地理学报 ›› 2017, Vol. 72 ›› Issue (11): 2079-2092.doi: 10.11821/dlxb201711012
周亮1,2(), 周成虎1, 杨帆3, 王波4, 孙东琪1(
)
收稿日期:
2016-10-08
修回日期:
2017-07-28
出版日期:
2017-11-20
发布日期:
2017-11-16
作者简介:
作者简介:周亮(1983-), 男, 甘肃天水人, 博士后, 讲师, 中国地理学会会员(S110007587M),主要从事环境经济地理,城市与区域规划研究。E-mail:
基金资助:
Liang ZHOU1,2(), Chenghu ZHOU1, Fan YANG3, Bo WANG4, Dongqi SUN1(
)
Received:
2016-10-08
Revised:
2017-07-28
Published:
2017-11-20
Online:
2017-11-16
Supported by:
摘要:
高浓度PM2.5是形成雾霾的主要原因之一,科学识别PM2.5浓度的空间异质性与驱动因素对区域大气联动治理意义重大。研究采用2000-2011年NASA大气遥感影像反演的PM2.5数据,结合地统计、地理探测器及GIS空间分析等方法,系统分析了中国2000-2011年PM2.5浓度时空演化格局特征与其驱动因素。结果表明:① 2000-2011年中国PM2.5污染平均浓度一直保持在22.47~28.26 μg/m3区间,总体呈现先快速增加后趋于稳定的演化态势,2006年是PM2.5浓度值变化的拐点(峰值)。② 空间上PM2.5浓度整体呈现北方高于南方,东部高于西部趋势,污染浓度高值区集中分布在黄淮海平原、长三角下游平原、四川盆地与塔克拉玛干沙漠四大区域,其中京津冀地区污染最为严重。③ 污染浓度重心研究表明PM2.5重心总体呈现快速东移趋势,污染高值区持续向东移动,低值区向西移动,两者重心背向而行,表明东部雾霾污染程度在进一步加剧。④ 空间自相关分析表明PM2.5年均浓度呈现强烈的局部空间正自相关特性,PM2.5“高—高”集聚区连片分布在黄淮海平原、汾渭盆地、四川盆地及江汉平原地区,PM2.5“低—低”集聚区分布在长城以北的内蒙古、黑龙江、青藏高原、以及台湾、海南与福建等东南沿海及岛屿地区。⑤ 地理探测分析表明气候等自然因素与人类活动共同对PM2.5浓度空间变化产生巨大影响,其中自然地理区位、人口密度、汽车数量、工业烟尘、秸秆燃烧等因子是中国PM2.5浓度空间变化的主要驱动因素。
周亮, 周成虎, 杨帆, 王波, 孙东琪. 2000-2011年中国PM2.5时空演化特征及驱动因素解析[J]. 地理学报, 2017, 72(11): 2079-2092.
Liang ZHOU, Chenghu ZHOU, Fan YANG, Bo WANG, Dongqi SUN. Spatio-temporal evolution and the influencing factors of PM2.5 in China between 2000 and 2011[J]. Acta Geographica Sinica, 2017, 72(11): 2079-2092.
