地理学报 ›› 2019, Vol. 74 ›› Issue (3): 520-533.doi: 10.11821/dlxb201903009
所属专题: 气候变化与地表过程
范科科1,2,3(), 张强1,2,3(
), 孙鹏4, 宋长青1,2,3, 朱秀迪1,2,3, 余慧倩1,2,3, 申泽西1,2,3
收稿日期:
2017-08-31
修回日期:
2018-12-08
出版日期:
2019-03-25
发布日期:
2019-03-19
作者简介:
范科科(1995-), 男, 河南驻马店人, 博士研究生, 主要从事生态水文和遥感水文等方面的研究。E-mail:
基金资助:
Keke FAN1,2,3(), Qiang ZHANG1,2,3(
), Peng SUN4, Changqing SONG3, Xiudi ZHU1,2,3, Huiqian YU1,2,3, Zexi SHEN1,2,3
Received:
2017-08-31
Revised:
2018-12-08
Published:
2019-03-25
Online:
2019-03-19
Supported by:
摘要:
土壤水分是地表和大气连接的纽带,在水文循环中扮演着重要角色。青藏高原作为“第三极”和“亚洲水塔”,其土壤水分对周边地区的气候如亚洲季风的形成和维持产生重要影响,也深刻影响着亚洲水资源的可利用量。基于分布在青藏高原3个气候区的100个站点的实测土壤水数据,对ECV、ERA、MERRA、Noah数据集进行评价,选择对土壤水分评估效果最好的数据集,分析各种气象要素对土壤水分时空格局的影响,并预估未来100年内青藏高原土壤水变化,探讨可能气候成因。结果表明:① Noah数据集对青藏高原历史时期土壤水分评估效果最好,相对其他地区,各数据集对那曲地区土壤水分评估效果最优;② 在各种气象因子中,降水是影响大部分地区土壤水分时空变化的最主要因子,但在喜马拉雅山脉地带,尤其山脉北坡,温度和太阳辐射有较高的影响;③ 1948-1970年土壤水分有明显的下降趋势,1970-1990年土壤水分呈波动变化,无明显趋势,1990-2005年土壤水分有一定的上升趋势,2005年后至今土壤水分有明显快速下降趋势:④ 不同未来情景,土壤水分有下降趋势,其中在CRP 8.5情景下,土壤水分下降最为明显,在2080年之后有更加显著的下降趋势;⑤ 未来降水和温度均呈上升趋势,其中干旱指数变化在RCP 8.5情景下呈下降趋势,在RCP 2.6和RCP 4.5情景下无明显变化,干旱指数在一定程度上能解释未来土壤水分的变化格局。
范科科, 张强, 孙鹏, 宋长青, 朱秀迪, 余慧倩, 申泽西. 青藏高原地表土壤水变化、影响因子及未来预估[J]. 地理学报, 2019, 74(3): 520-533.
Keke FAN, Qiang ZHANG, Peng SUN, Changqing SONG, Xiudi ZHU, Huiqian YU, Zexi SHEN. Variation, causes and future estimation of surface soil moisture on the Tibetan Plateau[J]. Acta Geographica Sinica, 2019, 74(3): 520-533.
表1
遥感和同化土壤水分数据和气象数据信息
数据集 | 时间 | 空间范围 | 空间分辨率(lon×lat) |
---|---|---|---|
ECV | 1979-2014 | 全球 | 0.25°×0.25° |
MERRA | 1980-present | 全球 | 0.625°×0.5° |
ERA-Interm | 1979-2016 | 全球 | 0.25°×0.25° |
Noah_2.0(GLDAS) | 1948-2010 | 准全球 | 0.25°×0.25° |
Noah_2.1(GLDAS) | 2000- | 准全球 | 0.25°×0.25° |
降水 | 1979-2016 | 中国 | 0.1°×0.1° |
温度 | 1979-2016 | 中国 | 0.1°×0.1° |
风速 | 1979-2016 | 中国 | 0.1°×0.1° |
太阳辐射(SDSR) | 1979-2016 | 中国 | 0.1°×0.1° |
[1] |
Albergel C, Dorigo W, Reichle R H, et al.Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing. Journal of Hydrometeorology, 2013, 14(4): 1259-1277.
doi: 10.1175/JHM-D-12-0161.1 |
[2] |
Wanders N, Bierkens M F P, de Jong S M, et al. The benefits of using remotely sensed soil moisture in parameter identification of large-scale hydrological models. Water Resources Research, 2014, 50(8): 6874-6891.
