地理学报 ›› 2019, Vol. 74 ›› Issue (5): 857-874.doi: 10.11821/dlxb201905002
收稿日期:
2018-01-15
修回日期:
2018-11-25
出版日期:
2019-05-25
发布日期:
2019-05-24
通讯作者:
尹云鹤
作者简介:
马丹阳(1990-), 女, 河南濮阳人, 博士生, 研究方向为自然地理综合研究。E-mail: mady. <email>13s@igsnrr.ac.cn</email>
基金资助:
MA Danyang1,2,3,YIN Yunhe1(),WU Shaohong1,ZHENG Du1
Received:
2018-01-15
Revised:
2018-11-25
Online:
2019-05-25
Published:
2019-05-24
Contact:
YIN Yunhe
Supported by:
摘要:
气候变化影响下干湿状况的区域分异格局如何变化是一个重要科学问题。基于参与耦合模式比较计划第五阶段(CMIP5)的5个全球气候模式(GCM),预估了RCP 8.5情景下未来百年中国干湿区面积的变化趋势,分析了干湿格局变化的敏感地区以及对气候变化响应的敏感性。结果表明:未来干湿格局变化以湿润区显著减少、干湿过渡区显著扩张为主要特征,特别是半湿润区面积在远期(2070-2099年)相对基准期(1981-2010年)增加了28.69%。升温2 ℃~4 ℃条件下,全国发生干湿类型转变的面积从10.17%增加至13.72%,尤其在淮河流域南部,这里主要受未来潜在蒸散增加的影响,湿润区向南明显退缩从而转变为半湿润区。总体上,随着未来升温加剧,中国干湿格局对气候变化响应的敏感性将可能增强。
马丹阳, 尹云鹤, 吴绍洪, 郑度. 中国干湿格局对未来高排放情景下气候变化响应的敏感性[J]. 地理学报, 2019, 74(5): 857-874.
MA Danyang, YIN Yunhe, WU Shaohong, ZHENG Du. Sensitivity of arid/humid patterns in China to future climate change under high emission scenario[J]. Acta Geographica Sinica, 2019, 74(5): 857-874.
表1
本文中用到的全球气候模式"
模式名称 | 原始空间分辨率(纬度×经度) | 机构 | 国家 |
---|---|---|---|
NorESM1-M | 1.875°×2.5° | Norwegian Climate Centre | 挪威 |
MIROC-ESM-CHEM | 2.8°×2.8° | Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology | 日本 |
IPSL-CM5A-LR | 1.875°×3.75° | Institut Pierre-Simon Laplace | 法国 |
HadGEM2-ES | 1.25°×1.875° | Met Office Hadley Centre | 英国 |
GFDL-ESM2M | 2.0°×2.5° | Geophysical Fluid Dynamics Laboratory | 美国 |
表3
RCP 8.5情景下2040-2069年和2070-2099年中国干湿区的面积及其相对基准时段的变化(%)"
GCMs | 时段 | 湿润区 | 半湿润区 | 半干旱区 | 干旱区 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
面积 | 变化 | 面积 | 变化 | 面积 | 变化 | 面积 | 变化 | |||||
1981-2010 | 35.76 | 13.94 | 24.61 | 25.69 | ||||||||
NorESM1-M | 2040-2069 | 32.78 | -8.33 | 15.27 | 9.54 | 26.65 | 8.29 | 25.29 | -1.56 | |||
2070-2099 | 31.47 | -12 | 16.26 | 16.64 | 26.04 | 5.81 | 26.23 | 2.1 | ||||
MIROC-ESM-CHEM | 2040-2069 | 32.13 | -10.15 | 16.24 | 16.5 | 27.62 | 12.23 | 24.01 | -6.54 | |||
2070-2099 | 32.75 | -8.42 | 17.02 | 22.09 | 26.8 | 8.9 | 23.43 | -8.8 | ||||
IPSL-CM5A-LR | 2040-2069 | 35.37 | -1.09 | 16.35 | 17.29 | 22.33 | -9.26 | 25.95 | 1.01 | |||