表1
中国PM2.5浓度时间变化的16种类型
序号 | 变化类型 | 数量 | 占比(%) | 序号 | 变化类型 | 数量 | 占比(%) |
---|---|---|---|---|---|---|---|
1 | R—R—R—R | 199 | 8.64 | 9 | D—R—R—R | 62 | 2.69 |
2 | R—R—R—D | 498 | 21.63 | 10 | D—R—R—D | 87 | 3.78 |
3 | R—R—D—R | 676 | 29.37 | 11 | D—R—D—R | 183 | 7.95 |
4 | R—R—D—D | 382 | 16.59 | 12 | D—R—D—D | 63 | 2.74 |
5 | R—D—R—R | 28 | 1.22 | 13 | D—D—R—R | 10 | 0.43 |
6 | R—D—R—D | 41 | 1.78 | 14 | D—D—R—D | 19 | 0.83 |
7 | R—D—D—R | 34 | 1.48 | 15 | D—D—D—R | 4 | 0.17 |
8 | R—D—D—D | 14 | 0.61 | 16 | D—D—D—D | 2 | 0.09 |
表2
驱动要素地理探测分析表
探测指标 | 2000年 | 2006年 | 2011年 | |||
---|---|---|---|---|---|---|
P | Q | P | Q | P | Q | |
自然地理区划(X1) | 0.7047 | 0.0000 | 0.7447 | 0.0000 | 0.7196 | 0.0000 |
人均GDP(X2) | 0.0077 | 0.9191 | 0.0062 | 0.9079 | 0.0068 | 0.8659 |
人口密度(X3) | 0.4320 | 0.0000 | 0.4372 | 0.0000 | 0.4120 | 0.0000 |
二产占比(X4) | 0.0984 | 0.0000 | 0.0665 | 0.0031 | 0.0917 | 0.0000 |
建成区面积占比(X5) | 0.0853 | 0.0030 | 0.0753 | 0.1033 | 0.1025 | 0.0282 |
城市绿化率(X6) | 0.0280 | 0.1503 | 0.0625 | 0.0319 | 0.0359 | 0.1083 |
居民汽车保有量(X7) | 0.0259 | 0.8637 | 0.0913 | 0.0226 | 0.1074 | 0.0080 |
农作物播种面积(X8) | 0.1396 | 0.0557 | 0.1487 | 0.0000 | 0.1046 | 0.0000 |
工业烟尘排放量(X9) | 0.0709 | 0.1537 | 0.0936 | 0.0000 | 0.0531 | 0.2766 |
地均能源消费强度(X10) | 0.3109 | 0.0000 | 0.4124 | 0.0000 | 0.4143 | 0.0000 |
地均钢铁产量(X11) | 0.2869 | 0.0000 | 0.3373 | 0.0000 | 0.3217 | 0.0000 |
[1] |
Stone B.Urban sprawl and air quality in large US cities. Journal of Environmental Management, 2008, 86(4): 688-698.
doi: 10.1016/j.jenvman.2006.12.034 pmid: 17368703 |
[2] |
Hueglin C, Gehrig R, Baltensperger U, et al.Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmospheric Environment, 2005, 39(4): 637-651.
doi: 10.1016/j.atmosenv.2004.10.027 |
[3] |
Guo J P, Zhang X Y, Wu Y R, et al.Spatio-temporal variation trends of satellite-based aerosol optical depth in China during1980-2008. Atmospheric Environment, 2011, 45(37): 6802-6811.
doi: 10.1016/j.atmosenv.2011.03.068 |
[4] | Wu D.Hazy weather research in China in the last decade: A review. Acta Scientiae Circumstantiae, 2012, 32(2): 257-269. |
[5] |
Yi H H, Hao J M, Tang X L.Atmospheric environmental protection in China: Current status, developmental. Energy Policy, 2007, 35: 907-915.
doi: 10.1016/j.enpol.2006.01.019 |
[6] |
Dockery D, Pope C, Xu X, et al.An association between air pollution and mortality in six U.S. cities. New England Journal of Medicine, 1994, 329(24): 1753-1759.
doi: 10.1056/NEJM199312093292401 pmid: 8179653 |
[7] |
Franklin M, Koutrakis P, Schwartz P.The role of particle composition on the association between PM2.5 and mortality. Epidemiology, 2008, 19(5): 680-689.
doi: 10.1097/EDE.0b013e3181812bb7 pmid: 3755878 |
[8] |
Pope III C A. Review: Epidemiological basis for particulate air pollution health standards. Aerosol Science & Technology, 2000, 32(1): 4-14.
doi: 10.1080/027868200303885 |
[9] |
Rd Pope C, Burnett R T, Thun M J, et al.Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama, 2002, 287(9): 1132-1141.
doi: 10.1001/jama.287.9.1132. pmid: 11879110 |
[10] |
Delfino R J, Sioutas C, Malik S.Potential role of ultrafine particles in associations between airborne particle mass and cardiovascular health. Environmental Health Perspectives, 2005, 113(8): 934-946.
doi: 10.1289/ehp.7938 pmid: 1280331 |
[11] |
Laden F, Neas L M, Dockery D W, et al.Association of fine particulate matter from different sources with daily mortality in six US cities. Environmental Health Perspectives, 2000, 108(10): 941-947.
doi: 10.2307/3435052 pmid: 11049813 |
[12] |
Samet J M, Dominici F, Curriero F C, et al.Fine particulate air pollution and mortality in 20 U.S. cities, 1987-1994. New England Journal of Medicine, 2000, 343(24): 1742-1749.
