地理学报 ›› 2019, Vol. 74 ›› Issue (5): 1025-1039.doi: 10.11821/dlxb201905014
收稿日期:
2018-08-13
修回日期:
2019-02-18
出版日期:
2019-05-25
发布日期:
2019-05-24
作者简介:
王正雄(1994-), 男, 湖北荆州人, 硕士生, 研究方向为资源环境与GIS。E-mail: 基金资助:
WANG Zhengxiong,JIANG Yongjun(),ZHANG Yuanzhu,DUAN Shihui,LIU Jiuchan,ZENG Ze,ZENG Sibo
Received:
2018-08-13
Revised:
2019-02-18
Published:
2019-05-25
Online:
2019-05-24
Supported by:
摘要:
岩溶区土地石漠化已成为中国西部继沙漠化和水土流失后的第三大生态问题,近年来岩溶槽谷区石漠化表现出增加趋势。通过获取槽谷区石漠化、岩性、坡度、海拔、降雨量、土地利用、人口密度和第一产业生产总值等数据,利用GIS空间分析功能和地理探测器模型,探讨了岩溶槽谷区石漠化空间分布特征及驱动因子。主要结论为:① 岩溶槽谷区总石漠化面积为21323.7 km 2,占研究区土地面积的8.3%,其中轻度、中度和重度石漠化面积分别是11894.8 km 2、8615.8 km 2和813.1 km 2,分别占石漠化面积的55.8%、40.4%和3.8%;② 从石漠化的空间分布来看,槽谷区石漠化主要发生在连续性灰岩中,轻度、中度和重度石漠化面积分别为占槽谷区相应石漠化类型面积的22.1%、22.4%和1.9%;槽谷区石漠化主要发生在15°~25°的坡度范围,轻度、中度和重度石漠化面积分别为占槽谷区相应石漠化类型面积的27.1%、18.2%和2.3%;从海拔来看,主要分布于400~800 m范围内,轻度、中度和重度石漠化面积分别为占槽谷区相应石漠化类型面积的24.9%、18.4%和0.2%;从土地利用类型来看,主要发生于山地旱地中;从人口密度来看,集中分布于100~200人/km 2中;从第一产业生产总值来看,集中分布于25亿~50亿元中;③ 地理探测器的因子探测器揭示了岩性(q = 0.58)、土地利用(q = 0.48)和坡度(q = 0.42)3个因子是槽谷区石漠化形成的主要驱动因子,交互式探测器进一步揭示了岩性与土地利用类型(q = 0.85)、坡度与土地利用类型的组合(q = 0.75)共同驱动槽谷区石漠化的形成。
王正雄,蒋勇军,张远嘱,段世辉,刘九缠,曾泽,曾思博. 基于GIS与地理探测器的岩溶槽谷石漠化空间分布及驱动因素分析[J]. 地理学报, 2019, 74(5): 1025-1039.
WANG Zhengxiong,JIANG Yongjun,ZHANG Yuanzhu,DUAN Shihui,LIU Jiuchan,ZENG Ze,ZENG Sibo. Spatial distribution and driving factors of karst rocky desertification based on GIS and geodetectors[J]. Acta Geographica Sinica, 2019, 74(5): 1025-1039.
