地理学报 ›› 2019, Vol. 74 ›› Issue (7): 1319-1332.doi: 10.11821/dlxb201907004
李朝君1,2,王世杰2,3,白晓永2,3(),谭秋1,李汇文2,李琴2,邓元红2,杨钰杰1,2,田诗琪1,2,胡泽银2
收稿日期:
2018-10-23
修回日期:
2019-03-03
出版日期:
2019-07-25
发布日期:
2019-07-23
通讯作者:
白晓永
E-mail:baixiaoyong@126.com
作者简介:
李朝君(1994-), 女, 山西长治人, 硕士生, 主要从事岩溶环境与自然地理研究。E-mail: lichaojune@126.com
基金资助:
LI Chaojun1,2,WANG Shijie2,3,BAI Xiaoyong2,3(),TAN Qiu1,LI Huiwen2,LI Qin2,DENG Yuanhong2,YANG Yujie1,2,TIAN Shiqi1,2,HU Zeyin2
Received:
2018-10-23
Revised:
2019-03-03
Online:
2019-07-25
Published:
2019-07-23
Contact:
BAI Xiaoyong
E-mail:baixiaoyong@126.com
Supported by:
摘要:
碳酸盐岩风化吸收的大气CO2主要以HCO3 -形式连续地经由河流从大陆输送到海洋,成为陆地生态系统的重要碳汇。目前主要河流流域的碳酸盐岩风化碳汇估算存在不确定性,分布格局尚不清晰。基于GEMS-GLORI全球河流数据库提供的全球10万km 2以上主要河流流域多年平均监测数据,利用水化学径流法估算出全球主要河流流域碳酸盐岩对CO2的吸收速率为0.43±0.15 Pg CO2 yr -1,平均CO2吸收通量为7.93±2.8 t km -2 yr -1。CO2吸收通量在不同气候带下差异显著,热带和暖温带CO2年吸收速率占全球主要河流流域年吸收速率的62.95%。冷温带CO2年吸收速率占全球主要河流流域的33.05%,仅次于热带地区。本文划分出全球CO2吸收通量的9个关键带,关键带的交汇处CO2吸收通量较高。喀斯特出露流域碳酸盐岩对CO2吸收通量的均值为8.50 t km -2 yr -1,约为非喀斯特流域的3倍。全球喀斯特出露流域碳酸盐岩风化碳汇在全球碳循环、水循环及碳收支平衡估算研究方面占据重要地位。
李朝君,王世杰,白晓永,谭秋,李汇文,李琴,邓元红,杨钰杰,田诗琪,胡泽银. 全球主要河流流域碳酸盐岩风化碳汇评估[J]. 地理学报, 2019, 74(7): 1319-1332.
LI Chaojun,WANG Shijie,BAI Xiaoyong,TAN Qiu,LI Huiwen,LI Qin,DENG Yuanhong,YANG Yujie,TIAN Shiqi,HU Zeyin. Estimation of carbonate rock weathering-related carbon sink in global major river basins[J]. Acta Geographica Sinica, 2019, 74(7): 1319-1332.
表1
碳酸盐岩风化碳汇估算的不同研究结果对比"
作者 | 估算区域 | 研究数据 | 估算方法 | 吸收速率 (Pg CO2 yr-1) | 固碳速率 (Pg C yr-1) | 文献 来源 |
---|---|---|---|---|---|---|
Meybeck M (1987) | 全球 | 流域岩石类型组成数据 | 温带流模型 | 0.51 | 0.14 | [12] |
Gaillardet等 (1999) | 全球 | 60条最大河流站点汇编数据 | 反演模型 | 0.55 | 0.15 | [13] |
Liu等 (2000) | 全球 | 中国部分站点数据汇编 | 水化学径流法 | 0.42 | 0.11 | [14] |
Gombert P (2002) | 全球 | 266个气象站点数据 | 热力学溶蚀模型 | 1.1 | 0.30 | [37] |
Martin J B (2017) | 全球 | 全球岩性数据 | GEM-CO2模型 | 2.93 | 0.80 | [15] |
Li等 (2018) | 全球 | 生态气象水文遥感数据及站点数据 | 热力学溶蚀模型 | 3.26 | 0.89 | [16] |
Liu等 (2010, 2011, 2018) | 全球 | 全球各地降水中DIC/HCO3-浓度 站点数据汇编 | 偶联碳酸盐岩风化模型 | 1.76 | 0.48 | [26, 33, 46] |
本研究 | 世界90个河流流域 | 90条大型河流站点汇编数据 | 水化学径流法 | 0.43 | 0.12 | 本文 |
[1] |
Peters G P . Beyond carbon budgets. Nature Geoscience, 2018,11(6):378-380.
