[1] |
Peters G P . Beyond carbon budgets. Nature Geoscience, 2018,11(6):378-380.
doi: 10.1038/s41561-018-0142-4
|
[2] |
Liu Z, Dreybrodt W . Significance of the carbon sink produced by H2O-carbonate-CO2-aquatic phototroph interaction on land. Science Bulletin, 2015,60(2):182-191.
doi: 10.1007/s11434-014-0682-y
|
[3] |
Maher K, Chamberlain C P . Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science, 2014,343(6178):1502-1504.
doi: 10.1126/science.1250770
|
[4] |
Allen G H, Pavelsky T M . Global extent of rivers and streams. Science, 2018, ,361(6402):eaat0636.
|
[5] |
Pu Junbing, Jiang Zhongcheng, Yuan Daoxian , et al. Some opinions on rock-weathering-related carbon sinks from the IPCC Fifth Assessment Report. Advances in Earth Science, 2015,30(10):1081-1090.
doi: 10.11867/j.issn.1001-8166.2015.10.1081.
|
|
[ 蒲俊兵, 蒋忠诚, 袁道先 , 等. 岩石风化碳汇研究进展: 基于IPCC第五次气候变化评估报告的分析. 地球科学进展, 2015,30(10):1081-1090.]
doi: 10.11867/j.issn.1001-8166.2015.10.1081.
|
[6] |
Qiu Dongsheng, Zhuang Dafang, Hu Yunfeng , et al. Estimation of carbon sink capacity caused by rock weathering in China. Earth Science, 2004,29(2):177-182.
doi: 10.3321/j.issn:1000-2383.2004.02.009
|
|
[ 邱冬生, 庄大方, 胡云锋 , 等. 中国岩石风化作用所致的碳汇能力估算. 地球科学, 2004,29(2):177-182.]
doi: 10.3321/j.issn:1000-2383.2004.02.009
|
[7] |
Chen Chongying, Liu Zhaihua . The role of biological carbon pump in the carbon sink and water environment improvement in karst surface aquatic ecosystems. Chinese Science Bulletin, 2017,62(30):3440-3450.
|
|
[ 陈崇瑛, 刘再华 . 喀斯特地表水生生态系统生物碳泵的碳汇和水环境改善效应. 科学通报, 2017,62(30):3440-3450.]
|
[8] |
Cao Jianhua, Jiang Zhongcheng, Yuan Daoxian , et al. The progress in the study of the karst dynamic system and global changes in the past 30 years. Geology in China, 2017,44(5):874-900.
|
|
[ 曹建华, 蒋忠诚, 袁道先 , 等. 岩溶动力系统与全球变化研究进展. 中国地质, 2017,44(5):874-900.]
|
[9] |
Li Liang, Cao Jianhua, Huang Fen , et al. Relation models of Ca2+, Mg2+ and HCO3 –and analyses of carbon sinks influencing factors in the Chaotian River, Guilin . Hydrogeology &Engineering Geology, 2013,40(4):106-111.
|
|
[ 李亮, 曹建华, 黄芬 , 等. 桂林潮田河Ca2+、Mg2+与HCO3 –关系模型及岩溶碳汇影响因素分析. 水文地质工程地质, 2013,40(4):106-111.]
|
[10] |
Suchet P A, Probst J L . Modelling of atmospheric CO2, consumption by chemical weathering of rocks: Application to the Garonne, Congo and Amazon basins. Chemical Geology, 1993,107(s3/4):205-210.
doi: 10.1016/0009-2541(93)90174-H
|
[11] |
Suchet P A, Probst J L . A global model for present-day atmospheric/soil CO2 consumption by chemical erosion of continental rocks (GEM-CO2). Tellus, 2010,47(1/2):273-280.
|
[12] |
Meybeck M . Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 1987,287(5):401-428.
doi: 10.2475/ajs.287.5.401
|
[13] |
Gaillardet J, Dupré B, Louvat P , et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology, 1999,159(1):3-30.
doi: 10.1016/S0009-2541(99)00031-5
|
[14] |
Liu Z, Zhao J . Contribution of carbonate rock weathering to the atmospheric CO2 sink. Environmental Geology, 2000,39(9):1053-1058.
doi: 10.1007/s002549900072
|
[15] |
Martin J B . Carbonate minerals in the global carbon cycle. Chemical Geology, 2017,449:58-72.
doi: 10.1016/j.chemgeo.2016.11.029
|
[16] |
Li H, Wang S, Bai X , et al. Spatiotemporal distribution and national measurement of the global carbonate carbon sink. Science of the Total Environment, 2018,643:157. DOI: 10.1016/j.scitotenv.2018.06.196.