表1
岩溶槽谷区石漠化在不同岩性的空间分布
岩性类型 (面积/km2) | 轻度石漠化 (km2) | 中度石漠化 (km2) | 重度石漠 (km2) | 石漠化总面积(km2) | 发生率 (%) |
---|---|---|---|---|---|
连续性灰岩(39995.2) | 4722.9(39.7%) | 4771(55.4%) | 412.9(50.8%) | 9906.8 | 24.8 |
连续性白云岩(19153.2) | 1383.3(11.6%) | 986.5(11.4%) | 228.5(28.1%) | 2598.3 | 16.1 |
灰岩与白云岩互层(23568.7) | 1860.8(15.6%) | 1250.5(14.5%) | 82.1(10.1%) | 3193.4 | 12.0 |
碳酸盐岩夹碎屑岩(49402.8) | 3927.8(33.1%) | 1607.8(18.7%) | 89.6(11.0%) | 5625.2 | 11.4 |
总计(132119.9) | 11894.8(100%) | 8615.8(100%) | 813.1(100%) | 21323.7 | 16.1 |
表2
岩溶槽谷区石漠化在不同坡度中的空间分布
坡度(°) (面积/km2) | 轻度石漠化 (km2) | 中度石漠化 (km2) | 重度石漠 (km2) | 石漠化总面积 (km2) | 发生率 (%) |
---|---|---|---|---|---|
0~8(21096.1) | 1048.5(8.8%) | 765.1(8.9%) | 47.8(5.9%) | 1861.4 | 8.8 |
8~15(36956.2) | 3520.4(29.6%) | 2584.2(30.0%) | 230.9(28.4%) | 6335.5 | 17.1 |
15~25(44495.3) | 5780(48.6%) | 3899.9(45.2%) | 495(60.9%) | 10174.9 | 22.9 |
> 25(29572.3) | 1545.9(13.0%) | 1366.6(15.9%) | 39.4(4.8%) | 2951.9 | 10.0 |
总计(132119.9) | 11894.8(100%) | 8615.8(100%) | 813.1(100%) | 21323.7 | 16.1 |
表3
岩溶槽谷区石漠化在不同海拔的空间分布
海拔(m) (面积/km2) | 轻度石漠化 (km2) | 中度石漠化 (km2) | 重度石漠 (km2) | 石漠化总面积 (km2) | 发生率 (%) |
---|---|---|---|---|---|
0~400(51526.7) | 2048.6(17.2%) | 865.1(10.0%) | 47.8(5.9%) | 2961.5 | 5.7 |
400~800(27745.2) | 5299.6(44.6%) | 3922.9(45.5%) | 563.8(63.3%) | 9786.3 | 35.3 |
800~1200(35672.4) | 3520.5(29.6%) | 2642.2(30.7%) | 165.6(20.4%) | 7586.0 | 21.3 |
> 1200(17175.6) | 1026.1(8.6%) | 1185.6(13.8%) | 35.9(4.4%) | 2247.6 | 13.1 |
总计(132119.9) | 11894.8(100%) | 8615.8(100%) | 813.1(100%) | 21323.7 | 16.1 |
表4
岩溶槽谷区石漠化在不同降雨量下的空间分布
降雨量(mm)(面积/km2) | 轻度石漠化 (km2) | 中度石漠化 (km2) | 重度石漠化 (km2) | 石漠化总面积 (km2) | 发生率 (%) |
---|---|---|---|---|---|
800~1000(31708.4) | 1605.8(13.5%) | 1852.4(21.5%) | 158.6(19.5%) | 3616.8 | 11.4 |
1000~1200(47564.1) | 2533.6(21.3%) | 3325.6(38.6%) | 289.5(35.6%) | 6148.7 | 12.9 |
1200~1400(32011.4) | 5780.9(48.6%) | 2007.5(23.3%) | 221.9(27.3%) | 8010.3 | 25.0 |
> 1400(20835.9) | 1974.5(16.6%) | 1430.2(16.6%) | 143.1(17.6%) | 3547.8 | 17.0 |
总计(132119.9) | 11894.8(100%) | 8615.8(100%) | 813.1(100%) | 21323.7 | 16.1 |
表5
岩溶槽谷区石漠化在不同土地利用方式下的空间分布
土地利用方式 (面积/km2) | 轻度石漠化 (km2) | 中度石漠化 (km2) | 重度石漠化 (km2) | 石漠化总面积 km2 | 发生率 (%) |
---|---|---|---|---|---|
耕地(28515.8) | 5900.4(49.6%) | 4795.6(55.7%) | 164.2(20.1%) | 10165.6 | 38.1 |
林地(61669.1) | 1881(15.8%) | 683.3(7.9%) | 469.6(57.8%) | 2728.5 | 1.9 |
草地(29009.1) | 2080.2(17.5%) | 996.7(11.6%) | 85.3(10.5%) | 3162.2 | 4.9 |
