phenomena of regional development in the rapidly-urbanising Pearl River Delta. Acta Geographica Sinica, 2017,72(10):1800-1811. |
[ 杜志威, 李郇 . 珠三角快速城镇化地区发展的增长与收缩新现象. 地理学报, 2017,72(10):1800-1811.] | |
[45] | Dongguan Statistical Bureau, Dongguan Investigation Team of National Statistical Bureau. Dongguan Statistical Yearbook (2016). Beijing: Chinese Statistics Press, 2016. |
[ 东莞市统计局、国家统计局东莞调查队编. 东莞统计年鉴(2016). 北京: 中国统计出版社, 2016.] | |
[46] | Liu X, Hu G, Chen Y . High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sensing of Environment, 2018,209:227-239. |
[47] | Germann P F . Rapid drainage response to precipitation. Hydrological Processes, 1986,1:3-13. |
[1] | 孙平军, 王柯文. 中国东北三省城市收缩的识别及其类型划分[J]. 地理学报, 2021, 76(6): 1366-1379. |
[2] | 王少剑, 崔子恬, 林靖杰, 谢金燕, 苏坤. 珠三角地区城镇化与生态韧性的耦合协调研究[J]. 地理学报, 2021, 76(4): 973-991. |
[3] | 马海涛, 孙湛. 中亚五国综合城镇化水平测度及其动力因素[J]. 地理学报, 2021, 76(2): 367-382. |
[4] | 宋周莺, 祝巧玲. 中国边境地区的城镇化格局及其驱动力[J]. 地理学报, 2020, 75(8): 1603-1616. |
[5] | 冯雨雪, 李广东. 青藏高原城镇化与生态环境交互影响关系分析[J]. 地理学报, 2020, 75(7): 1386-1405. |
[6] | 徐晨晨, 叶虎平, 岳焕印, 谭翔, 廖小罕. 城镇化区域无人机低空航路网迭代构建的理论体系与技术路径[J]. 地理学报, 2020, 75(5): 917-930. |
[7] | 任宇飞, 方创琳, 李广东, 孙思奥, 鲍超, 刘若文. 城镇化与生态环境近远程耦合关系研究进展[J]. 地理学报, 2020, 75(3): 589-606. |
[8] | 张凯煌, 千庆兰, 杨青生. 中国城市土地城镇化多层级影响因素分析[J]. 地理学报, 2020, 75(1): 179-193. |
[9] | 刘海猛, 方创琳, 李咏红. 城镇化与生态环境“耦合魔方”的基本概念及框架[J]. 地理学报, 2019, 74(8): 1489-1507. |
[10] | 佟彪, 党安荣, 许剑. 300 BC-1900 AD无定河流域城镇时空格局演变[J]. 地理学报, 2019, 74(8): 1508-1524. |
[11] | 庄良,叶超,马卫,赵彪,胡森林. 中国城镇化进程中新区的空间生产及其演化逻辑[J]. 地理学报, 2019, 74(8): 1548-1562. |
[12] | 崔学刚,方创琳,刘海猛,刘晓菲,李咏红. 城镇化与生态环境耦合动态模拟理论及方法的研究进展[J]. 地理学报, 2019, 74(6): 1079-1096. |
[13] | 陈明星, 叶超, 陆大道, 隋昱文, 郭莎莎. 中国特色新型城镇化理论内涵的认知与建构[J]. 地理学报, 2019, 74(4): 633-647. |
[14] | 刘帅宾, 杨山, 王钊. 基于人口流的中国省域城镇化空间关联特征及形成机制[J]. 地理学报, 2019, 74(4): 648-663. |
[15] | 方创琳, 崔学刚, 梁龙武. 城镇化与生态环境耦合圈理论及耦合器调控[J]. 地理学报, 2019, 74(12): 2529-2546. |