doi: 10.1002/wrcr.v50.8 |
[3] |
Crowther T W, Todd-Brown K E O, Rowe C W, et al. Quantifying global soil carbon losses in response to warming. Nature, 2016, 540(7631): 104-108.
doi: 10.1038/nature20150 pmid: 27905442 |
[4] |
Zeng J, Li Z, Chen Q, et al.Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations. Remote Sensing of Environment, 2015, 163: 91-110.
doi: 10.1016/j.rse.2015.03.008 |
[5] |
Guo Weidong, Ma Zhuguo, Yao Yonghong.Regional characteristics of soil moisture evolution in northern China over recent 50 years. Acta Geographica Sinica, 2003, 58(Suppl.1): 83-90.
doi: 10.3321/j.issn:0375-5444.2003.z1.010 |
[郭维栋, 马柱国, 姚永红. 近50年中国北方土壤水分的区域演变特征. 地理学报, 2003, 58(Suppl.1): 83-90.]
doi: 10.3321/j.issn:0375-5444.2003.z1.010 |
|
[6] |
Fan Keke, Zhang Qiang, Shi Peijun, et al.Evaluation of remote sensing and reanalysis soil moisture products on the Tibetan Plateau. Acta Geographica Sinica, 2018, 73(9): 1778-1791.
doi: 10.11821/dlxb201809013 |
[范科科, 张强, 史培军, 等. 基于卫星遥感和再分析数据的青藏高原土壤湿度数据评估. 地理学报, 2018, 73(9): 1778-1791.]
doi: 10.11821/dlxb201809013 |
|
[7] |
Shukla J, Mintz Y.Influence of land-surface evapotranspiration on the earth's climate. Science, 1982, 215(4539): 1498-1501.
doi: 10.1126/science.215.4539.1498 pmid: 17788673 |
[8] |
Wang C, Dong W, Wei Z.Anomaly feature of seasonal frozen soil variations on the Qinghai-Tibet Plateau. Journal of Geographical Sciences, 2002, 12(1): 99-107.
doi: 10.1007/BF02837433 |
[9] | Nicolai-Shaw N.Climate Research Applications of Remote-sensing Based Soil Moisture: Spatial Representativeness, Predictability and Drought Response. Zurich: ETH Zurich, 2016. |
[10] |
Koster R D, Schubert S D, Suarez M J.Analyzing the concurrence of meteorological droughts and warm periods, with implications for the determination of evaporative regime. Journal of Climate, 2009, 22(12): 3331-3341.
doi: 10.1175/2008JCLI2718.1 |
[11] |
Jaeger E B, Seneviratne S I.Impact of soil moisture-atmosphere coupling on European climate extremes and trends in a regional climate model. Climate Dynamics, 2011, 36(9/10): 1919-1939.
doi: 10.1007/s00382-010-0780-8 |
[12] |
Seneviratne S I, Wilhelm M, Stanelle T, et al.Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Geophysical Research Letters, 2013, 40(19): 5212-5217.
doi: 10.1002/grl.50956 |
[13] |
Hirschi M, Mueller B, Dorigo W, et al.Using remotely sensed soil moisture for land-atmosphere coupling diagnostics: The role of surface vs. root-zone soil moisture variability. Remote Sensing of Environment, 2014, 154: 246-252.
doi: 10.1016/j.rse.2014.08.030 |
[14] |
Whan K, Zscheischler J, Orth R, et al.Impact of soil moisture on extreme maximum temperatures in Europe. Weather and Climate Extremes, 2015, 9: 57-67.
doi: 10.1016/j.wace.2015.05.001 |
[15] |
Taylor C M, de Jeu R A M, Guichard F, et al. Afternoon rain more likely over drier soils. Nature, 2012, 489(7416): 423.
doi: 10.1038/nature11377 pmid: 22972193 |
[16] |
Guillod B P, Orlowsky B, Miralles D G, et al.Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nature Communications, 2015, 6: 6443.
doi: 10.1038/ncomms7443 pmid: 25740589 |
[17] |
Ahlström A, Raupach M R, Schurgers G, et al.The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science, 2015, 348(6237): 895-899.
doi: 10.1126/science.aaa1668 pmid: 25999504 |
[18] |
Miralles D G, Teuling A J, Van Heerwaarden C C, et al. Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nature Geoscience, 2014, 7(5): 345.
doi: 10.1038/ngeo2141 |
[19] |
Hauser M, Orth R, Seneviratne S I.Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia. Geophysical Research Letters, 2016, 43(6): 2819-2826.
doi: 10.1002/2016GL068036 |
[20] |
Chen Y, Yang K, Qin J, et al.Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 2013, 118(10): 4466-4475.