doi: 10.1038/s41561-018-0142-4 |
[2] |
Liu Z, Dreybrodt W . Significance of the carbon sink produced by H2O-carbonate-CO2-aquatic phototroph interaction on land. Science Bulletin, 2015,60(2):182-191.
doi: 10.1007/s11434-014-0682-y |
[3] |
Maher K, Chamberlain C P . Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science, 2014,343(6178):1502-1504.
doi: 10.1126/science.1250770 |
[4] | Allen G H, Pavelsky T M . Global extent of rivers and streams. Science, 2018, ,361(6402):eaat0636. |
[5] |
Pu Junbing, Jiang Zhongcheng, Yuan Daoxian , et al. Some opinions on rock-weathering-related carbon sinks from the IPCC Fifth Assessment Report. Advances in Earth Science, 2015,30(10):1081-1090.
doi: 10.11867/j.issn.1001-8166.2015.10.1081. |
[ 蒲俊兵, 蒋忠诚, 袁道先 , 等. 岩石风化碳汇研究进展: 基于IPCC第五次气候变化评估报告的分析. 地球科学进展, 2015,30(10):1081-1090.]
doi: 10.11867/j.issn.1001-8166.2015.10.1081. |
|
[6] |
Qiu Dongsheng, Zhuang Dafang, Hu Yunfeng , et al. Estimation of carbon sink capacity caused by rock weathering in China. Earth Science, 2004,29(2):177-182.
doi: 10.3321/j.issn:1000-2383.2004.02.009 |
[ 邱冬生, 庄大方, 胡云锋 , 等. 中国岩石风化作用所致的碳汇能力估算. 地球科学, 2004,29(2):177-182.]
doi: 10.3321/j.issn:1000-2383.2004.02.009 |
|
[7] | Chen Chongying, Liu Zhaihua . The role of biological carbon pump in the carbon sink and water environment improvement in karst surface aquatic ecosystems. Chinese Science Bulletin, 2017,62(30):3440-3450. |
[ 陈崇瑛, 刘再华 . 喀斯特地表水生生态系统生物碳泵的碳汇和水环境改善效应. 科学通报, 2017,62(30):3440-3450.] | |
[8] | Cao Jianhua, Jiang Zhongcheng, Yuan Daoxian , et al. The progress in the study of the karst dynamic system and global changes in the past 30 years. Geology in China, 2017,44(5):874-900. |
[ 曹建华, 蒋忠诚, 袁道先 , 等. 岩溶动力系统与全球变化研究进展. 中国地质, 2017,44(5):874-900.] | |
[9] | Li Liang, Cao Jianhua, Huang Fen , et al. Relation models of Ca2+, Mg2+ and HCO3 –and analyses of carbon sinks influencing factors in the Chaotian River, Guilin . Hydrogeology &Engineering Geology, 2013,40(4):106-111. |
[ 李亮, 曹建华, 黄芬 , 等. 桂林潮田河Ca2+、Mg2+与HCO3 –关系模型及岩溶碳汇影响因素分析. 水文地质工程地质, 2013,40(4):106-111.] | |
[10] |
Suchet P A, Probst J L . Modelling of atmospheric CO2, consumption by chemical weathering of rocks: Application to the Garonne, Congo and Amazon basins. Chemical Geology, 1993,107(s3/4):205-210.
doi: 10.1016/0009-2541(93)90174-H |
[11] | Suchet P A, Probst J L . A global model for present-day atmospheric/soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2). Tellus, 2010,47(1/2):273-280. |
[12] |
Meybeck M . Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 1987,287(5):401-428.
doi: 10.2475/ajs.287.5.401 |
[13] |
Gaillardet J, Dupré B, Louvat P , et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 1999,159(1):3-30.
doi: 10.1016/S0009-2541(99)00031-5 |
[14] |
Liu Z, Zhao J . Contribution of carbonate rock weathering to the atmospheric CO2 sink. Environmental Geology, 2000,39(9):1053-1058.
doi: 10.1007/s002549900072 |
[15] |
Martin J B . Carbonate minerals in the global carbon cycle. Chemical Geology, 2017,449:58-72.
doi: 10.1016/j.chemgeo.2016.11.029 |
[16] |
Li H, Wang S, Bai X , et al. Spatiotemporal distribution and national measurement of the global carbonate carbon sink. Science of the Total Environment, 2018,643:157. DOI: 10.1016/j.scitotenv.2018.06.196.