doi: 10.1056/NEJM200012143432401 pmid: 11114312 |
[13] |
Laden F, Schwartz J, Speizer F E, et al.Reduction in fine particulate air pollution and mortality: Extended follow-up of the Harvard six cities study. American Journal of Respiratory and Critical Care Medicine, 2006, 173(6): 667-672.
doi: 10.1164/rccm.200503-443OC |
[14] |
Wang H, Dwyer-Lindgren L, Lofgren K T, et al.Age specific and sex-specific mortality in 187 countries, 1970-2010: A systematic analysis for the global burden of disease study 2010. Lancet, 2012, 380(9859): 2071-2094.
doi: 10.1016/S0140-6736(12)61719-X |
[15] | Martin Patience. Beijing smog: When growth trumps life in China, BBC, Beijing, 2013. |
[16] |
Cheng S, Yang L X, Zhou X, et al.Evaluating PM2.5 ionic components and source apportionment in Jinan, China from 2004 to 2008 using trajectory statistical methods. Journal of Environmental Monitoring, 2011, 13(6): 1662-1671.
doi: 10.1039/c0em00756k |
[17] |
Chu H J, Huang B, Lin C Y.Modeling the spatio-temporal heterogeneity in the PM10-PM2.5 relationship. Atmospheric Environment, 2015, 102(2): 176-182.
doi: 10.1016/j.atmosenv.2014.11.062 |
[18] | Yang Kun, Yang Yulian, Zhu Yanhui, et al.Social and economic drivers of PM2.5 and their spatial relationship in China. Geographical Research, 2016, 35(6): 1051-1060. |
[杨昆, 杨玉莲, 朱彦辉, 等. 中国PM2.5污染与社会经济的空间关系及成因. 地理研究, 2016, 35(6): 1051-1060.] | |
[19] |
Xue Wenbo, Wu Weiling, Fu Fei, et al.Satellite retrieval of a heavy pollution process in January 2013 in China. Environmental Science, 2015, 36(3): 794-800.
doi: 10.13227/j.hjkx.2015.03.006 |
[薛文博, 武卫玲, 付飞, 等. 中国2013年1月PM2.5重污染过程卫星反演研究, 环境科学, 2015, 36(3): 794-800.]
doi: 10.13227/j.hjkx.2015.03.006 |
|
[20] |
Liu Y, Sarnat J A, Kilaru V, et al.Estimating ground-level PM2.5 in the eastern using satellite remote sensing. Environmental Science & Technology, 2005, 39(9): 3269-3278.
doi: 10.1021/es049352m pmid: 15926578 |
[21] | Zhang Yumei, Zhang Weidong, Wang Junling.Establishment and application of pollutant Inventory-Chemical Mass Balance (I-CMB) model for source apportionment of PM2.5. Transactions of Atmospheric Sciences, 2015, 38(2): 279-284. |
[张玉梅, 张卫东, 王军玲. 大气PM2.5源解析“源清单化学质量平衡法(I-CMB)”模型的建立与应用. 大气科学学报, 2015, 38(2): 279-284.] | |
[22] |
Gramsch E, Cereceda-Balic F, Oyola P, et al.Examination of pollution trends in Santiago de Chile with cluster analysis of PM10 and ozone data. Atmospheric Environment, 2006, 40(28): 5464-5475.
doi: 10.1016/j.atmosenv.2006.03.062 |
[23] |
Austin E, Coull B A, Zanobetti A, et al.A framework to spatially cluster air pollution monitoring sites in US based on the PM2.5 composition. Environment International, 2013, 59(9): 244-254.
doi: 10.1016/j.envint.2013.06.003 pmid: 3878877 |
[24] |
Cao Guoliang, Zhang Xiaoye, Gong Shanling, et al.Emission inventories of primary particles and pollutant gases for China. Chinese Science Bulletin, 2011, 56(8): 781-788.
doi: 10.1360/972010-1375 |
[曹国良, 张小曳, 龚山陵, 等. 中国区域主要颗粒物及污染气体的排放源清单. 科学通报, 2011, 56(3): 261-268.]
doi: 10.1360/972010-1375 |
|
[25] |
Zhang Y L, Cao F.Fine particulate matter (PM2.5) in China at a city level. Scientific Reports, 2015, 5: 1-11.
doi: 10.9734/JSRR/2015/14076 |
[26] |
Wang J, Christopher S A.Intercomparison between satellite- derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies. Geophysical Research Letters, 2003, 30(21): 1-4.