未利用地(12925.9) | 2033.2(17.1%) | 2140.2(24.8%) | 94.1(11.6%) | 5267.4 | 33.0 |
总计(132119.9) | 11894.8(100%) | 8615.8(100%) | 813.1(100%) | 22141.7 | 16.8 |
表6
岩溶槽谷区石漠化在不同人口密度下的空间分布
人口密度(人/km2) (面积/km2) | 轻度石漠化 (km2) | 中度石漠化 (km2) | 重度石漠化 (km2) | 石漠化 总面积 | 发生率 (%) |
---|---|---|---|---|---|
0~100(36993.6) | 2789.3(23.5%) | 2869.2(33.3%) | 141.5(17.4%) | 5800.1 | 15.7 |
100~200(38314.8) | 5654.8(47.5%) | 3868.4(44.9%) | 341.3(42.0%) | 9864.5 | 25.7 |
200~300(39636.0) | 1905.4(16.0%) | 1758.1(20.4%) | 102.8(12.6%) | 3766.3 | 9.5 |
> 300(17175.6) | 1545.3(13.0%) | 120.0(1.4%) | 227.5(28.0%) | 1892.8 | 11.0 |
总计(132119.9) | 11894.8(100%) | 8615.8(100%) | 813.1(100%) | 21323.7 | 16.1 |
表7
岩溶槽谷区石漠化在不同第一产业总值下的分布
第一产业总值(亿元) (面积/km2) | 轻度石漠化 (km2) | 中度石漠化 (km2) | 重度石漠化 (km2) | 石漠化 总面积 | 发生率 (%) |
---|---|---|---|---|---|
0~10(47260.2) | 2080.2(17.5%) | 996.7(11.6%) | 84.3(10.3%) | 3161.2 | 6.7 |
10~25(45223.8) | 2921.6(24.6%) | 1683.3(19.5%) | 269.6(33.2%) | 4874.5 | 10.8 |
25~50(20294.3) | 3033.2(25.5%) | 2288.6(26.6%) | 95(11.7%) | 5416.8 | 24.7 |
> 50(19341.6) | 3859.8(32.4%) | 3647.2(42.3%) | 364.2(44.8%) | 7871.2 | 28.0 |
总计(132119.9) | 11894.8(100%) | 8615.8(100%) | 813.1(100%) | 20323.7 | 16.10 |
表1
0 岩溶槽谷区不同土地利用及岩性中石漠化的分布
岩性 | 土地利用 (km2) | 轻度石漠化 (km2) | 中度石漠化 (km2) | 重度石漠化 (km2) | 总计 (km2) | 石漠化 发生率(%) |
---|---|---|---|---|---|---|
连续性灰岩 | 耕地(12024.1) | 1216.3(16.4%) | 1629.2(13.5%) | 196.9(1.6%) | 3042.4 | 31.6 |
林地(10288.7) | 23.1(0.2%) | 5.9(0.1%) | 0.1(0%) | 29 | 0.3 | |
草地(12232.1) | 1977.8(9.9%) | 960.5(7.9%) | 39.0(0.3%) | 2977.2 | 18.1 | |
未利用地(5450.4) | 1121.3(20.6%) | 258.9(4.8%) | 16.6(0.3%) | 1396.8 | 25.6 | |
小计 | 39995.2 | 4338.4(36.5%) | 2854.4(33.1%) | 252.6(31.1%) | 7445.4 | 15.7 |
连续性 白云岩 | 耕地(4133.9) | 1548.3(37.5%) | 960.5(23.2%) | 98.5(2.4%) | 2607.3 | 17.0 |
林地(8940.1) | 75.5(0.6%) | 5.8(0.1%) | 1.7(0.2%) | 83 | 0.3 | |
草地(4205.3) | 441.8(10.5%) | 213.0(5.1%) | 29.0(3.6%) | 683.7 | 4.4 | |
未利用地(1873.9) | 870.1(7.3%) | 750.4(8.7%) | 59.4(7.3%) | 1679.9 | 24.2 | |
小计 | 19153.2 | 2935.8(15.3%) | 1929.7(10.1%) | 188.5(1.0%) | 5054 | 10.7 |
灰岩与白云岩互层 | 耕地(5086.9) | 1396.7(11.7%) | 1015.9(11.8) | 120.3(14.8%) | 2533 | 18.1 |
林地(11001.1) | 0.8(0%) | 5.1(0.1%) | 1.9(0.2%) | 7.8 | 0.0 | |
草地(5174.9) | 524.2(4.4%) | 203.8(2.4%) | 13.4(1.6%) | 741.4 | 5.8 | |
未利用地(2305.9) | 757.7(6.4%) | 338.5(3.4%) | 84.7(10.4%) | 1181 | 20.7 | |
小计 | 23568.7 | 2679.4(22.5%) | 1563.3(18.1%) | 220.4(27.1%) | 4463.1 | 9.3 |
碳酸盐岩夹碎屑岩 | 耕地(10662.8) | 1054.9(9.9%) | 923.3(8.7%) | 82.9(0.8%) | 2061.2 | 19.3 |
