地理学报 ›› 2017, Vol. 72 ›› Issue (9): 1621-1633.doi: 10.11821/dlxb201709007
马帅1,2(), 盛煜1(
), 曹伟1, 吴吉春1, 胡晓莹1,2, 王生廷1,2
收稿日期:
2017-04-07
修回日期:
2017-07-06
出版日期:
2017-09-30
发布日期:
2017-09-30
作者简介:
作者简介:马帅(1993-), 男, 山东德州人, 硕士生, 研究方向为冻土学与气候变化。E-mail:
基金资助:
Shuai MA1,2(), Yu SHENG1(
), Wei CAO1, Jichun WU1, Xiaoying HU1,2, Shengting WANG1,2
Received:
2017-04-07
Revised:
2017-07-06
Published:
2017-09-30
Online:
2017-09-30
Supported by:
摘要:
基于IPCC第五次评估报告预估的气温变化情景,采用数值模拟的方法对黄河源区典型冻土类型开展模拟,推算过去及预测未来黄河源区冻土分布空间变化过程和发展趋势。结果表明:1972-2012年源区多年冻土只有少部分发生退化,退化的冻土面积为833 km2,季节冻土主要集中在源区东南部的热曲谷地、小野马岭以及两湖流域南部的汤岔玛地带;RCP 2.6、RCP 6.0、RCP 8.5情景下,2050年多年冻土退化为季节冻土的面积差别不大,分别为2224 km2、2347 km2、2559 km2,占源区面积的7.5%、7.9%、8.6%;勒那曲、多曲、白马曲零星出现季节冻土,野牛沟、野马滩以及鄂陵湖东部的玛多四湖所在黄河低谷大片为季节冻土;2100年多年冻土退化为季节冻土的面积分别为5636 km2、9769 km2、15548 km2,占源区面积的19%、32.9%、52.3%;星宿海、尕玛勒滩、多格茸的多年冻土发生退化,低温冻土变为高温冻土,各类年平均地温出现了不同程度的升高。到2100年,RCP 2.6情景下源区多年冻土全部退化为季节冻土主要发生在目前年平均地温高于-0.15 oC的区域,而-0.15~-0.44 oC的区域部分发生退化;RCP 6.0、RCP 8.5情景下目前年平均地温分别为高于-0.21 oC以及-0.38o C的区域多年冻土全部发生退化,而-0.21~-0.69 oC以及-0.38~-0.88 oC的区域部分发生退化。
马帅, 盛煜, 曹伟, 吴吉春, 胡晓莹, 王生廷. 黄河源区多年冻土空间分布变化特征数值模拟[J]. 地理学报, 2017, 72(9): 1621-1633.
Shuai MA, Yu SHENG, Wei CAO, Jichun WU, Xiaoying HU, Shengting WANG. Numerical simulation of spatial distribution and change of permafrost in the source area of the Yellow River[J]. Acta Geographica Sinica, 2017, 72(9): 1621-1633.
表1
各岩土层的热物理参数
岩层 | γd (kg/m3) | 质量含水量(%) | Cw (J/(kg·oC)) | Cf (J/(kg·oC)) | λw (W/(m·oC)) | λf (W/(m·oC)) |
---|---|---|---|---|---|---|
粉质粘土 | 1600 | 15 | 1589 | 1276 | 1.11 | 1.02 |
粉质粘土 | 1400 | 35 | 2300 | 1694 | 1.18 | 1.93 |
风化板岩 | 2700 | 2 | 750 | 750 | 2.60 | 2.60 |
砾砂 | 1700 | 8 | 1129 | 900 | 1.58 | 2.06 |
碎石土 | 1600 | 15 | 1464 | 1129 | 1.28 | 1.45 |
碎石土 | 1600 | 10 | 1255 | 1025 | 0.89 | 1.00 |
细砂 | 1500 | 15 | 1479 | 1099 | 1.54 | 2.00 |
中粗砂 | 1600 | 10 | 1213 | 941 | 1.48 | 1.86 |
[1] | Cheng Guodong, Zhao Lin.The problems associated with permafrost in the development of the Qinghai -Xiang Plateau. Quaternary Sciences, 2000, 20(6): 521-531. |
[程国栋, 赵林. 青藏高原开发中的冻土问题. 第四纪研究, 2000, 20(6): 521-531.] | |
[2] |
Qin Dahe, Ding Yongjian.Cryospheric changes and their impacts: Present, trends and key issues. Advances in Climate Change Research, 2009, 5(4): 187-195.
