地理学报 ›› 2019, Vol. 74 ›› Issue (3): 446-459.doi: 10.11821/dlxb201903004
收稿日期:
2018-03-15
修回日期:
2019-02-14
出版日期:
2019-03-25
发布日期:
2019-03-19
作者简介:
朱文博(1989-), 女, 河南开封人, 博士, 主要从事全球变化与生态系统服务研究。E-mail:
基金资助:
Wenbo ZHU(), Jingjing ZHANG, Yaoping CUI, Hui ZHENG, Lianqi ZHU(
)
Received:
2018-03-15
Revised:
2019-02-14
Published:
2019-03-25
Online:
2019-03-19
Supported by:
摘要:
区域土地利用变化是导致生态系统碳储量变化的主要原因,影响其碳源、碳汇效应,但以往结合时空尺度探讨流域未来土地利用变化对生态系统碳储量影响的研究尚不多见。以太行山淇河流域为例,分析2005-2015年土地利用变化,采用Markov-CLUE-S复合模型预测2025年自然增长、耕地保护及生态保护情景下的土地利用格局,并基于土地利用数据,运用InVEST模型的碳储量模块评估2005-2015年及未来不同情景下的生态系统碳储量。结果表明:① 2015年淇河流域生态系统碳储量和平均碳密度分别为3.16×107 t和141.9 t/hm2,自2005年以来分别下降0.07×107 t和2.89 t/hm2。② 2005-2015年碳密度在低海拔区域以减少为主,在高海拔区域增加区与减少区比例相当,淇河中下游地区建设用地的大肆扩张以及上游林地的退化是导致碳密度下降的主要原因。③ 2015-2025年自然增长情景下碳储量和碳密度下降仍较明显,主要是低海拔区域固碳能力的减弱;耕地保护情景减缓了碳储量和碳密度的下降幅度,主要是由于低海拔区固碳能力的增强;生态保护情景下,碳储量和碳密度显著增加,分别达到3.19×107 t和143.26 t/hm2,主要发生在海拔高于1100 m的区域。生态保护情景能够增强固碳能力,但不能有效控制耕地面积的减小。因此,研究区土地利用规划可统筹考虑生态保护和耕地保护情景,既能增加碳汇,又能保障耕地质量和粮食安全。
朱文博, 张静静, 崔耀平, 郑辉, 朱连奇. 基于土地利用变化情景的生态系统碳储量评估——以太行山淇河流域为例[J]. 地理学报, 2019, 74(3): 446-459.
Wenbo ZHU, Jingjing ZHANG, Yaoping CUI, Hui ZHENG, Lianqi ZHU. Assessment of territorial ecosystem carbon storage based on land use change scenario: A case study in Qihe River Basin[J]. Acta Geographica Sinica, 2019, 74(3): 446-459.
表3
2005年淇河流域不同土地利用类型的Logistic回归结果
编码 | 耕地 | 林地 | 草地 | 水域 | 建设用地 | 未利用地 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beta系数 | Exp(B) | Beta系数 | Exp(B) | Beta系数 | Exp(B) | Beta系数 | Exp(B) | Beta系数 | Exp(B) | Beta系数 | Exp(B) | ||||||
常量 | 2.1439 | 8.5329 | -4.8852 | 0.0076 | -1.9361 | 0.1443 | -3.7741 | 0.0230 | 0.2381 | 1.2688 | -13.1827 | 0 | |||||
sc1gr0 | 0.0007 | 1.0007 | 0.0014 | 1.0014 | -0.0014 | 0.9986 | -0.0023 | 0.9977 | - | - | 0.0017 | 1.0017 | |||||
sc1gr1 | -0.1333 | 0.8752 | 0.0980 | 1.1029 | 0.0388 | 1.0395 | -0.0896 | 0.9143 | -0.0113 | 0.9888 | 0.0738 | 1.0766 | |||||
sc1gr2 | 0.0004 | 1.0004 | -0.0002 | 0.9998 | - | - | - | - | - | - | - | - | |||||
sc1gr3 | -0.0150 | 0.985 | 0.0105 | 1.0106 | -0.0211 | 0.9791 | 0.1532 | 1.1656 | - | - | - | - | |||||
sc1gr4 | 0.0084 | 1.0085 | 0.0638 | 1.0659 | -0.0825 | 0.9209 | -0.2295 | 0.7949 | 0.1963 | 1.2169 | - | - | |||||