doi: 10.1016/j.scitotenv.2018.06.196
|
[17] |
Hartmann J, Jansen N, Dürr H H , et al. Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions? Global & Planetary Change, 2009,69(4):185-194.
|
[18] |
Hindshaw R S, Tipper E T, Reynolds B C , et al. Hydrological control of stream water chemistry in a glacial catchment (Damma Glacier, Switzerland). Chemical Geology, 2011,285(1):215-230.
doi: 10.1016/j.chemgeo.2011.04.012
|
[19] |
Jiang L, Yao Z, Wang R , et al. Hydrochemistry of the middle and upper reaches of the Yarlung Tsangpo River system: weathering processes and CO2 consumption. Environmental Earth Sciences, 2015,74(3):2369-2379.
doi: 10.1007/s12665-015-4237-6
|
[20] |
Liu B, Liu C Q, Zhang G , et al. Chemical weathering under mid- to cool temperate and monsoon-controlled climate: A study on water geochemistry of the Songhuajiang River system, Northeast China. Applied Geochemistry, 2013,31(11):265-278.
doi: 10.1016/j.apgeochem.2013.01.015
|
[21] |
Sun X, Mörth C M, Humborg C , et al. Temporal and spatial variations of rock weathering and CO2 consumption in the Baltic Sea catchment. Chemical Geology, 2017,466. DOI: 10.1016/j.chemgeo.2017.04.028.
|
[22] |
Wu Weihua, Zheng Hongbo, Yang Jiedong , et al. Chemical weathering of large river catchments in China and the global carbon cycle. Quaternary Sciences, 2011,31(3):397-407.
doi: 10.3969/j.issn.1001-7410.2011.03.01
|
|
[ 吴卫华, 郑洪波, 杨杰东 , 等. 中国河流流域化学风化和全球碳循环. 第四纪研究, 2011,31(3):397-407.]
doi: 10.3969/j.issn.1001-7410.2011.03.01
|
[23] |
Yan J, Li J, Ye Q , et al. Concentrations and exports of solutes from surface runoff in Houzhai Karst Basin, southwest China. Chemical Geology , 2012,304/305(3):1-9.
doi: 10.1016/j.chemgeo.2012.02.003
|
[24] |
Song Xianwei, Gao Yang, Wen Xuefa , et al. Rock-weathering-related carbon sinks and associated ecosystem service functions in the karst critical zone in China. Acta Geographica Sinica, 2016,71(11):1926-1938.
|
|
[ 宋贤威, 高扬, 温学发 , 等. 中国喀斯特关键带岩石风化碳汇评估及其生态服务功能. 地理学报, 2016,71(11):1926-1938.]
|
[25] |
Wang G, Dai M, Shen P , et al. Quantifying uncertainty sources in the gridded data of sea surface CO2 partial pressure. Journal of Geophysical Research: Oceans, 2014,119:1-9.
doi: 10.1002/2013JC009286
|
[26] |
Liu Z, Dreybrodt W, Wang H . A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms. Earth Science Reviews, 2010,99(3):162-172.
doi: 10.1016/j.earscirev.2010.03.001
|
[27] |
Yuan Daoxian . Modern karstology and global change study. Earth Science Frontiers, 1997(1):17-25.
|
|
[ 袁道先 . 现代岩溶学和全球变化研究. 地学前缘, 1997(1):17-25.]
|
[28] |
Gaillardet J, Calmels D, Romero-Mujalli G , et al. Global climate control on carbonate weathering intensity. Chemical Geology, 2018. DOI: 10.1016/j.chemgeo.2018.05.009.
|
[29] |
Hartmann Jens . Bicarbonate-fluxes and CO2-consumption by chemical weathering on the Japanese Archipelago:Application of a multi-lithological model framework. Chemical Geology, 2009,265(3):237-271.
doi: 10.1016/j.chemgeo.2009.03.024
|
[30] |
Flintrop C, Hohlmann B, Jasper T , et al. Anatomy of pollution: Rivers of North Rhine-Westphalia, Germany. American Journal of Science, 1996,296(1):58-98.
doi: 10.2475/ajs.296.1.58
|
[31] |
Roy S, Gaillardet J, Allègre C J . Geochemistry of dissolved and suspended loads of the Seine River, France: Anthropogenic impact, carbonate and silicate weathering. Geochimica Et Cosmochimica Acta, 1999,63(9):1277-1292.
doi: 10.1016/S0016-7037(99)00099-X
|
[32] |
Detwiler R P, Hall C A S .Tropical forests and the global carbon cycle. Science, 1988,239(4835):42-47.