2070-2099 | 30.18 | -15.6 | 18.87 | 35.37 | 23.14 | -5.97 | 27.81 | 8.25 | ||||
HadGEM2-ES | 2040-2069 | 34.45 | -3.66 | 17.15 | 23.03 | 21.67 | -11.95 | 26.74 | 4.09 | |||
2070-2099 | 33.97 | -5.01 | 18.71 | 34.22 | 21.54 | -12.47 | 25.78 | 0.35 | ||||
GFDL-ESM2M | 2040-2069 | 34.15 | -4.5 | 17.14 | 22.96 | 26.15 | 6.26 | 22.56 | -12.18 | |||
2070-2099 | 30.26 | -15.38 | 20.03 | 43.69 | 26.13 | 6.18 | 23.57 | -8.25 | ||||
多模式平均 | 2040-2069 | 33.64 | -5.93 | 16.21 | 16.28 | 24.95 | 1.38 | 25.19 | -1.95 | |||
2070-2099 | 31.25 | -12.61 | 17.94 | 28.69 | 24.98 | 1.5 | 25.83 | 0.54 |
表4
RCP 8.5情景下相对基准时段升温2 ℃和4 ℃时中国干湿区转变的面积"
GCMs | 2 °C | 4 °C | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
湿润 | 半湿润 | 半干旱 | 干旱 | 湿润 | 半湿润 | 半干旱 | 干旱 | |||
NorESM1-M | 扩张区 | 0.47 | 3.61 | 3.26 | 0.73 | 0.72 | 6.28 | 4.84 | 1.10 | |
收缩区 | 3.23 | 2.54 | 1.19 | 1.09 | 5.05 | 4.07 | 2.38 | 1.44 | ||
总变化 | 8.06 | 12.93 | ||||||||
MIROC-ESM-CHEM | 扩张区 | 0.87 | 8.05 | 4.24 | 0.13 | 1.64 | 8.33 | 4.92 | 0.54 | |
收缩区 | 6.61 | 2.84 | 1.68 | 2.17 | 6.15 | 4.06 | 2.64 | 2.57 | ||
总变化 | 13.29 | 15.42 | ||||||||
IPSL-CM5A-LR | 扩张区 | 1.59 | 3.75 | 2.25 | 2.55 | 3.17 | 7.00 | 2.63 | 1.61 | |
收缩区 | 2.50 | 2.89 | 3.85 | 0.90 | 2.95 | 3.63 | 5.74 | 2.10 | ||
总变化 | 10.13 | 14.41 | ||||||||
HadGEM2-ES | 扩张区 | 1.23 | 4.97 | 3.35 | 1.24 | 1.22 | 7.81 | 3.41 | 1.58 | |
收缩区 | 3.57 | 3.68 | 2.69 | 0.86 | 4.08 | 3.33 | 5.32 | 1.30 | ||
总变化 | 10.79 | 14.03 | ||||||||
GFDL-ESM2M | 扩张区 | 1.12 | 2.72 | 3.50 | 1.21 | 0.58 | 5.62 | 4.70 | 0.88 | |
收缩区 | 1.87 | 2.04 | 2.00 | 2.64 | 5.08 | 3.05 | 1.34 | 2.32 | ||
总变化 | 8.55 | 11.78 | ||||||||
多模式平均 | 扩张区 | 1.06 | 4.62 | 3.32 | 1.17 | 1.47 | 7.01 | 4.10 | 1.14 | |
收缩区 | 3.56 | 2.80 | 2.28 | 1.53 | 4.66 | 3.63 | 3.48 | 1.94 | ||
总变化 | 10.17 | 13.72 |
[1] | Zheng Du, Wu Shaohong, Yin Yunhe et al. Frontiers in terrestrial system research in China under global change. Acta Geographica Sinica, 2016,71(9):1475-1483. |
[ 郑度, 吴绍洪, 尹云鹤 , 等. 全球变化背景下中国自然地域系统研究前沿. 地理学报, 2016,71(9):1475-1483.] | |
[2] |
Grundstein A . Assessing climate change in the contiguous United States using a modified Thornthwaite climate classification scheme. Professional Geographer, 2008,60(3):398-412.