sc1gr5 | -0.0325 | 0.9680 | 0.1033 | 1.1088 | - | - | - | - | - | - | - | - | |||||
sc1gr6 | - | - | 0.0001 | 1.0001 | - | - | - | - | - | - | - | - | |||||
sc1gr7 | -0.0005 | 0.9995 | 0.0002 | 1.0002 | 0.0004 | 1.0004 | 0.0002 | 1.0002 | -0.0090 | 0.9911 | - | - | |||||
sc1gr8 | - | - | - | - | 0.0001 | 1.0001 | - | - | - | - | - | - | |||||
sc1gr9 | 0.0001 | 1.0001 | - | - | - | - | 0.0001 | 1.0001 | - | - | - | - | |||||
ROC值 | 0.810 | 0.848 | 0.711 | 0.843 | 0.956 | 0.825 |
表4
2005-2015年淇河流域土地利用转移矩阵(hm2)
2015年 | 2005年 | |||||||
---|---|---|---|---|---|---|---|---|
耕地 | 林地 | 草地 | 水域 | 建设用地 | 未利用地 | 总计 | 转入总计 | |
耕地 | 47422 | 3262.5 | 6655.5 | 1257.75 | 1714.5 | 0 | 60312.25 | 12890.25 |
林地 | 6169.5 | 51878.75 | 8196.75 | 231.75 | 67.5 | 4.5 | 66548.75 | 14670 |
草地 | 12114 | 12136.5 | 53237.5 | 591.75 | 299.25 | 2.25 | 78381.25 | 25143.75 |
水域 | 2468.25 | 623.25 | 762.75 | 1404.75 | 155.25 | 0 | 5414.25 | 4009.5 |
建设用地 | 4475.25 | 391.5 | 555.75 | 117 | 6499.25 | 2.25 | 12041 | 5541.75 |
未利用地 | 9 | 13.5 | 6.75 | 0 | 2.25 | 2 | 33.5 | 31.5 |
总计 | 72658 | 68306 | 69415 | 3603 | 8738 | 11 | 222731 | - |
转出总计 | 25236 | 16427.25 | 16177.5 | 2198.25 | 2238.75 | 9 | - | 62286.75 |
表5
2005-2015年及2015-2025年淇河流域不同情景碳密度变化量统计
时段 | 明显减少(≤ -20 t/hm2) | 基本不变(-20~20 t/hm2) | 明显增加(≥ 20 t/hm2) | |||||
---|---|---|---|---|---|---|---|---|
栅格数 | 比例(%) | 栅格数 | 比例(%) | 栅格数 | 比例(%) | |||
2005-2015年 | 3419 | 3.45 | 95205 | 96.11 | 430 | 0.43 | ||
2015-2025年(Q1) | 1599 | 1.61 | 97340 | 98.27 | 115 | 0.12 | ||
2015-2025年(Q2) | 595 | 0.60 | 97958 | 98.89 | 501 | 0.51 | ||
2015-2025年(Q3) | 170 | 0.17 | 97795 | 98.73 | 1089 | 1.10 |
[1] |
Schimel D S, House J I, Hibbard K A, et al.Recent patterns and mechanisms of carbon recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 2001, 414(6860): 169-172.
doi: 10.1038/35102500 pmid: 11700548 |
[2] |
Piao S, Fang J, Ciais P, et al.The carbon balance of terrestrial ecosystems in China. Nature, 2009, 458(7241): 1009-1013.
doi: 10.1038/nature07944 pmid: 19396142 |
[3] |
Ji Jinjun, Huang Mei, Li Kerang.The predication research of Chinese carbon exchange between the terrestrial ecosystem and the atmosphere in 21st century. Scientia Sinica (Terrae), 2008, 38(2): 211-223.