doi: 10.1002/jgrd.50295 |
[21] |
Zhang L, Su F, Yang D, et al.Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 2013, 118(15): 8500-8518.
doi: 10.1002/jgrd.50665 |
[22] |
Ye Qingyu, Chai Linna, Jiang Lingmei, et al.A disaggregation approach for soil phase transition water content using AMSR2 and MODIS products. Journal of Remote Sensing, 2014, 18(6): 1147-1157.
doi: 10.11834/jrs.20144093 |
[叶勤玉, 柴琳娜, 蒋玲梅, 等. 利用AMSR2 和 MODIS 数据的土壤冻融相变水量降尺度方法. 遥感学报, 2014, 18(6): 1147-1157.]
doi: 10.11834/jrs.20144093 |
|
[23] |
Zhang Y, Li T, Wang B.Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian summer monsoon. Journal of Climate, 2004, 17(14): 2780-2793.
doi: 10.1175/1520-0442(2004)017<2780:DCOTSS>2.0.CO;2 |
[24] |
Ding Y, Sun Y, Wang Z, et al.Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: Possible causes. International Journal of Climatology, 2009, 29(13): 1926-1944.
doi: 10.1002/joc.1615 |
[25] | Zhu Liping, Xie Manping, Wu Yanhong.Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co Basin of the Tibetan Plateau. Chinese Science Bulletin, 2010, 55(18): 1789-1798. |
[朱立平, 谢曼平, 吴艳红. 西藏纳木错1971-2004年湖泊面积变化及其原因的定量分析. 科学通报, 2010, 55(18): 1789-1798.] | |
[26] |
Nie Yong, Zhang Yili, Liu Linshan, et al.Monitoring glacier change based on remote sensing in the Mt. Qomolangma national nature preserve, 1976-2006. Acta Geographica Sinica, 2010, 65(1): 13-28.
doi: 10.11821/xb201001003 |
[聂勇, 张镱锂, 刘林山, 等. 近30年珠穆朗玛峰国家自然保护区冰川变化的遥感监测. 地理学报, 2010, 65(1): 13-28.]
doi: 10.11821/xb201001003 |
|
[27] |
Subin Z M, Koven C D, Riley W J, et al.Effects of soil moisture on the responses of soil temperatures to climate change in cold regions. Journal of Climate, 2013, 26(10): 3139-3158.
doi: 10.1175/JCLI-D-12-00305.1 |
[28] |
Chen Y, Yang K, Qin J, et al.Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 2013, 118(10): 4466-4475.
doi: 10.1002/jgrd.50295 |
[29] |
Su Z, Wen J, Dente L, et al.The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrology and Earth System Sciences, 2011, 15(7): 2303-2316.
doi: 10.5194/hess-15-2303-2011 |
[30] |
Su Z, Rosnay P, Wen J, et al.Evaluation of ECMWF's soil moisture analyses using observations on the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 2013, 118(11): 5304-5318.
doi: 10.1002/jgrd.50468 |
[31] |
Zeng J, Li Z, Chen Q, et al.Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations. Remote Sensing of Environment, 2015, 163: 91-110.
doi: 10.1016/j.rse.2015.03.008 |
[32] |
Bi H, Ma J, Zheng W, et al.Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 2016, 121(6): 2658-2678.
doi: 10.1002/2015JD024131 |
[33] |
Chakravorty A, Chahar B R, Sharma O P, et al.A regional scale performance evaluation of SMOS and ESA-CCI soil moisture products over India with simulated soil moisture from MERRA-Land. Remote Sensing of Environment, 2016, 186: 514-527.
doi: 10.1016/j.rse.2016.09.011 |
[34] |
Yang K, He J, Tang W, et al.On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agricultural and Forest Meteorology, 2010, 150(1): 38-46.
doi: 10.1016/j.agrformet.2009.08.004 |
[35] | Durbin J, Koopman S J.Time Series Analysis by State Space Methods. Oxford: Oxford University Press, 2012. |
[36] | Sakamoto Y, Ishiguro M, Kitagawa G.Akaike Information Criterion Statistics. Dordrecht, The Netherlands: D. Reidel, 1986: 81. |
[37] |
Tao S, Fang J, Zhao X, et al.Rapid loss of lakes on the Mongolian Plateau. Proceedings of the National Academy of Sciences, 2015, 112(7): 2281-2286.