林地(23059.5) | 18.1(0.2%) | 12.1(0.1%) | 0.0(0%) | 30.2 | 0.1 | |
草地(10847.2) | 397.9(3.3%) | 419.5(4.9%) | 28.4(3.5%) | 845.8 | 6.1 | |
未利用地(4833.3) | 470.3(9.7%) | 913.5(18.9%) | 40.2(0.8%) | 1424 | 22.9 | |
小计 | 49402.8 | 1941.2(3.9%) | 2268.4(4.6%) | 151.6(0.3%) | 4361.2 | 8.8 |
表1
1 岩溶槽谷区不同土地利用及坡度中石漠化的分布
坡度 | 土地利用 (km2) | 轻度石漠化 (km2) | 中度石漠化 (km2) | 重度石漠化 (km2) | 总计 (km2) | 石漠化 发生率(%) |
---|---|---|---|---|---|---|
0~8° | 耕地(4591.7) | 334.1(7.3%) | 82.5(1.8%) | 17.0(2.1%) | 758.3 | 9.4 |
林地(9602.7) | 151.6(1.6%) | 156.5(1.8%) | 4.9(0.6%) | 547.7 | 0.3 | |
草地(4666.3) | 167.9(2.2%) | 101.1(1.2%) | 7.2(0.9%) | 583.1 | 5.9 | |
未利用地(2235.3) | 265.4(2.2%) | 175.1(2.0%) | 39.8(1.3%) | 789.4 | 17.6 | |
小计 | 21096.1 | 919.1(7.7%) | 515.2(6.0%) | 100.7(12.4%) | 2678.5 | 7.0 |
8°~15o | 耕地(7752.5) | 580.5(7.5%) | 327.1(4.2%) | 38.4(0.5%) | 1653.5 | 12.2 |
林地(18670.2) | 212.6(1.1%) | 181.3(1%) | 16.6(0.1%) | 717.1 | 1.9 | |
草地(7914.9) | 539.6(4.7%) | 342.3(4.0%) | 72.0(8.9%) | 1663.5 | 10.5 | |
未利用地(2618.5) | 411.3(3.5%) | 219.4(2.5%) | 26.2(3.2%) | 1148.3 | 21.8 | |
小计 | 36956.2 | 1744.0(14.7%) | 1070.2(12.4%) | 153.3(18.9) | 5182.4 | 7.0 |
15°~25o | 耕地(10786.7) | 981.2(9.1%) | 667.3(6.2%) | 31.0(0.3%) | 2938.9 | 15.6 |
林地(17952.9) | 411.5(3.5%) | 556.8(6.5%) | 19.1(2.3%) | 1726.4 | 4.1 | |
草地(10976.8) | 496.5(4.2%) | 294.7(3.4%) | 15.4(1.9%) | 1411.5 | 7.2 | |
未利用地(4778.9) | 564.5(4.7%) | 581.0(6.7%) | 59.7(7.3%) | 2104.1 | 24.7 | |
小计 | 44495.3 | 2453.8(20.6%) | 2099.8(24.4%) | 125.1(15.4%) | 8180.9 | 9.2 |
坡度 | 土地利用 (km2) | 轻度石漠化 (km2) | 中度石漠化 (km2) | 重度石漠化 (km2) | 总计 (km2) | 石漠化 发生率(%) |
> 25° | 耕地(1525.0) | 679.7(6.1%) | 430.0(5.2%) | 30.5(0.2%) | 1994.3 | 15.5 |
林地(17185.3) | 307.0(1.8%) | 209.4(1.2%) | 10.2(0.1%) | 921.4 | 3.1 | |
草地(6154.0) | 424.6(3.6%) | 299.8(3.5%) | 20.9(2.6%) | 1303.2 | 10.0 | |
未利用地(3707.3) | 249.9(2.1%) | 306.3(3.6%) | 54.2(6.7%) | 1062.9 | 17.9 | |
小计 | 28571.6 | 1661.2(14.0%) | 1245.5(9.5%) | 115.8(14.2%) | 5281.9 | 8.9 |
[1] | Yuan, D X . Rock desertification in the subtropical karst of south China. Zeitschrift fur Geomorphologie, 1997,108:81-90. |
[2] | Wang S J, Li R L, Sun C X , et al. How types of carbonate rock assemblages constrain the distribution of karst rocky desertified land in Guizhou Province, PR China: Phenomena and mechanisms, Land Degradation & Development, 2004,15(2):123-131. |
[3] |
Jiang Z C, Lian Y Q, Qin X Q . Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Science Reviews, 2014,132:1-12.