doi: 10.1007/s11442-008-0201-7 |
[季劲钧, 黄玫, 李克让. 21世纪中国陆地生态系统与大气碳交换的预测研究. 中国科学: 地球科学, 2008, 38(2): 211-223.]
doi: 10.1007/s11442-008-0201-7 |
|
[4] | Fang Jingyun, Yu Guirui, Ren Xiaobo, et al.Carbon sequestration in China's terrestrial ecosystems under climatechange: Progress on ecosystem carbon sequestration from the CAS Strategic Priority Research Program. Bulletin of the Chinese Academy of Sciences, 2015, 30(6): 848-857. |
[方精云, 于贵瑞, 任小波, 等. 中国陆地生态系统固碳效应: 中国科学院战略性先导科技专项“应对气候变化的碳收支认证及相关问题”之生态系统固碳任务群研究进展. 中国科学院院刊, 2015, 30(6): 848-857.] | |
[5] |
Dai Erfu, Huang Yu, Wu Zhuo, et al.Spatial-temporal features of carbon source-sink and its relationship with climate factors in Inner Mongolia grassland ecosystem. Acta Geographica Sinica, 2016, 71(1): 21-34.
doi: 10.11821/dlxb201601002 |
[戴尔阜, 黄宇, 吴卓, 等. 内蒙古草地生态系统碳源/汇时空格局及其与气候因子的关系. 地理学报, 2016, 71(1): 21-34.]
doi: 10.11821/dlxb201601002 |
|
[6] |
Houghton R A, Werf G R V D, Defries R S, et al. Chapter G2 Carbon emissions from land use and land-cover change. Biogeosciences, 2012, 9(1): 5125-5142.
doi: 10.5194/bg-9-5125-2012 |
[7] |
Baumann M, Gasparri I, Gavier Pizarro G, et al.Carbon emissions from agricultural expansion and intensification in the Chaco. Global Change Biology, 2017, 23(5): 1902-1916.
doi: 10.1111/gcb.13521 pmid: 27782350 |
[8] |
Foley J A, Defries R, Asner G P, et al.Global consequences of land use. Science, 2005, 309(5734): 570-574.
doi: 10.1126/science.1111772 |
[9] | Houghton R A.Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000. Tellus, 2003, 55(2): 378-390. |
[10] |
Baccini A, Goetz S J, Walker W S, et al.Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Climate Change, 2012, 2(3): 182-185.
doi: 10.1038/nclimate1354 |
[11] |
Houghton R A.Carbon emissions and the drivers of deforestation and forest degradation in the tropics. Current Opinion in Environmental Sustainability, 2012, 4(6): 597-603.
doi: 10.1016/j.cosust.2012.06.006 |
[12] |
Navin R, Hollyk G, Frédéric A, et al.Challenges to estimating carbon emissions from tropical deforestation. Global Change Biology, 2007, 13(1): 51-66.
doi: 10.1111/j.1365-2486.2006.01272.x |
[13] |
Gutierrez-Velez V H, Pontius R G. Influence of carbon mapping and land change modelling on the prediction of carbon emissions from deforestation. Environmental Conservation, 2012, 39(4): 325-336.
doi: 10.1017/S0376892912000173 |
[14] |
Nogueira E M, Yanai A M, Vasconcelos S S D, et al. Carbon stocks and losses to deforestation in protected areas in Brazilian Amazonia. Regional Environmental Change, 2018, 18(5): 261-270.
doi: 10.1007/s10113-017-1198-1 |
[15] |
Tao Y, Li F, Liu X, et al.Variation in ecosystem services across an urbanization gradient: A study of terrestrial carbon stocks from Changzhou, China. Ecological Modelling, 2015, 318(1): 210-216.
doi: 10.1016/j.ecolmodel.2015.04.027 |
[16] |
Lai L, Huang X, Yang H, et al.Carbon emissions from land-use change and management in China between 1990 and 2010. Science Advances, 2016, 2(11): e1601063.
doi: 10.1126/sciadv.1601063 pmid: 5099982 |
[17] |
Zhao Mingwei, Yue Tianxiang, Zhao Na, et al.Spatial distribution of forest vegetation carbon stock in China based on HASM. Acta Geographica Sinica, 2013, 24(9): 1212-1224.
