地理学报 ›› 2019, Vol. 74 ›› Issue (5): 923-934.doi: 10.11821/dlxb201905007
收稿日期:
2018-03-07
修回日期:
2019-01-23
出版日期:
2019-05-25
发布日期:
2019-05-24
通讯作者:
何凡能
E-mail:hefn@igsnrr.ac.cn
作者简介:
杨帆(1991-), 男, 山西武乡人, 博士生, 主要从事历史土地利用变化研究。E-mail: yangf. 基金资助:
YANG Fan1,2,HE Fanneng1(),LI Meijiao1,2,LI Shicheng3
Received:
2018-03-07
Revised:
2019-01-23
Online:
2019-05-25
Published:
2019-05-24
Contact:
HE Fanneng
E-mail:hefn@igsnrr.ac.cn
Supported by:
摘要:
全球历史土地利用数据集对于深入理解全球或区域环境变化具有重要意义。历史森林数据作为其重要组成部分,在区域尺度上的可靠性至今鲜有评估。以中国区域为研究对象,依据中国学者基于历史文献资料重建的中国历史森林数据(CHFD),采用趋势、数量和空间格局等对比法,对全球数据集(SAGE、PJ和KK10)中国森林数据的可靠性进行评估。结果表明:① 虽然全球数据集中国森林数据与CHFD在近300年的变化趋势上均呈减少态势,但数量上差异较大。其中,SAGE数据集对中国1700年以来的森林面积估算较CHFD高出约20%~40%;KK10数据集重建的1700-1850年森林数量则高出约32%~46%;而PJ数据集由于吸纳了区域性研究成果,其总量与CHFD较为接近,多数时点的数量差异低于20%。② 在省区尺度上,从总量与CHFD较为接近的PJ数据集来看,其与CHFD数据集森林变化趋势差异较大省区占到84%,而数量差异较大的省区占比高达92%。③ 在网格尺度上,PJ与CHFD数据集相对差异率> 70%的网格占比高达60%~80%,二者的时空动态格局差异明显。④ 全球数据集中国历史森林数据未能客观反映该区域森林变化的过程与格局特征,造成这一现象的原因在于全球与区域性数据集重建历史数据所依据的资料源不同,以及基于不同空间尺度构建的重建方法的差异等。
杨帆,何凡能,李美娇,李士成. 全球历史森林数据中国区域的可靠性评估[J]. 地理学报, 2019, 74(5): 923-934.
YANG Fan,HE Fanneng,LI Meijiao,LI Shicheng. Reliability assessment of global historical forest data in China[J]. Acta Geographica Sinica, 2019, 74(5): 923-934.
表2
SAGE、PJ、KK10和CHFD数据集中国森林面积与数量差异百分比"
年份 | CHFD森林 面积(万km2) | SAGE | PJ | KK10 | |||||
---|---|---|---|---|---|---|---|---|---|
森林面积(万km2) | 数量差异率 (%) | 森林面积(万km2) | 数量差异率 (%) | 森林面积(万 km2) | 数量差异率 (%) | ||||
1700 | 241.27 | 296.00 | 20.44 | 265.23 | 9.47 | 333.04 | 32.23 | ||
1720 | 235.58 | 286.40 | 19.53 | 256.30 | 8.43 | 339.63 | 36.58 | ||
1740 | 229.89 | 276.80 | 18.57 | 246.37 | 6.92 | 318.04 | 32.46 | ||
1760 | 222.81 | 267.20 | 18.17 | 236.41 | 5.92 | 311.20 | 33.41 | ||
1780 | 214.34 | 257.60 | 18.38 | 226.41 | 5.48 | 303.65 | 34.83 | ||
1800 | 205.87 | 248.00 | 18.62 | 216.35 | 4.97 | 299.10 | 37.35 | ||
1820 | 194.99 | 238.00 | 19.93 | 206.22 | 5.60 | 294.55 | 41.25 | ||
1840 | 184.11 | 228.00 | 21.38 | 195.91 | 6.21 | 292.50 | 46.29 | ||
1860 | 172.74 | 218.00 | 23.27 | 185.66 | 7.21 | ||||
1880 | 160.88 | 208.00 | 25.69 | 176.21 | 9.10 | ||||
1900 | 149.02 | 200.00 | 29.42 | 167.80 | 11.87 | ||||
1920 | 133.48 | 190.00 | 35.31 | 158.20 | 16.99 | ||||
1940 | 117.94 | 177.00 | 40.60 | 144.44 | 20.27 | ||||
1960 | 87.88 | 169.00 | 65.39 | 143.98 | 49.37 | ||||
1980 | 111.92 | 167.00 | 40.02 | 144.86 | 25.80 |
[1] | Watson R T N I R, Bolin B , et al. Land use, land-use change, and forestry//IPCC Special Report-Summary for Policymakers. IPCC, 2000. |
[2] |
Foley J A, Defries R, Asner G P , et al. Global consequences of land use. Science, 2005,309(5734):570-574.