doi: 10.1073/pnas.1411748112 pmid: 25646423 |
[38] | Nakagawa S, Schielzeth H.A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology & Evolution, 2013, 4(2): 133-142. |
[39] |
Zhang Q, Xu C Y, Chen Y D, et al.Abrupt behaviors of the streamflow of the Pearl River Basin and implications for hydrological alterations across the Pearl River Delta, China. Journal of Hydrology, 2009, 377(3/4): 274-283.
doi: 10.1016/j.jhydrol.2009.08.026 |
[40] | Hipel K W, McLeod A I. Time Series Modelling of Water Resources and Environmental Systems. Elsevier, 1994. |
[41] |
McMahon T A, Peel M C, Lowe L, et al. Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis. Hydrology and Earth System Sciences, 2013, 17(4): 1331.
doi: 10.5194/hess-17-1331-2013 |
[42] |
Albergel C, Dorigo W, Reichle R H, et al.Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing. Journal of Hydrometeorology, 2013, 14(4): 1259-1277.
doi: 10.1175/JHM-D-12-0161.1 |
[43] |
Cheng S, Guan X, Huang J, et al.Long-term trend and variability of soil moisture over East Asia. Journal of Geophysical Research: Atmospheres, 2015, 120(17): 8658-8670.
doi: 10.1002/2015JD023206 |
[44] |
Fu Q, Feng S.Responses of terrestrial aridity to global warming. Journal of Geophysical Research: Atmospheres, 2014, 119(13): 7863-7875.
doi: 10.1002/2014JD021608 |
[1] | 侯光良, 兰措卓玛, 朱燕, 庞龙辉. 青藏高原史前时期交流路线及其演变[J]. 地理学报, 2021, 76(5): 1294-1313. |
[2] | 黄海, 田尤, 刘建康, 张佳佳, 杨东旭, 杨顺. 藏东地区斜坡土壤冻融侵蚀力学机制及敏感性分析[J]. 地理学报, 2021, 76(1): 87-100. |
[3] | 封志明, 李文君, 李鹏, 肖池伟. 青藏高原地形起伏度及其地理意义[J]. 地理学报, 2020, 75(7): 1359-1372. |
[4] | 孙思奥, 王晶, 戚伟. 青藏高原地区城乡虚拟水贸易格局与影响因素[J]. 地理学报, 2020, 75(7): 1346-1358. |
[5] | 梁馨月, 徐梦珍, 吕立群, 崔一飞, 张风宝. 基于地貌特征的青藏高原边缘泥石流沟分类[J]. 地理学报, 2020, 75(7): 1373-1385. |
[6] | 冯雨雪, 李广东. 青藏高原城镇化与生态环境交互影响关系分析[J]. 地理学报, 2020, 75(7): 1386-1405. |
[7] | 许珺, 徐阳, 胡蕾, 王振波. 基于位置大数据的青藏高原人类活动时空模式[J]. 地理学报, 2020, 75(7): 1406-1417. |
[8] | 王楠, 王会蒙, 杜云艳, 易嘉伟, 刘张, 涂文娜. 青藏高原人口流入流出时空模式研究[J]. 地理学报, 2020, 75(7): 1418-1431. |
[9] | 戚伟, 刘盛和, 周亮. 青藏高原人口地域分异规律及“胡焕庸线”思想应用[J]. 地理学报, 2020, 75(2): 255-267. |
[10] | 高星, 康世昌, 刘青松, 陈鹏飞, 段宗奇. 1899—2011年青藏高原南部枪勇错沉积物磁性矿物的环境意义[J]. 地理学报, 2020, 75(1): 68-81. |
[11] | 范科科, 张强, 孙鹏, 宋长青, 余慧倩, 朱秀迪, 申泽西. 青藏高原土壤水分变化对近地面气温的影响[J]. 地理学报, 2020, 75(1): 82-97. |
[12] | 郭超,蒙红卫,马玉贞,李丹丹,胡彩莉,刘杰瑞,雒聪文,王凯. 藏南羊卓雍错沉积物元素地球化学记录的过去2000年环境变化[J]. 地理学报, 2019, 74(7): 1345-1362. |
[13] | 高兴川,曹小曙,李涛,吕敏娟. 1976-2016年青藏高原地区通达性空间格局演变[J]. 地理学报, 2019, 74(6): 1190-1204. |
[14] | 田原,余成群,查欣洁,高星,于明寨. 青藏高原西部、南部和东北部边界地区天然水的水化学性质及其成因[J]. 地理学报, 2019, 74(5): 975-991. |
[15] | 范科科,张强,史培军,孙鹏,余慧倩. 基于卫星遥感和再分析数据的青藏高原土壤湿度数据评估[J]. 地理学报, 2018, 73(9): 1778-1791. |