doi: 10.1007/s11442-014-1086-2 |
[赵明伟, 岳天祥, 赵娜, 等. 基于HASM的中国森林植被碳储量空间分布模拟. 地理学报, 2013, 24(9): 1212-1224.]
doi: 10.1007/s11442-014-1086-2 |
|
[18] |
Laganière J, Angers D A, Paré D.Carbon accumulation in agricultural soils after afforestation: A meta-analysis. Global Change Biology, 2010, 16(1): 439-453.
doi: 10.1111/j.1365-2486.2009.01930.x |
[19] |
Liao Lianglin, Zhou Lei, Wang Shaoqiang, et al.Carbon sequestration potential of biomass carbon pool for newafforestation in China during 2005-2013. Acta Geographica Sinica, 2016, 71(11): 1939-1947.
doi: 10.11821/dlxb201611006 |
[廖亮林, 周蕾, 王绍强, 等. 2005-2013年中国新增造林植被生物量碳库固碳潜力分析. 地理学报, 2016, 71(11): 1939-1947.]
doi: 10.11821/dlxb201611006 |
|
[20] |
Han X, Zhao F, Tong X, et al.Understanding soil carbon sequestration following the afforestation of former arable land by physical fractionation. Catena, 2017, 150: 317-327.
doi: 10.1016/j.catena.2016.11.027 |
[21] |
Jiang W, Deng Y, Tang Z, et al.Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models. Ecological Modelling, 2017, 345(2): 30-40.
doi: 10.1016/j.ecolmodel.2016.12.002 |
[22] |
Liang Y, Liu L, Huang J.Integrating the SD-CLUE-S and InVEST models into assessment of oasis carbon storage in northwestern China. PLos One, 2017, 12(2): e0172494.
doi: 10.1371/journal.pone.0172494 pmid: 5322964 |
[23] |
Wang Huimin, Zeng Yongnian.Land use optimization simulation based on low-carbon emissions in eastern part of Qinghai Plateau. Geographical Research, 2015, 34(7): 1270-1284.
doi: 10.11821/dlyj201507007 |
[王慧敏, 曾永年. 青海高原东部土地利用的低碳优化模拟: 以海东市为例. 地理研究, 2015, 34(7): 1270-1284.]
doi: 10.11821/dlyj201507007 |
|
[24] |
Zhang J, Zhu W, Zhao F, et al.Spatial variations of terrain and their impacts on landscape patterns in the transition zone from mountains to plains: A case study of Qihe River Basin in the Taihang Mountains. Science China (Earth Sciences), 2018, 61(4): 450-461.
doi: 10.1007/s11430-016-9158-2 |
[25] |
Qian Caiyun, Gong Jie, Zhang Jinxi, et al.Change and tradeoffs-synergies analysis on watershed ecosystemservices: A case study of Bailongjiang Watershed, Gansu. Acta Geographica Sinica, 2018, 73(5): 868-879.
doi: 10.11821/dlxb201805007 |
[钱彩云, 巩杰, 张金茜, 等. 甘肃白龙江流域生态系统服务变化及权衡与协同关系. 地理学报, 2018, 73(5): 868-879.]
doi: 10.11821/dlxb201805007 |
|
[26] |
Wang Yuangang, Luo Geping, Feng Yixing, et al.Effects of land use/land cover change on carbon storage in Manas River Watershed over the past 50 years. Journal of Natural Resources, 2013, 28(6): 994-1006.
doi: 10.11849/zrzyxb.2013.06.010 |
[王渊刚, 罗格平, 冯异星, 等. 近50a玛纳斯河流域土地利用/覆被变化对碳储量的影响. 自然资源学报, 2013, 28(6): 994-1006.]
doi: 10.11849/zrzyxb.2013.06.010 |
|
[27] |
Verburg P H, Soepboer W, Veldkamp A, et al.Modeling the spatial dynamics of regional land use: The CLUE-S model. Environmental Management, 2002, 30(3): 391-405.