doi: 10.1126/science.1111772 |
[3] |
Ellis E C, Kaplan J O, Fuller D Q , et al. Used planet: A global history. Proceedings of the National Academy of Sciences of the United States of America, 2013,110(20):7978-7985.
doi: 10.1073/pnas.1217241110 |
[4] | Darby H C. The clearing of the woodland in Europe//Thomas J W L. Man's Role in Changing the Face of the Earth. Chicago: University of Chicago Press, 1956. |
[5] | Hughes J D, Thirgood J V . Deforestation, erosion, and forest management in ancient Greece and Rome. Journal of Forest History, 1982,26(2):60-75. |
[6] |
Werf G R V D, Morton D C, Defries R S , et al. CO2 emissions from forest loss. Nature Geoscience, 2009,2(11):737-738.
doi: 10.1038/ngeo671 |
[7] | Houghton R A . Carbon Flux to the Atmosphere from Land-use Changes: 1850 To 1990. Office of Scientific & Technical Information Technical Reports, 2001. |
[8] |
House J I, Prentice I C, Quéré C L . Maximum impacts of future reforestation or deforestation on atmospheric CO2. Global Change Biology, 2002,8(11):1047-1052.
doi: 10.1046/j.1365-2486.2002.00536.x |
[9] |
Clawson M . Forests in the long sweep of american history. Science, 1979,204(4398):1168-1174.
doi: 10.1126/science.204.4398.1168 |
[10] |
Kaplan J O, Krumhardt K M, Zimmermann N . The prehistoric and preindustrial deforestation of Europe. Quaternary Science Reviews, 2009,28(27/28):3016-3034.
doi: 10.1016/j.quascirev.2009.09.028 |
[11] |
Tian H, Banger K, Bo T , et al. History of land use in India during 1880-2010: Large-scale land transformations reconstructed from satellite data and historical archives. Global and Planetary Change, 2014,121:78-88.
doi: 10.1016/j.gloplacha.2014.07.005 |
[12] |
He F, Li S, Zhang X . A spatially explicit reconstruction of forest cover in China over 1700-2000. Global and Planetary Change, 2015,131:73-81.
doi: 10.1016/j.gloplacha.2015.05.008 |
[13] |
Ramankutty N, Foley J A . Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochemical Cycles, 1999,13(4):997-1027.
doi: 10.1029/1999GB900046 |
[14] | Pongratz J, Reick C, Raddatz T , et al. A reconstruction of global agricultural areas and land cover for the last millennium. Global Biogeochemical Cycles, 2008,22(3):1-16. |
[15] | Kaplan J O, Ruddiman W F, Crucifix M C , et al. Holocene carbon emissions as a result of anthropogenic land cover change. The Holocene, 2010,21(5):775-791. |
[16] | Houghton R A, Hackler J L . Sources and sinks of carbon from land-use change in China. Global Biogeochemical Cycles, 2003,17(2):1034. |
[17] |
Brovkin V, Sitch S, Wvon B , et al. Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years. Global Change Biology, 2004,10(8):1253-1266.
doi: 10.1111/gcb.2004.10.issue-8 |
[18] |
Kaplan J O, Krumhardt K M, Zimmermann N E . The effects of land use and climate change on the carbon cycle of Europe over the past 500 years. Global Change Biology, 2012,18(3):902-914.
doi: 10.1111/j.1365-2486.2011.02580.x |
[19] |
He F, Vavrus S J, Kutzbach J E , et al. Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change. Geophysical Research Letters, 2014,41(2):623-631.
doi: 10.1002/2013GL058085 |
[20] | Ge Q S, Dai J H, He F N , et al. Land use changes and their relations with carbon cycles over the past 300 a in China. Science in China (Series D), 2008,51(6):871-884. |
[21] | Li Beibei, Fang Xiuqi, Ye Yu , et al. Accuracy assessment of global historical cropland datasets based on regional reconstructed historical data: A case study in Northeast China. Science in China (Series D), 2010,40(8):1048-1059. |
[ 李蓓蓓, 方修琦, 叶瑜 , 等. 全球土地利用数据集精度的区域评估: 以中国东北地区为例. 中国科学(D辑), 2010,40(8):1048-1059.] | |
[22] | He Fanneng, Li Shicheng, Zhang Xuezhen , et al. Comparisons of reconstructed cropland area from multiple datasets for the traditional cultivated region of China in the last 300 years. Acta Geographica Sinica, 2012,67(9):1190-1200. |
[ 何凡能, 李士成, 张学珍 , 等. 中国传统农区过去300年耕地重建结果的对比分析. 地理学报, 2012,67(9):1190-1200.] | |
[23] |
Zhang X, He F, Li S . Reconstructed cropland in the mid-eleventh century in the traditional agricultural area of China: Implications of comparisons among datasets. Regional Environmental Change, 2013,13(5):969-977.