doi: 10.1029/2003GL018174 |
[27] | Xue Wenbo, Fu Fei, Wang Jinnan, et al.Numerical study on the characteristics of regional transport of PM2.5 in China. China Environmental Science, 2014, 34(6): 1361-1368. |
[薛文博, 付飞, 王金南, 等. 中国PM2. 5跨区域传输特征数值模拟研究. 中国环境科学, 2014, 34(6): 1361-1368.] | |
[28] |
Beckerman B S, Jerrett M, Serre M, et al.A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous United States. Environmental Science & Technology, 2013, 47(13): 7233-7241.
doi: 10.1021/es400039u pmid: 23701364 |
[29] |
Chow J C, Chen L W A, Watson J G, et al. PM2.5 chemical composition and spatiotemporal variability during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS). Journal of Geophysical Research: Atmospheres, 2006, 111(D10): 1-17.
doi: 10.1029/2005JD006457 |
[30] |
Kloog I, Nordio F, Coull B A, et al.Incorporating local land use regression and satellite aerosol optical depth in a hybrid model of spatiotemporal PM2.5 exposures in the Mid-Atlantic states. Environmental science & technology, 2012, 46(21): 11913-11921.
doi: 10.1021/es302673e pmid: 23013112 |
[31] |
Gelencsér A, May B, Simpson D, et al.Source apportionment of PM2.5 organic aerosol over Europe: Primary/secondary, natural/anthropogenic, and fossil/biogenic origin. Journal of Geophysical Research: Atmospheres, 2007, 112(D23).
doi: 10.1029/2006jd008094 |
[32] |
Lin G, Fu J, Jiang D, et al.Spatio-temporal variation of PM2.5 concentrations and their relationship with geographic and socioeconomic factors in China. International Journal of Environmental Research and Public Health, 2013, 11(1): 173-186.
doi: 10.3390/ijerph110100173 pmid: 3924439 |
[33] |
Liu Y, Paciorek C J, Koutrakis P, et al.Estimating regional spatial and temporal variability of PM2.5 Concentrations using satellite data, meteorology, and land use information. Environmental Health Perspectives, 2009, 117(6): 886-892.
doi: 10.1289/ehp.0800123 pmid: 19590678 |
[34] |
Gao M, Cao J, Seto E.A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi'an, China. Environmental Pollution, 2015, 199(4): 56-65.
doi: 10.1016/j.envpol.2015.01.013 pmid: 25618367 |
[35] |
Henderson S B, Beckerman B, Jerrett M, et al.Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environmental science & technology, 2007, 41(7): 2422-2428.
doi: 10.1021/es0606780 pmid: 17438795 |
[36] |
Charron A, Harrison R M.Fine (PM2.5) and coarse (PM2.5-10) particulate matter on a heavily trafficked London highway: sources and processes. Environmental Science & Technology, 2005, 39(20): 7768-7776.
doi: 10.1021/es050462i pmid: 16295835 |
[37] |
Merbitz H, Buttstädt M, Michael S, et al.GIS-based identification of spatial variables enhancing heat and poor air quality in urban areas. Applied Geography, 2012, 33(4): 94-106.
doi: 10.1016/j.apgeog.2011.06.008 |
[38] |
Hoek G, Brunekreef B, Goldbohm S, et al.Association between mortality and indicators of traffic-related air pollution in the Netherlands: A cohort study. The Lancet, 2002, 360(9341): 1203-1209.
doi: 10.1016/S0140-6736(02)11280-3 pmid: 12401246 |
[39] |
Michelle L Bell, Francesca Dominici, Keita Ebisu, et al.Spatial and temporal variation in PM2.5 chemical composition in the United States for health effects studies. Environ Health Perspect, 2007, 115(7): 989-995.
doi: 10.1289/ehp.9621 pmid: 1913582 |
[40] | Wang Zhenbo, Fang Chuanglin, Xu Guang, et al.Spatial-temporal characteristics of the PM2.5 in China in 2014. Acta Geographica Sinica, 2015, 70(11): 1720-1734. |
[王振波, 方创琳, 许光, 等. 2014年中国城市PM2.5浓度的时空变化规律. 地理学报, 2015, 70(11): 1720-1734.] | |
[41] |
Liu Yangsui, Yang Ren.The spatial characteristics and formation mechanism of the county urbanization in China. Acta Geographica Sinica, 2012, 67(8): 1011-1020.