doi: 10.1007/s00267-002-2630-x pmid: 12148073 |
[28] |
Deng Hua, Shao Jing'an, Wang Jinliang, et al. Land use driving forces and its future scenario simulation in the Three Gorges Reservoir Area using CLUE-S model. Acta Geographica Sinica, 2016, 71(11): 1979-1997.
doi: 10.11821/dlxb201611009 |
[邓华, 邵景安, 王金亮, 等. 多因素耦合下三峡库区土地利用未来情景模拟. 地理学报, 2016, 71(11): 1979-1997.]
doi: 10.11821/dlxb201611009 |
|
[29] |
Jiang W, Chen Z, Lei X, et al.Simulating urban land use change by incorporating an autologistic regression model into a CLUE-S model. Journal of Geographical Sciences, 2015, 25(7): 836-850.
doi: 10.1007/s11442-015-1205-8 |
[30] |
Hu Y, Zheng Y, Zheng X.Simulation of land-use scenarios for Beijing using CLUE-S and Markov composite models. Chinese Geographical Science, 2013, 23(1): 92-100.
doi: 10.1007/s11769-013-0594-9 |
[31] |
Dai Erfu, Wang Xiaoli, Zhu Jianjia, et al.Methods, tools and research framework of ecosystem service trade-offs. Geographical Research, 2016, 35(6): 1005-1016.
doi: 10.11821/dlyj201606001 |
[戴尔阜, 王晓莉, 朱建佳, 等. 生态系统服务权衡: 方法、模型与研究框架. 地理研究, 2016, 35(6): 1005-1016.]
doi: 10.11821/dlyj201606001 |
|
[32] |
Zhu Jianjia, Dai Erfu, Zheng Du, et al.Characteristic of tradeoffs between timber production and carbon storage for plantation under harvesting impact: A case study of Huitong National Research Station of Forest Ecosystem. Acta Geographica Sinica, 2018, 73(1): 152-163.
doi: 10.11821/dlxb201801013 |
[朱建佳, 戴尔阜, 郑度, 等. 采伐影响下人工林木材生产与固碳功能权衡特征: 以湖南会同森林生态实验站为例. 地理学报, 2018, 73(1): 152-163.]
doi: 10.11821/dlxb201801013 |
|
[33] | Zhang Jingjing, Zhu Wenbo, Zhao Fang, et al.Spatial variations of terrain and their impacts on landscape patterns in the transition zone from mountains to plains: A case study of Qihe River Basin in the Taihang Mountains. Scientia Sinica(Terrae), 2018, 48(4): 476-486. |
[张静静, 朱文博, 赵芳, 等. 山地平原过渡带地形起伏特征及其对景观格局的影响: 以太行山淇河流域为例. 中国科学: 地球科学, 2018, 48(4): 476-486.] | |
[34] | Ru Wenming.A research on the vegetation in the Southern part of Taihang mountain. Journal of Shanxi Normal University (Natural Science Edition), 1993, 7(Suppl.2): 54-58. |
[茹文明. 太行山南段植被的研究. 山西师范大学学报(自然科学版), 1993, 7(Suppl.2): 54-58.] | |
[35] | Kuang Shengshun.The vertical zonation of mountain vertation in Henan. Journal of Henan Normal University (Natural Science Edition), 1991, 19(4): 91-95. |
[邝生舜. 河南山地植被的垂直分布规律. 河南师范大学学报(自然科学版), 1991, 19(4): 91-95.] | |
[36] |
Liu Jiyuan.Study on national resources and environment survey and dynamic monitoring using remote sensing. Journal of Remote Sensing, 1997, 1(3): 225-230.
doi: 10.1007/BF02951625 |
[刘纪远. 国家资源环境遥感宏观调查与动态监测研究. 遥感学报, 1997, 1(3): 225-230.]
doi: 10.1007/BF02951625 |
|
[37] |
Pontius R G, Schneider L C.Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems and Environment, 2001. 85(1-3): 239-248.
doi: 10.1016/S0167-8809(01)00187-6 |
[38] |
Lu Wentao, Dai Chao, Guo Huaicheng.Land use scenario design and simulation based on Dyna-CLUE model in Dianchi LakeWatershed. Geographical Research, 2015, 34(9): 1619-1629.