doi: 10.1080/00330120802046695 |
[3] | Bailey R G . Ecosystem Geography: From Ecoregions to Sites. 2nd ed. New York: Springer, 2009. |
[4] | IPCC. Summary for Policymakers. Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013: The Physical Science Basis. Cambridge, UK: Cambridge University Press, 2013. |
[5] |
Mahlstein I, Daniel J S, Solomon S . Pace of shifts in climate regions increases with global temperature. Nature Climate Change, 2013,3(8):739-743.
doi: 10.1038/nclimate1876 |
[6] |
Reid P C, Hari R E, Beaugrand G , et al. Global impacts of the 1980s regime shift. Global Change Biology, 2016,22(2):682-703.
doi: 10.1111/gcb.13106 |
[7] |
Huang J P, Ji M X, Xie Y K , et al. Global semi-arid climate change over last 60 years. Climate Dynamics, 2016,46(3-4):1131-1150.
doi: 10.1007/s00382-015-2636-8 |
[8] |
Chan D, Wu Q . Significant anthropogenic-induced changes of climate classes since 1950. Scientific Reports, 2015,5:13487.
doi: 10.1038/srep13487 |
[9] |
Gerstengarbe F W, Werner P C . A short update on Koeppen climate shifts in Europe between 1901 and 2003. Climatic Change, 2009,92(1/2):99-107.
doi: 10.1007/s10584-008-9430-0 |
[10] |
Feng S, Ho C-H, Hu Q , et al. Evaluating observed and projected future climate changes for the Arctic using the Köppen-Trewartha climate classification. Climate Dynamics, 2012,38(7/8):1359-1373.
doi: 10.1007/s00382-011-1020-6 |
[11] | Zhu Gengrui, Li Yu . Types and changes of Chinese climate zones from 1961 to 2013 based on Köppen climate classification. Arid Land Geography, 2015,38(6):1121-1132. |
[ 朱耿睿, 李育 . 基于柯本气候分类的1961-2013年我国气候区类型及变化. 干旱区地理, 2015,38(6):1121-1132.] | |
[12] | Yang Jianping, Ding Yongjian, Chen Rensheng , et al. The interdecadal fluctuation of dry and wet climate boundaries in China in recent 50 years. Acta Geographica Sinica, 2002,57(6):655-661. |
[ 杨建平, 丁永建, 陈仁升 , 等. 近50年来中国干湿气候界线的10年际波动. 地理学报, 2002,57(6):655-661.] | |
[13] |
Ma Zhuguo, Fu Congbin . Decadal variations of arid and semi-arid boundary in China. Chinese Journal of Geophysics, 2005,48(3):519-525.
doi: 10.3321/j.issn:0001-5733.2005.03.008 |
[ 马柱国, 符淙斌 . 中国干旱和半干旱带的10年际演变特征. 地球物理学报, 2005,48(3):519-525.]
doi: 10.3321/j.issn:0001-5733.2005.03.008 |
|
[14] |
Zheng Jingyun, Bian Juanjuan, Ge Quansheng , et al. The climate regionalization in China for 1981-2010. Chinese Science Bulletin, 2013,58(30):3088-3099.
doi: 10.1360/972012-1491 |
[ 郑景云, 卞娟娟, 葛全胜 , 等. 1981-2010年中国气候区划. 科学通报, 2013,58(30):3088-3099.]
doi: 10.1360/972012-1491 |
|
[15] |
Lohmann U, Sausen R, Bengtsson L , et al. The Köppen climate classification as a diagnostic tool for general circulation models. Climate Research, 1993,3(3):177-193.
doi: 10.3354/cr003177 |
[16] | Gnanadesikan A, Stouffer R J . Diagnosing atmosphere-ocean general circulation model errors relevant to the terrestrial biosphere using the Köppen climate classification. Geophysical Research Letters, 2006,33(22):2832-2849. |
[17] |
Elguindi N, Grundstein A, Bernardes S , et al. Assessment of CMIP5 global model simulations and climate change projections for the 21st century using a modified Thornthwaite climate classification. Climatic Change, 2014,122(4):523-538.