doi: 10.1007/s10113-012-0390-6 |
[24] | Ramankutty N, Foley J A, Hall F G , et al. ISLSCP II Historical Croplands Cover, 1700-1992. ORNL DAAC, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/966. 2010. |
[25] | Ramankutty N. Global Cropland and Pasture Data from 1700-2007. Available at: http://www.geog.mcgill.ca/nramankutty/Datasets/Datasets.html, 2012-06-01. |
[26] |
Mather A S, Fairbairn J, Needle C L . The course and drivers of the forest transition: The case of France. Journal of Rural Studies, 1999,15(1):65-90.
doi: 10.1016/S0743-0167(98)00023-0 |
[27] | Bradshaw R H W . Past anthropogenic influence on European forests and some possible genetic consequences. Forest Ecology & Management, 2004,197(1-3):203-212. |
[28] | He Fanneng, Ge Quansheng, Dai Junhu , et al. Quantitative analysis on forest dynamics of China in recent 300 years. Acta Geographica Sinica, 2007,62(1):30-40. |
[ 何凡能, 葛全胜, 戴君虎 , 等. 近300年来中国森林的变迁. 地理学报, 2007,62(1):30-40.] | |
[29] |
Ye Y, Fang X . Spatial pattern of land cover changes across Northeast China over the past 300 years. Journal of Historical Geography, 2011,37(4):408-417.
doi: 10.1016/j.jhg.2011.08.018 |
[30] |
Wang Xiulan, Bao Yuhai . Study on the methods of land use dynamic change research. Progress in Geography, 1999,18(1):81-87.
doi: 10.3969/j.issn.1007-6301.1999.01.012 |
[ 王秀兰, 包玉海 . 土地利用动态变化研究方法探讨. 地理科学进展, 1999,18(1):81-87.]
doi: 10.3969/j.issn.1007-6301.1999.01.012 |
|
[31] | Zhu Huiyi, Li Xiubin . Discussion on the index method of regional land use change. Acta Geographica Sinica, 2003,58(5):643-650. |
[ 朱会义, 李秀彬 . 关于区域土地利用变化指数模型方法的讨论. 地理学报, 2003,58(5):643-650.] |
[1] | 朱艳硕, 王铮, 程文露. 中国装备制造业的空间枢纽—网络结构[J]. 地理学报, 2019, 74(8): 1525-1533. |
[2] | 陈小强, 袁丽华, 沈石, 梁晓瑶, 王元慧, 王翔宇, 叶思菁, 程昌秀, 宋长青. 中国及其周边国家间地缘关系解析[J]. 地理学报, 2019, 74(8): 1534-1547. |
[3] | 高超,汪丽,陈财,罗纲,孙艳伟. 海平面上升风险中国大陆沿海地区人口与经济暴露度[J]. 地理学报, 2019, 74(8): 1590-1604. |
[4] | 郑景云,刘洋,吴茂炜,张学珍,郝志新. 中国中世纪气候异常期温度的多尺度变化特征及区域差异[J]. 地理学报, 2019, 74(7): 1281-1291. |
[5] | 周沂,贺灿飞. 中国城市出口产品演化[J]. 地理学报, 2019, 74(6): 1097-1111. |
[6] | 王少剑,黄永源. 中国城市碳排放强度的空间溢出效应及驱动因素[J]. 地理学报, 2019, 74(6): 1131-1148. |
[7] | 宋雪茜,邓伟,周鹏,张少尧,万将军,刘颖. 两层级公共医疗资源空间均衡性及其影响机制——以分级诊疗改革为背景[J]. 地理学报, 2019, 74(6): 1178-1189. |
[8] | 杨宇,李小云,董雯,洪辉,何则,金凤君,刘毅. 中国人地关系综合评价的理论模型与实证[J]. 地理学报, 2019, 74(6): 1063-1078. |
[9] | 马丹阳, 尹云鹤, 吴绍洪, 郑度. 中国干湿格局对未来高排放情景下气候变化响应的敏感性[J]. 地理学报, 2019, 74(5): 857-874. |
[10] | 程维明,周成虎,李炳元,申元村. 中国地貌区划理论与分区体系研究[J]. 地理学报, 2019, 74(5): 839-856. |
[11] | 刘俊,黄莉,孙晓倩,李宁馨,张恒锦. 气候变化对中国观鸟旅游的影响——基于鸟类物候变化的分析[J]. 地理学报, 2019, 74(5): 912-922. |
[12] | 赵鹏军,吕迪. 中国小城镇镇区土地利用结构特征[J]. 地理学报, 2019, 74(5): 1011-1024. |
[13] | 方创琳, 王振波, 刘海猛. 美丽中国建设的理论基础与评估方案探索[J]. 地理学报, 2019, 74(4): 619-632. |
[14] | 陈明星, 叶超, 陆大道, 隋昱文, 郭莎莎. 中国特色新型城镇化理论内涵的认知与建构[J]. 地理学报, 2019, 74(4): 633-647. |
[15] | 胡国建, 陈传明, 金星星, 王强. 中国城市体系网络化研究[J]. 地理学报, 2019, 74(4): 681-693. |
|