doi: 10.11821/d1yj201509002 |
[陆文涛, 代超, 郭怀成. 基于Dyna-CLUE模型的滇池流域土地利用情景设计与模拟. 地理研究, 2015, 34(9): 1619-1629.]
doi: 10.11821/d1yj201509002 |
|
[39] |
Li Kerang, Wang Shaoqiang, Cao Mingkui.Vegetation and soil carbon storage in China. Scientia Sinica (Terrae), 2003, 33(1): 72-80.
doi: 10.3321/j.issn:1006-9267.2003.01.008 |
[李克让, 王绍强, 曹明奎. 中国植被和土壤碳贮量. 中国科学: 地球科学, 2003, 33(1): 72-80.]
doi: 10.3321/j.issn:1006-9267.2003.01.008 |
|
[40] | Fang Jingyun, Liu Guohua, Xu Songling.Biomass and net production of forest vegetation in China. Acta Ecologica Sinica, 1996, 16(5): 497-508. |
[方精云, 刘国华, 徐嵩龄. 我国森林植被的生物量和净生产量. 生态学报, 1996, 16(5): 497-508.] | |
[41] |
Huang Mei, Ji Jinjun, Cao Mingkui, et al.Modeling study of vegetation shoot and root biomass in China. Acta Ecologica Sinica, 2006, 26(12): 4156-4163.
doi: 10.3321/j.issn:1000-0933.2006.12.031 |
[黄玫, 季劲钧, 曹明奎, 等. 中国区域植被地上与地下生物量模拟. 生态学报, 2006, 26(12): 4156-4163.]
doi: 10.3321/j.issn:1000-0933.2006.12.031 |
|
[42] |
Piao Shilong, Fang Jingyun, He Jinsheng, et al.Spatial distribution of grassland biomass in China. Chinese Journal of Plant Ecology, 2004, 28(4): 491-498.
doi: 10.17521/cjpe.2004.0067 |
[朴世龙, 方精云, 贺金生, 等. 中国草地植被生物量及其空间分布格局. 植物生态学报, 2004, 28(4): 491-498.]
doi: 10.17521/cjpe.2004.0067 |
|
[43] | Chuai Xiaowei, Huang Xianjin, Zheng Zeqing, et al.Land use change and its influence on carbon storage of terrestrial ecosystems in Jiangsu Province. Resources Science, 2011, 33(10): 1932-1939. |
[揣小伟, 黄贤金, 郑泽庆, 等. 江苏省土地利用变化对陆地生态系统碳储量的影响. 资源科学, 2011, 33(10): 1932-1939.] | |
[44] |
Chen Guangshui, Yang Yusheng, Xie Jinsheng, et al.Total below ground carbon allocation in China's forests. Acta Ecologica Sinica, 2007, 27(12): 5148-5157.
doi: 10.3321/j.issn:1000-0933.2007.12.024 |
[陈光水, 杨玉盛, 谢锦升, 等. 中国森林的地下碳分配. 生态学报, 2007, 27(12): 5148-5157.]
doi: 10.3321/j.issn:1000-0933.2007.12.024 |
|
[45] |
Giardina C P, Ryan M G.Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature, 2000, 404(6780): 858-861.
doi: 10.1038/35009076 |
[46] |
Alam S A, Starr M, Clark B J F. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study. Journal of Arid Environments, 2013, 89(1): 67-76.
doi: 10.1016/j.jaridenv.2012.10.002 |
[47] | Wang Haiwen.Study on the ecosystem carbon storage of different land use types in the TaiHang mountain [D]. Baoding: Agricultural University of Hebei, 2007. |
[王海稳. 太行山区不同土地利用方式下生态系统碳贮量研究[D]. 保定: 河北农业大学, 2007.] | |
[48] |
Piao Shilong, Fang Jingyun, He Jinsheng, et al.Spatial distribution of grassland biomass in China. Acta Phytoecologica Sinica, 2004, 28(4): 491-498.