doi: 10.1016/j.earscirev.2014.01.005 |
[4] | Planning Outline for Comprehensive Management of Rocky Desertification in Karst Area(2006-2015). National Development and Reform Commission and State Forestry Administration, Ministry of Agriculture, Ministry of Water Resources. |
[ 岩溶地区石漠化综合治理规划大纲(2006-2015年). 国家发展改革委会同林业局、农业部、水利部.] | |
[5] | Yuan D X. Major Environmental Geological Problems and Strategies in Southwest Karst Rocky Mountains. Beijing: Science Press, 2014. |
[ 袁道先 . 西南岩溶石山地区重大环境地质问题及对策研究. 北京: 科学出版社, 2014.] | |
[6] |
Wang Shijie, Li Yangbing, Li Ruiling . Formation background, evolution and treatment of Karst Rocky Desertification. Quaternary Sciences, 2003,23(6):657-666.
doi: 10.3321/j.issn:1001-7410.2003.06.009 |
[ 王世杰, 李阳兵, 李瑞玲 . 喀斯特石漠化的形成背景、演化与治理. 第四纪研究, 2003,23(6):657-666.]
doi: 10.3321/j.issn:1001-7410.2003.06.009 |
|
[7] |
Jiang Zhongcheng, Luo Weiqun, Tong Liqiang , et al. Evolution characteristics and influencing factors of Karst Rocky Desertification in Southwest China in the 21st Century. Chinese Journal of Karst, 2016,35(5):461-468.
doi: 10.11932/karst20160504 |
[ 蒋忠诚, 罗为群, 童立强 , 等. 21世纪西南岩溶石漠化演变特点及影响因素. 中国岩溶, 2016,35(5):461-468.]
doi: 10.11932/karst20160504 |
|
[8] | Zhang Xinbao, Wang Shijie, Bai Xiaoyong , et al. The relationship between spatial distribution of rocky desertification and karst landform, lithology, annual average precipitation and population density density in Guizhou. Earth and Environment, 2013,41(1):1-6. |
[ 张信宝, 王世杰, 白晓永 , 等. 贵州石漠化空间分布与喀斯特地貌、岩性、年均降水和人口密度密度的关系. 地球与环境, 2013,41(1):1-6.] | |
[9] | Li Ruiling . Natural background and spatial regional differentiation of rocky desertification in karst areas of Guizhou [D]. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences, 2004. |
[ 李瑞玲 . 贵州岩溶地区土地石漠化形成的自然背景及其空间地域分异[D]. 贵阳: 中国科学院地球化学研究所, 2004.] | |
[10] |
Jiang Y, Li L, Groves C , et al. Relationships between rocky desertification and spatial pattern of land use in typical karst area, Southwest China. Environmental Earth Sciences, 2009,59(4):881-890.
doi: 10.1007/s12665-009-0083-8 |
[11] |
Bai Xiaoyong, Xiong Kangning, Li Yangbing , et al. Quantitative study on spatial difference of rocky desertification and population factors in different karst mountain areas. Journal of Mountain Science, 2006,24(2):242-248.
doi: 10.3969/j.issn.1008-2786.2006.02.019 |
[ 白晓永, 熊康宁, 李阳兵 , 等. 喀斯特山区不同强度石漠化与人口因素空间差异性的定量研究. 山地学报, 2006,24(2):242-248.]
doi: 10.3969/j.issn.1008-2786.2006.02.019 |
|
[12] |
Wang Jinfeng, Xu Chengdong . Geographical detectors: Principles and prospects. Acta Geographica Sinica, 2017,72(1):116-134.
doi: 10.11821/dlxb201701010 |
[ 王劲峰, 徐成东 . 地理探测器:原理与展望. 地理学报, 2017,72(1):116-134.]
doi: 10.11821/dlxb201701010 |
|
[13] |
Wang J F, Hu Y . Environmental health risk detection with GeogDetector. Environmental Modelling & Software, 2005,20(10):114-115.
doi: 10.1016/j.envsoft.2012.01.015 |
[14] |
Dong Yuxiang, Xu Wei, Yang Ren , et al. Discussion on the northern boundary of China's terrestrial tropics based on geographical detectors. Acta Geographica Sinica, 2017,72(1):135-147.