doi: 10.11821/xb201208001 |
[刘彦随, 杨忍. 中国县域城镇化的空间特征与形成机理. 地理学报. 2012, 67(8): 1011-1020.]
doi: 10.11821/xb201208001 |
|
[42] | Wang Jinfeng, Xu Chengdong.Geodetector: Principle and prospective. Acta Geographica Sinica, 2017, 72(1): 116-134. |
[王劲峰, 徐成东. 地理探测器: 原理与展望. 地理学报. 2017, 72(1): 116-134.] | |
[43] |
Zhu He, Liu Jiaming, Tao Hui, et al.Temporal-spatial pattern and contributing factors of urban RBDs in Beijing. Acta Geographica Sinica, 2015, 70(8): 1215-1228.
doi: 10.11821/dlxb201508003 |
[朱鹤, 刘家明, 陶慧, 等. 北京城市休闲商务区的时空分布特征与成因. 地理学报. 2015, 70(8): 1215-1228.]
doi: 10.11821/dlxb201508003 |
|
[44] | Jiang Y A, Ying C, Zhou Y Z, et al.Analysis on changes of basic climatic elements and extreme events in Xinjiang, China during 1961-2010. Advances in Climate Change Research, 2013, 4(1): 20-29. |
[45] | Lu Bing, Kong Shaofei, Han Bin, et al.Inventory of atmospheric pollutants discharged from biomass burning in China continent in 2007. China Environmental Science, 2011, 31(2): 186-194. |
[陆炳, 孔少飞, 韩斌, 等. 2007年中国大陆地区生物质燃烧排放污染物清单. 中国环境科学, 2011, 31(2): 186-194.] |
[1] | 魏石梅, 潘竟虎. 中国地级及以上城市网络结构韧性测度[J]. 地理学报, 2021, 76(6): 1394-1407. |
[2] | 杨忍, 潘瑜鑫. 中国县域乡村脆弱性空间特征与形成机制及对策[J]. 地理学报, 2021, 76(6): 1438-1454. |
[3] | 殷江滨, 李尚谦, 姜磊, 程哲, 黄晓燕, 路改改. 中国连片特困地区非农就业增长的时空特征与驱动因素[J]. 地理学报, 2021, 76(6): 1471-1488. |
[4] | 胡畔, 陈波, 史培军. 中国暴雨洪涝灾情时空格局及影响因素[J]. 地理学报, 2021, 76(5): 1148-1162. |
[5] | 黄晓东, 马海涛, 苗长虹. 基于创新企业的中国城市网络联系特征[J]. 地理学报, 2021, 76(4): 835-852. |
[6] | 王录仓, 刘海洋, 刘清. 基于腾讯迁徙大数据的中国城市网络研究[J]. 地理学报, 2021, 76(4): 853-869. |
[7] | 夏兴生, 潘耀忠, 朱秀芳, 张锦水. 中国综合农业分区下的Ångström-Prescott公式系数逐月校正与优选[J]. 地理学报, 2021, 76(4): 888-902. |
[8] | 周扬, 李寻欢, 童春阳, 黄晗. 中国村域贫困地理格局及其分异机理[J]. 地理学报, 2021, 76(4): 903-920. |
[9] | 王淑佳, 孙九霞. 中国传统村落可持续发展评价体系构建与实证[J]. 地理学报, 2021, 76(4): 921-938. |
[10] | 范泽孟. 中国生态过渡带分布的空间识别及情景模拟[J]. 地理学报, 2021, 76(3): 626-644. |
[11] | 郭付友, 佟连军, 仇方道, 李一鸣. 黄河流域生态经济走廊绿色发展时空分异特征与影响因素识别[J]. 地理学报, 2021, 76(3): 726-739. |
[12] | 徐羽, 李秀彬, 辛良杰. 中国耕地规模化流转租金的分异特征及其影响因素[J]. 地理学报, 2021, 76(3): 753-763. |
[13] | 古恒宇, 沈体雁. 中国高学历人才的空间演化特征及驱动因素[J]. 地理学报, 2021, 76(2): 326-340. |
[14] | 朱晟君, 金文纨. 地方出口产品结构及制度环境与企业出口相关多样化[J]. 地理学报, 2021, 76(2): 398-414. |
[15] | 李钢, 薛淑艳, 马雪瑶, 周俊俊, 徐婷婷, 王皎贝. 中国失踪人口的时空格局演变与形成机制[J]. 地理学报, 2021, 76(2): 310-325. |