doi: 10.1007/s10584-013-1020-0 |
[18] |
Zhang X L, Yan X D . Deficiencies in the simulation of the geographic distribution of climate types by global climate models. Climate Dynamics, 2016,46(9/10):2749-2757.
doi: 10.1007/s00382-015-2727-6 |
[19] |
Belda M, Holtanova E, Halenka T , et al. Evaluation of CMIP5 present climate simulations using the Kӧppen-Trewartha climate classification. Climate Research, 2015,64(3):201-212.
doi: 10.3354/cr01316 |
[20] |
Dai A G . Increasing drought under global warming in observations and models. Nature Climate Change, 2013,3(1):52-58.
doi: 10.1038/nclimate1633 |
[21] |
Trenberth K E, Dai A G, van der Schrier G , et al. Global warming and changes in drought. Nature Climate Change, 2014,4(1):17-22.
doi: 10.1038/nclimate2067 |
[22] |
Greve P, Seneviratne S I . Assessment of future changes in water availability and aridity. Geophysical Research Letters, 2015,42(13):5493-5499.
doi: 10.1002/2015GL064127 |
[23] |
Yin Y H, Ma D Y, Wu S H , et al. Projections of aridity and its regional variability over China in the mid-21st century. International Journal of Climatology, 2015,35(14):4387-4398.
doi: 10.1002/joc.4295 |
[24] |
Feng S, Hu Q, Huang W , et al. Projected climate regime shift under future global warming from multi-model, multi-scenario CMIP5 simulations. Global and Planetary Change, 2014,112:41-52.
doi: 10.1016/j.gloplacha.2013.11.002 |
[25] |
Hanf F, Korper J, Spangehl T , et al. Shifts of climate zones in multi-model climate change experiments using the Köppen climate classification. Meteorologische Zeitschrift, 2012,21(2):111-123.
doi: 10.1127/0941-2948/2012/0344 |
[26] |
Rohli R V, Joyner T A, Reynolds S J , et al. Globally extended Kӧppen-Geiger climate classification and temporal shifts in terrestrial climatic types. Physical Geography, 2015,36(2):142-157.
doi: 10.1080/02723646.2015.1016382 |
[27] |
Sylla M B, Elguindi N, Giorgi F , et al. Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century. Climatic Change, 2016,134(1/2):241-253.
doi: 10.1007/s10584-015-1522-z |
[28] | Alessandri A, De Felice M, Zeng N , et al. Robust assessment of the expansion and retreat of Mediterranean climate in the 21st century. Scientific Reports, 2014,4:7211. |
[29] |
Gao X J, Giorgi F . Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Global and Planetary Change, 2008,62(3/4):195-209.
doi: 10.1016/j.gloplacha.2008.02.002 |
[30] | Li Mingxing, Ma Zhuguo . Soil moisture-based study of the variability of dry-wet climate and climate zones in China. Chinese Science Bulletin, 2012,57(28/29):2740-2754. |
[ 李明星, 马柱国 . 中国气候干湿变化及气候带边界演变: 以集成土壤湿度为指标. 科学通报, 2012,57(28/29):2740-2754.] | |
[31] |
Cheng Zhigang, Zhang Yuanmeng, Xu Ying . Projection of climate zone shifts in the 21st century in China based on CMIP5 models data. Advances in Climate Change Research, 2015,11(2):93-101.
doi: 10.3969/j.issn.1673-1719.2015.02.003 |
[ 程志刚, 张渊萌, 徐影 . 基于CMIP5模式集合预估21世纪中国气候带变迁趋势. 气候变化研究进展, 2015,11(2):93-101.]