doi: 10.11821/dlxb201701011 |
[ 董玉祥, 徐茜, 杨忍 , 等. 基于地理探测器的中国陆地热带北界探讨. 地理学报, 2017,72(1):135-147.]
doi: 10.11821/dlxb201701011 |
|
[15] |
Wang J F, Li X H, Christakos G , et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. International Journal of Geographical Information Science, 2010,24(1):107-127.
doi: 10.1080/13658810802443457 |
[16] |
Wang J F, Zhang T L, Fu B J . A measure of spatial stratified heterogeneity. Ecological Indicators, 2016,67:250-256.
doi: 10.1016/j.ecolind.2016.02.052 |
[17] |
Wang Jinfeng, Ge Yong, Li Lianfa , et al. Geographic spatiotemporal data analysis methods. Acta Geographica Sinica, 2014,69(9):1326-1345.
doi: 10.11821/dlxb201409007 |
[ 王劲峰, 葛咏, 李连发 , 等. 地理学时空数据分析方法. 地理学报, 2014,69(9):1326-1345.]
doi: 10.11821/dlxb201409007 |
|
[18] |
Pu Junbing, Yuan Daoxian, Pei Zhengjiao , et al. Water environment problems in karst areas in Southwest China. Science: Shanghai, 2010,62(2):32-36.
doi: 10.3969/j.issn.0368-6396.2010.02.010 |
[ 蒲俊兵, 袁道先, 覃政教 , 等. 我国西南岩溶区水环境问题. 科学, 2010,62(2):32-36.]
doi: 10.3969/j.issn.0368-6396.2010.02.010 |
|
[19] |
Liu Zaihua, Dreybrodt W, Li Huaju . Comparison of dissolution rate control mechanisms of limestone and dolomite. Earth Science, 2006,31(3):411-416.
doi: 10.3321/j.issn:1000-2383.2006.03.021 |
[ 刘再华, Dreybrodt W , 李华举. 灰岩和白云岩溶解速率控制机理的比较. 地球科学, 2006,31(3):411-416.]
doi: 10.3321/j.issn:1000-2383.2006.03.021 |
|
[20] |
Jiang Yongjun, Zhang Cheng, Li Linli , et al. Analysis of the current situation and genesis of rocky desertification in Hanjiang District of Chongqing based on RS and GIS. Hydrogeology and Engineering Geology, 2007,34(1):81-85.
doi: 10.3969/j.issn.1000-3665.2007.01.018 |
[ 蒋勇军, 章程, 李林立, 袁道先 , 等. 基于RS、GIS的重庆黔江区石漠化现状与成因分析. 水文地质工程地质, 2007,34(1):81-85.]
doi: 10.3969/j.issn.1000-3665.2007.01.018 |
|
[21] |
Li Yangbing, Bai Xiaoyong, Zhou Guofu , et al. Relationship between land use and rocky desertification in typical rocky desertification areas of China. Acta Geographica Sinica, 2006,61(6):624-632.
doi: 10.3321/j.issn:0375-5444.2006.06.007 |
[ 李阳兵, 白晓永, 周国富 , 等. 中国典型石漠化地区土地利用与石漠化的关系. 地理学报, 2006,61(6):624-632.]
doi: 10.3321/j.issn:0375-5444.2006.06.007 |
|
[22] |
Li Yangbing, Bai Xiaoyong, Qiu Xingchun , et al. Correlation between Karst Rocky desertification and land use. Journal of Resource Science, 2006,28(2):67-73.
doi: 10.3321/j.issn:1007-7588.2006.02.011 |
[ 李阳兵, 白晓永, 邱兴春 , 等. 喀斯特石漠化与土地利用相关性研究. 资源科学, 2006,28(2):67-73.]
doi: 10.3321/j.issn:1007-7588.2006.02.011 |
|
[23] | Zhang Xinbao, Wang Shijie, Meng Tianyou , et al. Mechanism of farming driving rocky land in karst areas of Southwest China. Earth and Environment, 2010,38(2):123-128. |
[ 张信宝, 王世杰, 孟天友 , 等. 农耕驱动西南喀斯特地区坡地石质化的机制. 地球与环境, 2010,38(2):123-128.] | |
[24] |
Peng T, Wang S J . Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in southwest China. Catena, 2012,90(1):53-62.