doi: 10.1016/j.scitotenv.2018.06.196 |
[17] | Hartmann J, Jansen N, Dürr H H , et al. Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions? Global & Planetary Change, 2009,69(4):185-194. |
[18] |
Hindshaw R S, Tipper E T, Reynolds B C , et al. Hydrological control of stream water chemistry in a glacial catchment (Damma Glacier, Switzerland). Chemical Geology, 2011,285(1):215-230.
doi: 10.1016/j.chemgeo.2011.04.012 |
[19] |
Jiang L, Yao Z, Wang R , et al. Hydrochemistry of the middle and upper reaches of the Yarlung Tsangpo River system: weathering processes and CO2 consumption. Environmental Earth Sciences, 2015,74(3):2369-2379.
doi: 10.1007/s12665-015-4237-6 |
[20] |
Liu B, Liu C Q, Zhang G , et al. Chemical weathering under mid- to cool temperate and monsoon-controlled climate: A study on water geochemistry of the Songhuajiang River system, Northeast China. Applied Geochemistry, 2013,31(11):265-278.
doi: 10.1016/j.apgeochem.2013.01.015 |
[21] | Sun X, Mörth C M, Humborg C , et al. Temporal and spatial variations of rock weathering and CO2 consumption in the Baltic Sea catchment. Chemical Geology, 2017,466. DOI: 10.1016/j.chemgeo.2017.04.028. |
[22] |
Wu Weihua, Zheng Hongbo, Yang Jiedong , et al. Chemical weathering of large river catchments in China and the global carbon cycle. Quaternary Sciences, 2011,31(3):397-407.
doi: 10.3969/j.issn.1001-7410.2011.03.01 |
[ 吴卫华, 郑洪波, 杨杰东 , 等. 中国河流流域化学风化和全球碳循环. 第四纪研究, 2011,31(3):397-407.]
doi: 10.3969/j.issn.1001-7410.2011.03.01 |
|
[23] |
Yan J, Li J, Ye Q , et al. Concentrations and exports of solutes from surface runoff in Houzhai Karst Basin, southwest China. Chemical Geology , 2012,304/305(3):1-9.
doi: 10.1016/j.chemgeo.2012.02.003 |
[24] | Song Xianwei, Gao Yang, Wen Xuefa , et al. Rock-weathering-related carbon sinks and associated ecosystem service functions in the karst critical zone in China. Acta Geographica Sinica, 2016,71(11):1926-1938. |
[ 宋贤威, 高扬, 温学发 , 等. 中国喀斯特关键带岩石风化碳汇评估及其生态服务功能. 地理学报, 2016,71(11):1926-1938.] | |
[25] |
Wang G, Dai M, Shen P , et al. Quantifying uncertainty sources in the gridded data of sea surface CO2 partial pressure. Journal of Geophysical Research: Oceans, 2014,119:1-9.
doi: 10.1002/2013JC009286 |
[26] |
Liu Z, Dreybrodt W, Wang H . A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth Science Reviews, 2010,99(3):162-172.
doi: 10.1016/j.earscirev.2010.03.001 |
[27] | Yuan Daoxian . Modern karstology and global change study. Earth Science Frontiers, 1997(1):17-25. |
[ 袁道先 . 现代岩溶学和全球变化研究. 地学前缘, 1997(1):17-25.] | |
[28] | Gaillardet J, Calmels D, Romero-Mujalli G , et al. Global climate control on carbonate weathering intensity. Chemical Geology, 2018. DOI: 10.1016/j.chemgeo.2018.05.009. |
[29] |
Hartmann Jens . Bicarbonate-fluxes and CO2-consumption by chemical weathering on the Japanese Archipelago:Application of a multi-lithological model framework. Chemical Geology, 2009,265(3):237-271.
doi: 10.1016/j.chemgeo.2009.03.024 |
[30] |
Flintrop C, Hohlmann B, Jasper T , et al. Anatomy of pollution: Rivers of North Rhine-Westphalia, Germany. American Journal of Science, 1996,296(1):58-98.
doi: 10.2475/ajs.296.1.58 |
[31] |
Roy S, Gaillardet J, Allègre C J . Geochemistry of dissolved and suspended loads of the Seine River, France: Anthropogenic impact, carbonate and silicate weathering. Geochimica Et Cosmochimica Acta, 1999,63(9):1277-1292.
doi: 10.1016/S0016-7037(99)00099-X |
[32] |
Detwiler R P, Hall C A S .Tropical forests and the global carbon cycle. Science, 1988,239(4835):42-47.