doi: 10.17521/cjpe.2004.0067 |
[朴世龙, 方精云, 贺金生, 等. 中国草地植被生物量及其空间分布格局. 植物生态学报, 2004, 28(4): 491-498.]
doi: 10.17521/cjpe.2004.0067 |
|
[49] | Li Haojie.Accurate estimate of soil organic carbon storage in Henan Province based on high-density profile [D]. Zhengzhou: Zhengzhou University, 2016. |
[李豪杰. 基于高密度剖面的河南省土壤有机碳储量精确估算[D]. 郑州: 郑州大学, 2016.] | |
[50] | Chen Xialin.Researches on carbon sequestration functions of main forest types in northern China [D]. Beijing: Beijing Forestry University, 2003. |
[陈遐林. 华北主要森林类型的碳汇功能研究[D]. 北京: 北京林业大学, 2003.] |
[1] | 张永强, 孔冬冬, 张选泽, 田静, 李聪聪. 2003—2017年植被变化对全球陆面蒸散发的影响[J]. 地理学报, 2021, 76(3): 584-594. |
[2] | 范泽孟. 中国生态过渡带分布的空间识别及情景模拟[J]. 地理学报, 2021, 76(3): 626-644. |
[3] | 龙花楼, 陈坤秋. 基于土地系统科学的土地利用转型与城乡融合发展[J]. 地理学报, 2021, 76(2): 295-309. |
[4] | 彭诗尧, 陈绍宽, 许奇, 牛家祺. 基于POI的土地利用与轨道交通客流的空间特征[J]. 地理学报, 2021, 76(2): 459-470. |
[5] | 廖柳文, 高晓路, 龙花楼, 汤礼莎, 陈坤秋, 马恩朴. 基于农户利用效率的平原和山区耕地利用形态比较[J]. 地理学报, 2021, 76(2): 471-486. |
[6] | 杨微石, 戴尔阜, 郑度, 董玉祥, 尹乐, 马良, 王隽雄, 潘理虎, 秦世鹏. 基于多主体模型的典型区域退耕还林工程实施空间模拟[J]. 地理学报, 2020, 75(9): 1983-1995. |
[7] | 瞿诗进, 胡守庚, 李全峰. 中国城市建设用地转型阶段及其空间格局[J]. 地理学报, 2020, 75(7): 1539-1553. |
[8] | 张静静, 朱文博, 朱连奇, 李艳红. 伏牛山地区森林生态系统服务权衡/协同效应多尺度分析[J]. 地理学报, 2020, 75(5): 975-988. |
[9] | 戴尔阜, 王亚慧. 横断山区产水服务空间异质性及归因分析[J]. 地理学报, 2020, 75(3): 607-619. |
[10] | 田晶, 郭生练, 刘德地, 陈启会, 王强, 尹家波, 吴旭树, 何绍坤. 气候与土地利用变化对汉江流域径流的影响[J]. 地理学报, 2020, 75(11): 2307-2318. |
[11] | 宋小青, 申雅静, 王雄, 李心怡. 耕地利用转型中的生物灾害脆弱性研究[J]. 地理学报, 2020, 75(11): 2362-2379. |
[12] | 孙毅中, 杨静, 宋书颖, 朱杰, 戴俊杰. 多层次矢量元胞自动机建模及土地利用变化模拟[J]. 地理学报, 2020, 75(10): 2164-2179. |
[13] | 鞠洪润, 左丽君, 张增祥, 赵晓丽, 汪潇, 温庆可, 刘芳, 徐进勇, 刘斌, 易玲, 胡顺光, 孙菲菲, 汤占中. 中国土地利用空间格局刻画方法研究[J]. 地理学报, 2020, 75(1): 143-159. |
[14] | 路路, 戴尔阜, 程千钉, 邬真真. 基于水环境化学及稳定同位素联合示踪的土地利用类型对地下水体氮素归趋影响[J]. 地理学报, 2019, 74(9): 1878-1889. |
[15] | 张行,梁小英,刘迪,史琴琴,陈海. 生态脆弱区社会—生态景观恢复力时空演变及情景模拟[J]. 地理学报, 2019, 74(7): 1450-1466. |