doi: 10.1016/j.catena.2011.11.001 |
[25] |
Wang S J, Liu Q M, Zhang D F . Karst rocky desertification in southwestern China: Geomorphology, landuse, impact and rehabilitation. Land Degradation & Development, 2004,15(2):115-121.
doi: 10.1002/ldr.592 |
[26] |
Xiong Kangning, Li Jin, Long Mingzhong . Characteristics and key issues of soil erosion in typical karst rocky desertification control areas. Acta Geographica Sinica, 2012,67(7):878-888.
doi: 10.11821/xb201207002 |
[ 熊康宁, 李晋, 龙明忠 . 典型喀斯特石漠化治理区水土流失特征与关键问题. 地理学报, 2012,67(7):878-888.]
doi: 10.11821/xb201207002 |
|
[27] |
Li Ruiling, Wang Shijie, Xiong Kangning , et al. Spatial correlation analysis between slope and rocky desertification in karst areas of Guizhou Province. Bulletin of Soil and Water Conservation, 2006,26(4):82-86.
doi: 10.3969/j.issn.1000-288X.2006.04.021 |
[ 李瑞玲, 王世杰, 熊康宁 , 等. 贵州省岩溶地区坡度与土地石漠化空间相关分析. 水土保持通报, 2006,26(4):82-86.]
doi: 10.3969/j.issn.1000-288X.2006.04.021 |
|
[28] | Li Yangbing, Wang Shijie, Zhou Mengwei , et al. Relationship between karst rocky desertification and slope at different spatial scales. Soil and Water Conservation Research, 2009,16(5):70-72. |
[ 李阳兵, 王世杰, 周梦维 , 等. 不同空间尺度下喀斯特石漠化与坡度的关系. 水土保持研究, 2009,16(5):70-72.] | |
[29] | Zhang Yongrong, Zhou Zhongfa, Ma Shibin . Analysis of rocky desertification and climate change in karst mountainous area of Guizhou in recent 20 years. Environmental Science and Technology, 2014,37(9):192-197. |
[ 张勇荣, 周忠发, 马士彬 . 近20年贵州喀斯特山区石漠化与气候变化特征分析. 环境科学与技术, 2014,37(9):192-197.] | |
[30] | Wu Lianglin, Huang Qiuyan, Zhou Yongzhang , et al. Spatial correlation of karst rocky desertification and human activities based on GIS/RS: A case study of Du'an Yao Autonomous County in Guangxi. Soil and Water Conservation Research, 2007,14(4):121-125. |
[ 吴良林, 黄秋燕, 周永章 , 等. 基于GIS/RS的喀斯特石漠化与人文活动空间相关性研究: 以广西都安瑶族自治县为例. 水土保持研究, 2007,14(4):121-125.] | |
[31] |
Xiong Y J, Qiu G Y, Mo D K , et al. Rocky desertification and its causes in karst areas: A case study in Yongshun County, Hunan Province, China. Environmental Geology, 2009,57(7):1481-1488.
doi: 10.1007/s00254-008-1425-7 |
[32] | Xiao Rongbo, Ouyang Zhiyun, Wang Xiaoke , et al. Sensitivity evaluation and spatial analysis of rocky desertification in Southwest China. Chinese Journal of Ecology, 2005,1(5):551-554. |
[ 肖荣波, 欧阳志云, 王效科 , 等. 中国西南地区石漠化敏感性评价及其空间分析. 生态学杂志, 2005,1(5):551-554.] | |
[33] | Yin H, Jiang Z, Luo W . Study on dynamic evaluation of soil erosion and rocky desertification in karst area of Southwest China. Water and Soil Conservation Research, 2011,18(1):66-70. |
[34] | Zhang H, Zhao X . Human drive mechanism of land use change in karst mountain areas: A case study of Guizhou Province. Geographical Research, 1999,18(2):136-142. |
[35] | Lai C, Qin Z, Zhang W . Rocky desertification sensitivity assessment and spatial distribution characteristics of Sichuan Province. Research of Soil and Water Conservation, 2013,20(4):99-104. |
[36] | LI D, Wu X, Yu D . Evaluation on eco-environmental sensitivity of Yunnan Province. Chinese Journal of Ecology, 2008,28(11):5270-5271. |
[37] |
Sachs E, Sarah P . Effect of raindrop temperatures on soil runoff and erosion in dry and wet soils. A laboratory experiment. Land Degradation & Development, 2017,28(12):106-112.