doi: 10.3969/j.issn.1673-1719.2015.02.003 |
|
[32] | Ci Longjun, Yang Xiaohui, Chen Zhongxin . The potential impacts of climate change scenarios on desertification in China. Earth Science Frontiers, 2002,9(2):287-294. |
[ 慈龙骏, 杨晓晖, 陈仲新 . 未来气候变化对中国荒漠化的潜在影响. 地学前缘, 2002,9(2):287-294.] | |
[33] | Zhao Tianbao, Chen Liang, Ma Zhuguo . Simulation of historical and projected climate change in arid and semiarid areas by CMIP5 models. Chinese Science Bulletin, 2014,59(12):1148-1163. |
[ 赵天保, 陈亮, 马柱国 . CMIP5多模式对全球典型干旱半干旱区气候变化的模拟与预估. 科学通报, 2014,59(12):1148-1163.] | |
[34] | Hempel S, Frieler K, Warszawski L , et al. A trend-preserving bias correction: The ISI-MIP approach. Earth System Dynamics, 2013,4(2):219-236. |
[35] | Warszawski L, Frieler K, Huber V , et al. The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): Project framework. Proceedings of the National Academy of Sciences of the United States America, 2013,111(9):3228-3232. |
[36] |
Taylor K E, Stouffer R J, Meehl G A . An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 2012,93(4):485-498.
doi: 10.1175/BAMS-D-11-00094.1 |
[37] |
Moss R H, Edmonds J A, Hibbard K A , et al. The next generation of scenarios for climate change research and assessment. Nature, 2010,463(7282):747-756.
doi: 10.1038/nature08823 |
[38] |
Piontek F, Müller C, Pugh T A , et al. Multisectoral climate impact hotspots in a warming world. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(9):3233-3238.
doi: 10.1073/pnas.1222471110 |
[39] |
Leng G, Tang Q, Rayburg S . Climate change impacts on meteorological, agricultural and hydrological droughts in China. Global and Planetary Change, 2015,126:23-34.
doi: 10.1016/j.gloplacha.2015.01.003 |
[40] |
Engelbrecht C J, Engelbrecht F A . Shifts in Köppen-Geiger climate zones over southern Africa in relation to key global temperature goals. Theoretical and Applied Climatology, 2016,123(1/2):247-261.
doi: 10.1007/s00704-014-1354-1 |
[41] |
Yin Y H, Wu S H, Zhao D S . Past and future spatiotemporal changes in evapotranspiration and effective moisture on the Tibetan Plateau. Journal of Geophysical Research-Atmospheres, 2013,118(19):10850-10860.
doi: 10.1002/jgrd.50858 |
[42] |
Schleussner C F, Lissner T K, Fischer E M , et al. Differential climate impacts for policy-relevant limits to global warming: The case of 1.5 ℃ and 2 ℃. Earth System Dynamics, 2016,7(2):327-351.
doi: 10.5194/esd-7-327-2016 |
[43] |
Vautard R, Gobiet A, Sobolowski S , et al. The European climate under a 2 ℃ global warming. Environmental Research Letters, 2014,9:034006.
doi: 10.1088/1748-9326/9/3/034006 |
[44] |
Roudier P, Andersson J C M, Donnelly C , et al. Projections of future floods and hydrological droughts in Europe under a +2 ℃ global warming. Climatic Change, 2016,135(2):341-355.
doi: 10.1007/s10584-015-1570-4 |
[45] |
Swain S, Hayhoe K . CMIP5 projected changes in spring and summer drought and wet conditions over North America. Climate Dynamics, 2015,44(9):2737-2750.
doi: 10.1007/s00382-014-2255-9 |
[46] |
Joshi M, Hawkins E, Sutton R , et al. Projections of when temperature change will exceed 2 ℃ above pre-industrial levels. Nature Climate Change, 2011,1(8):407-412.
doi: 10.1038/nclimate1261 |
[47] |
Chen H P, Sun J Q . Changes in climate extreme events in China associated with warming. International Journal of Climatology, 2015,35(10):2735-2751.
doi: 10.1002/joc.2015.35.issue-10 |
[48] |
Pierce D W, Barnett T P, Santer B D , et al. Selecting global climate models for regional climate change studies. Proceedings of the National Academy of Sciences of the United States America, 2009,106(21):8441-8446.