doi: 10.1126/science.239.4835.42 |
[33] |
Liu Z, Macpherson G L, Groves C , et al. Large and active CO2 uptake by coupled carbonate weathering. Earth-Science Reviews, 2018,182:42-49. DOI: 10.1016/j.earscirev.2018.05.007.
doi: 10.1016/j.earscirev.2018.05.007 |
[34] | Peel M C, Finlayson B L, Mcmahon T A . Updated world map of the Köppen-Geiger climate classification. Hydrology & Earth System Sciences, 2007,11(3):259-263. |
[35] | Sun Hailong, Liu Zaihua, Yang Rui , et al. Spatial and seasonal variations of hydrochemistry of the Peral River and Implications for estimating the rock weathering-related carbon sink. Earth and Environment, 2017,45(1):57-65. |
[ 孙海龙, 刘再华, 杨睿 , 等. 珠江流域水化学组成的时空变化特征及对岩石风化碳汇估算的意义. 地球与环境, 2017,45(1):57-65.] | |
[36] |
Beaulieu E, Goddéris Y, Donnadieu Y , et al. High sensitivity of the continental-weathering carbon dioxide sink to future climate change. Nature Climate Change, 2012,2(5):346-349.
doi: 10.1038/nclimate1419 |
[37] | Gombert P . Role of karstic dissolution in global carbon cycle. Global & Planetary Change, 2002,33(1):177-184. |
[38] |
Zhang L L, Zhao Z Q, Zhang W , et al. Characteristics of water chemistry and its indication of chemical weathering in Jinshajiang, Lancangjiang and Nujiang drainage basins. Environmental Earth Sciences, 2016,75(6):506. DOI: 10.1007/s12665-015-5115-y.
doi: 10.1007/s12665-015-5115-y |
[39] | Li Tiantian, Ji Hongbing, Jiang Yongbin , et al. Hydro-geochemistry and the sources of DIC in the upriver tributaries of the Ganjiang River. Acta Geographica Sinica, 2007,62(7):764-775. |
[ 李甜甜, 季宏兵, 江用彬 , 等. 赣江上游河流水化学的影响因素及DIC来源. 地理学报, 2007,62(7):764-775.] | |
[40] | Zeng Qingrui, Liu Zaihua . Is basalt weathering a major mechanism for atmospheric CO2 consumption? Chinese Science Bulletin, 2017,62(10):1041-1049. |
[ 曾庆睿, 刘再华 . 玄武岩风化是重要的碳汇机制吗? 科学通报, 2017,62(10):1041-1049.] | |
[41] |
Hurwitz S, Evans W C, Lowenstern J B . River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA. Chemical Geology, 2010,276(3):331-343.
doi: 10.1016/j.chemgeo.2010.07.001 |
[42] |
Gaillardet J, Galy A . Atmospheric science: Himalaya-carbon sink or source? Science, 2008,320(5884):1727-1728.
doi: 10.1126/science.1159279 |
[43] |
Zhang Zhigan . Discussion on article "Calculation of atmospheric CO2 sink formed in karst processes of karst-divided regions in China". Carsologica Sinica, 2012,31(3):339-344.
doi: 10.3969/j.issn.1001-4810.2012.03.017 |
[ 张之淦 . 对《中国岩溶作用产生的大气CO2碳汇的分区计算》一文的商榷. 中国岩溶, 2012,31(3):339-344.]
doi: 10.3969/j.issn.1001-4810.2012.03.017 |
|
[44] | Wang Shijie, Liu Zaihua, Ni Jian , et al. A review of research progress and future prospective of carbon cycle in karst area of south China. Earth and Environment, 2017,45(1):2-9. |
[ 王世杰, 刘再华, 倪健 , 等. 中国南方喀斯特地区碳循环研究进展. 地球与环境, 2017,45(1):2-9.] | |
[45] | Bai Xiaoyong, Wang Shijie, Chen Qiwei , et al. Spatio-temporal evolution process and its evaluation method of karst rocky desertification in Guizhou Province. Acta Geographica Sinica, 2009,64(5):609-618. |
[ 白晓永, 王世杰, 陈起伟 , 等. 贵州土地石漠化类型时空演变过程及其评价. 地理学报, 2009,64(5):609-618.] | |
[46] | Liu Z, Dreybrodt W, Liu H . Atmospheric CO2 sink: Silicate weathering or carbonate weathering? Quaternary Sciences, 2011,26(3):S292-S294. |
No related articles found! |
|