doi: 10.1002/ldr.2682 |
[38] | Huang Xiaoya, Chen Xi, Zhang Zhicai , et al. Analysis of rainfall concentration and its variation characteristics in karst areas of Southwest China: A case study of the upper reaches of the Wujiang River Basin. Earth and Environment, 2013,41(3):203-208. |
[ 黄晓亚, 陈喜, 张志才 , 等. 西南喀斯特地区降雨集中度及其变化特征分析: 以乌江流域中上游为例. 地球与环境, 2013,41(3):203-208.] | |
[39] | Hang X, Chen X, Zhang Z . Analysis of rainfall concentration and its change characteristics in karst region of Southwest China: A case study of the middle and upper reaches of Wujiang River Basin. Earth and Environment, 2013,41(3):203-208. |
[40] |
Mohamadi M A, Kavian A . Effects of rainfall patterns on runoff and soil erosion in field plots. International Soil & Water Conservation Research, 2015,3(4):273-281.
doi: 10.1016/j.iswcr.2015.10.001 |
[41] |
Gonzálezpelayo O, Andreu V, Gimenogarcía E , et al. Rainfall influence on plot-scale runoff and soil loss from repeated burning Mediterranean-shrub ecosystem, Valencia, Spain. Geomorphology, 2010,118(3/4):444-452.
doi: 10.1016/j.geomorph.2010.02.014 |
[1] | 魏石梅, 潘竟虎. 中国地级及以上城市网络结构韧性测度[J]. 地理学报, 2021, 76(6): 1394-1407. |
[2] | 胡畔, 陈波, 史培军. 中国暴雨洪涝灾情时空格局及影响因素[J]. 地理学报, 2021, 76(5): 1148-1162. |
[3] | 周扬, 李寻欢, 童春阳, 黄晗. 中国村域贫困地理格局及其分异机理[J]. 地理学报, 2021, 76(4): 903-920. |
[4] | 郭付友, 佟连军, 仇方道, 李一鸣. 黄河流域生态经济走廊绿色发展时空分异特征与影响因素识别[J]. 地理学报, 2021, 76(3): 726-739. |
[5] | 郭泽呈, 魏伟, 石培基, 周亮, 王旭峰, 李振亚, 庞素菲, 颉斌斌. 中国西北干旱区土地沙漠化敏感性时空格局[J]. 地理学报, 2020, 75(9): 1948-1965. |
[6] | 马春玥, 买买提·沙吾提, 姚杰, 古丽努尔·依沙克. 1950—2015年中国棉花生产时空动态变化[J]. 地理学报, 2020, 75(8): 1699-1710. |
[7] | 潘竟虎, 冯娅娅. 中国农村深度贫困的空间扫描与贫困分异机制的地理探测[J]. 地理学报, 2020, 75(4): 769-788. |
[8] | 刘敏, 郝炜. 山西省国家A级旅游景区空间分布影响因素研究[J]. 地理学报, 2020, 75(4): 878-888. |
[9] | 戴尔阜, 王亚慧. 横断山区产水服务空间异质性及归因分析[J]. 地理学报, 2020, 75(3): 607-619. |
[10] | 鲁大铭, 杨新军, 石育中, 王子侨. 黄土高原乡村体制转换与转型发展[J]. 地理学报, 2020, 75(2): 348-364. |
[11] | 刘玉洁, 葛全胜, 戴君虎. 全球变化下作物物候研究进展[J]. 地理学报, 2020, 75(1): 14-24. |
[12] | 彭文甫, 张冬梅, 罗艳玫, 陶帅, 徐新良. 自然因子对四川植被NDVI变化的地理探测[J]. 地理学报, 2019, 74(9): 1758-1776. |
[13] | 李瀚祺, 贾鹏, 费腾. 基于众源数据挖掘的中国饮食口味与慢性病的空间关联[J]. 地理学报, 2019, 74(8): 1637-1649. |
[14] | 宋雪茜,邓伟,周鹏,张少尧,万将军,刘颖. 两层级公共医疗资源空间均衡性及其影响机制——以分级诊疗改革为背景[J]. 地理学报, 2019, 74(6): 1178-1189. |
[15] | 周鹏, 邓伟, 彭立, 张少尧. 典型山地水土要素时空耦合特征及其成因[J]. 地理学报, 2019, 74(11): 2273-2287. |