doi: 10.1073/pnas.0900094106 |
[49] |
Knutti R, Furrer R, Tebaldi C , et al. Challenges in combining projections from multiple climate models. Journal of Climate, 2010,23(10):2739-2758.
doi: 10.1175/2009JCLI3361.1 |
[50] |
Chan D, Wu Q G, Jiang G X , et al. Projected shifts in Köppen climate zones over China and their temporal evolution in CMIP5 multi-model simulations. Advances in Atmospheric Sciences, 2016,33(3):283-293.
doi: 10.1007/s00376-015-5077-8 |
[51] |
Crosbie R S, Pollock D W, Mpelasoka F S , et al. Changes in Köppen-Geiger climate types under a future climate for Australia: Hydrological implications. Hydrology Earth System Sciences, 2012,16(9):3341-3349.
doi: 10.5194/hess-16-3341-2012 |
[52] |
Cook B I, Smerdon J E, Seager R , et al. Global warming and 21st century drying. Climate Dynamics, 2014,43(9):2607-2627.
doi: 10.1007/s00382-014-2075-y |
[53] |
Mcevoy D J, Huntington J L, Mejia J F , et al. Improved seasonal drought forecasts using reference evapotranspiration anomalies. Geophysical Research Letters, 2016,43(1):377-385.
doi: 10.1002/2015GL067009 |
[54] |
Huang J, Yu H, Guan X , et al. Accelerated dryland expansion under climate change. Nature Climate Change, 2016,6(2):166-171.
doi: 10.1038/nclimate2837 |
[55] | Budyko M I. Climate and Life. New York: Academic Press, 1974. |
[56] |
Wu S H, Yin Y H, Zheng D , et al. Moisture conditions and climate trends in China during the period 1971-2000. International Journal of Climatology, 2006,26(2):193-206.
doi: 10.1002/(ISSN)1097-0088 |
[57] | Allen R G, Pereira L S, Raes D , et al. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56. Rome: United Nations Food and Agriculture Organization, 1998. |
[58] |
Sherwood S, Fu Q . A drier future? Science, 2014,343(6172):737-739.
doi: 10.1126/science.1247620 |
[59] |
Yin Y H, Wu S H, Zheng D , et al. Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China. Agricultural Water Management, 2008,95(1):77-84.
doi: 10.1016/j.agwat.2007.09.002 |
[60] | Moral F J, Paniagua L L, Rebollo F J , et al. Spatial analysis of the annual and seasonal aridity trends in Extremadura, southwestern Spain. Theoretical and Applied Climatology, 2016: 1-16. |
[61] |
Wu S, Yin Y, Zheng D , et al. Aridity/humidity status of land surface in China during the last three decades. Science in China Series D: Earth Sciences, 2005,48(9):1510-1518.
doi: 10.1360/04yd0009 |
[62] |
Wang L, Chen W, Huang G , et al. Changes of the transitional climate zone in East Asia: Past and future. Climate Dynamics, 2017,49:1463-1477.
doi: 10.1007/s00382-016-3400-4 |
[63] | Fu R . Global warming-accelerated drying in the tropics. Proceedings of the National Academy of Sciences of the United States of America, 2015,112(12):3593-3594. |
[64] |
Zeng N, Yoon J . Expansion of the world's deserts due to vegetation-albedo feedback under global warming. Geophysical Research Letters, 2009,36:L17401.
doi: 10.1029/2009GL039699 |
[65] |
Wang L, Chen W . A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China. International Journal of Climatology, 2014,34(6):2059-2078.
doi: 10.1002/joc.2014.34.issue-6 |
[66] |
Schlaepfer D R, Bradford J B, Lauenroth W K , et al. Climate change reduces extent of temperate drylands and intensifies drought in deep soils. Nature Communications, 2017,8:14196.
doi: 10.1038/ncomms14196 |
[67] |
Qian W, Ding T, Hu H , et al. An overview of dry-wet climate variability among monsoon-westerly regions and the monsoon northernmost marginal active zone in China. Advances in Atmospheric Sciences, 2009,26(4):630-641.