doi: 10.1126/science.239.4835.42
|
[33] |
Liu Z, Macpherson G L, Groves C , et al. Large and active CO2 uptake by coupled carbonate weathering. Earth-Science Reviews, 2018,182:42-49. DOI: 10.1016/j.earscirev.2018.05.007.
doi: 10.1016/j.earscirev.2018.05.007
|
[34] |
Peel M C, Finlayson B L, Mcmahon T A . Updated world map of the Köppen-Geiger climate classification. Hydrology & Earth System Sciences, 2007,11(3):259-263.
|
[35] |
Sun Hailong, Liu Zaihua, Yang Rui , et al. Spatial and seasonal variations of hydrochemistry of the Peral River and Implications for estimating the rock weathering-related carbon sink. Earth and Environment, 2017,45(1):57-65.
|
|
[ 孙海龙, 刘再华, 杨睿 , 等. 珠江流域水化学组成的时空变化特征及对岩石风化碳汇估算的意义. 地球与环境, 2017,45(1):57-65.]
|
[36] |
Beaulieu E, Goddéris Y, Donnadieu Y , et al. High sensitivity of the continental-weathering carbon dioxide sink to future climate change. Nature Climate Change, 2012,2(5):346-349.
doi: 10.1038/nclimate1419
|
[37] |
Gombert P . Role of karstic dissolution in global carbon cycle. Global & Planetary Change, 2002,33(1):177-184.
|
[38] |
Zhang L L, Zhao Z Q, Zhang W , et al. Characteristics of water chemistry and its indication of chemical weathering in Jinshajiang, Lancangjiang and Nujiang drainage basins. Environmental Earth Sciences, 2016,75(6):506. DOI: 10.1007/s12665-015-5115-y.
doi: 10.1007/s12665-015-5115-y
|
[39] |
Li Tiantian, Ji Hongbing, Jiang Yongbin , et al. Hydro-geochemistry and the sources of DIC in the upriver tributaries of the Ganjiang River. Acta Geographica Sinica, 2007,62(7):764-775.
|
|
[ 李甜甜, 季宏兵, 江用彬 , 等. 赣江上游河流水化学的影响因素及DIC来源. 地理学报, 2007,62(7):764-775.]
|
[40] |
Zeng Qingrui, Liu Zaihua . Is basalt weathering a major mechanism for atmospheric CO2 consumption? Chinese Science Bulletin, 2017,62(10):1041-1049.
|
|
[ 曾庆睿, 刘再华 . 玄武岩风化是重要的碳汇机制吗? 科学通报, 2017,62(10):1041-1049.]
|
[41] |
Hurwitz S, Evans W C, Lowenstern J B . River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA. Chemical Geology, 2010,276(3):331-343.
doi: 10.1016/j.chemgeo.2010.07.001
|
[42] |
Gaillardet J, Galy A . Atmospheric science: Himalaya-carbon sink or source? Science, 2008,320(5884):1727-1728.
doi: 10.1126/science.1159279
|
[43] |
Zhang Zhigan . Discussion on article "Calculation of atmospheric CO2 sink formed in karst processes of karst-divided regions in China". Carsologica Sinica, 2012,31(3):339-344.
doi: 10.3969/j.issn.1001-4810.2012.03.017
|
|
[ 张之淦 . 对《中国岩溶作用产生的大气CO2碳汇的分区计算》一文的商榷. 中国岩溶, 2012,31(3):339-344.]
doi: 10.3969/j.issn.1001-4810.2012.03.017
|
[44] |
Wang Shijie, Liu Zaihua, Ni Jian , et al. A review of research progress and future prospective of carbon cycle in karst area of south China. Earth and Environment, 2017,45(1):2-9.
|
|
[ 王世杰, 刘再华, 倪健 , 等. 中国南方喀斯特地区碳循环研究进展. 地球与环境, 2017,45(1):2-9.]
|
[45] |
Bai Xiaoyong, Wang Shijie, Chen Qiwei , et al. Spatio-temporal evolution process and its evaluation method of karst rocky desertification in Guizhou Province. Acta Geographica Sinica, 2009,64(5):609-618.
|
|
[ 白晓永, 王世杰, 陈起伟 , 等. 贵州土地石漠化类型时空演变过程及其评价. 地理学报, 2009,64(5):609-618.]
|
[46] |
Liu Z, Dreybrodt W, Liu H . Atmospheric CO2 sink: Silicate weathering or carbonate weathering? Quaternary Sciences, 2011,26(3):S292-S294.
|