doi: 10.1007/s00376-009-8213-5 |
[68] | Fu C . Transitional Climate Zones and Biome Boundaries: A Case Study from China . New York, NY: Springer, 1992. |
[69] | Shi Zhengtao . Regional characters of natural disaster in margional monsoon belt of China. Journal of Arid Land Resources and Environment, 1996,10(4):1-7. |
[ 史正涛 . 中国季风边缘自然灾害的区域特征. 干旱区资源与环境, 1996,10(4):1-7.] | |
[70] | Jiang Jiang, Jiang Dabang, Lin Yihua . Changes and projection of dry/wet areas over China. Chinese Journal of Atmospheric Sciences, 2017,41(1):43-56. |
[ 姜江, 姜大膀, 林一骅 . 中国干湿区变化与预估. 大气科学, 2017,41(1):43-56.] | |
[71] |
Belda M, Holtanová E, Kalvová J , et al. Global warming induced changes of climate zones based on CMIP5 projections. Climate Research, 2016,71(1):17-31.
doi: 10.3354/cr01418 |
[1] | 古恒宇, 沈体雁. 中国高学历人才的空间演化特征及驱动因素[J]. 地理学报, 2021, 76(2): 326-340. |
[2] | 朱晟君, 金文纨. 地方出口产品结构及制度环境与企业出口相关多样化[J]. 地理学报, 2021, 76(2): 398-414. |
[3] | 李钢, 薛淑艳, 马雪瑶, 周俊俊, 徐婷婷, 王皎贝. 中国失踪人口的时空格局演变与形成机制[J]. 地理学报, 2021, 76(2): 310-325. |
[4] | 葛全胜, 朱会义. 两千年来中国自然与人文地理环境变迁及启示[J]. 地理学报, 2021, 76(1): 3-14. |
[5] | 张兴航, 张百平, 王晶, 余付勤, 赵超, 姚永慧. 中国南北过渡带东段样带植被序列与气候分界问题[J]. 地理学报, 2021, 76(1): 30-43. |
[6] | 黄海, 田尤, 刘建康, 张佳佳, 杨东旭, 杨顺. 藏东地区斜坡土壤冻融侵蚀力学机制及敏感性分析[J]. 地理学报, 2021, 76(1): 87-100. |
[7] | 齐贵增, 白红英, 赵婷, 孟清, 张善红. 秦岭陕西段南北坡植被对干湿变化响应敏感性及空间差异[J]. 地理学报, 2021, 76(1): 44-56. |
[8] | 李哲, 丁永建, 陈艾姣, 张智华, 张世强. 1960—2019年西北地区气候变化中的Hiatus现象及特征[J]. 地理学报, 2020, 75(9): 1845-1859. |
[9] | 郭泽呈, 魏伟, 石培基, 周亮, 王旭峰, 李振亚, 庞素菲, 颉斌斌. 中国西北干旱区土地沙漠化敏感性时空格局[J]. 地理学报, 2020, 75(9): 1948-1965. |
[10] | 敖荣军, 常亮. 基于结构方程模型的中国县域人口老龄化影响机制[J]. 地理学报, 2020, 75(8): 1572-1584. |
[11] | 宋周莺, 祝巧玲. 中国边境地区的城镇化格局及其驱动力[J]. 地理学报, 2020, 75(8): 1603-1616. |
[12] | 马春玥, 买买提·沙吾提, 姚杰, 古丽努尔·依沙克. 1950—2015年中国棉花生产时空动态变化[J]. 地理学报, 2020, 75(8): 1699-1710. |
[13] | 郑景云, 张学珍, 刘洋, 郝志新. 过去千年中国不同区域干湿的多尺度变化特征评估[J]. 地理学报, 2020, 75(7): 1432-1450. |
[14] | 陶泽兴, 葛全胜, 王焕炯. 1963—2018年中国垂柳和榆树开花始期积温需求的时空变化[J]. 地理学报, 2020, 75(7): 1451-1464. |
[15] | 瞿诗进, 胡守庚, 李全峰. 中国城市建设用地转型阶段及其空间格局[J]. 地理学报, 2020, 75(7): 1539-1553. |