doi: 10.3969/j.issn.1673-1719.2009.04.001 |
[秦大河, 丁永建. 冰冻圈变化及其影响研究: 现状、趋势及关键问题. 气候变化研究进展, 2009, 5(4): 187-195.]
doi: 10.3969/j.issn.1673-1719.2009.04.001 |
|
[3] |
Yang M, Nelson F E, Shiklomanov N I, et al.Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth-Science Reviews, 2010, 103(1/2): 31-44.
doi: 10.1016/j.earscirev.2010.07.002 |
[4] | Luo Dongliang, Jin Huijun, Lin Lin, et al.Degradation of permafrost and cold-environments on the interior and eastern Qinghai Plateau. Journal of Glaciology and Geocryology, 2012, 34(3): 538-546. |
[罗栋梁, 金会军, 林琳, 等. 青海高原中、东部多年冻土及寒区环境退化. 冰川冻土, 2012, 34(3): 538-546.] | |
[5] | Niu Li, Ye Baisheng, Li Jing, et al.Effect of permafrost degradation on hydrological processes in typical basins with various permafrost coverage in western China. Science China: Earth Sciences, 2011, 54(4): 615-624. |
[牛丽, 叶柏生, 李静, 等. 中国西北地区典型流域冻土退化对水文过程的影响. 中国科学: 地球科学, 2011, 41(1): 85-92.] | |
[6] |
Yin Guo' an, Niu Fujun, Lin Zhanju, et al. The distribution characteristics of permafrost along the Qinghai-Tibet Railway and their response to environmental change. Journal of Glaciology and Geocryology, 2014, 36(4): 772-781.
doi: 10.7522/j.issn.1000-0240.2014.0093 |
[尹国安, 牛富俊, 林战举, 等. 青藏铁路沿线多年冻土分布特征及其对环境变化的响应. 冰川冻土, 2014, 36(4): 772-781.]
doi: 10.7522/j.issn.1000-0240.2014.0093 |
|
[7] |
Li Xin, Cheng Guodong.A GIS-aided response model of highaltitude permafrost to global change. Science China: Earth Sciences, 1999, 42(1): 72-79.
doi: 10.3321/j.issn:1006-9267.1999.02.011 |
[李新, 程国栋. 高海拔多年冻土对全球变化的响应模型. 中国科学: 地球科学, 1999, 29(2): 185-192.]
doi: 10.3321/j.issn:1006-9267.1999.02.011 |
|
[8] |
Wang Chenghai, Jin Shuanglong, Shi Hongxia.Area change of the frozen ground in China in the next 50 years. Journal of Glaciology and Geocryology, 2014, 36(1): 1-8.
doi: 10.7522/j.issn.1000-0240.2014.0001 |
[王澄海, 靳双龙, 施红霞. 未来50a中国地区冻土面积分布变化. 冰川冻土, 2014, 36(1): 1-8.]
doi: 10.7522/j.issn.1000-0240.2014.0001 |
|
[9] | Nan Zhuotong, Li Shuxun, Cheng Guodong.Prediction of permafrost distribution on the Qinghai-Tibet Plateau in the next 50 and 100 years. Science China: Earth Sciences,, 2005, 48( 6): 797-804. |
[南卓铜, 李述训, 程国栋. 未来50与100a青藏高原多年冻土变化情景预测. 中国科学: 地球科学, 2004, 34(6): 528-534.] | |
[10] |
Guo D, Wang H, Li D.A projection of permafrost degradation on the Tibetan Plateau during the 21st century. Journal of Geophysical Research Atmospheres, 2012, 117(D5): 214-221.
doi: 10.1029/2011JD016545 |
[11] | Lawrence D M, Slater A G.A projection of severe near-surface permafrost degradation during the 21st century. Geophysical Research Letters, 2005, 32(24): 230-250. |
[12] |
Wang W, Rinke A, Moore J C, et al.Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area. Cryosphere Discussions, 2015, 9(2): 1769-1810.
doi: 10.5194/tcd-9-1769-2015 |
[13] | Jin Huijun, Wang Shaoling, Lü Lanzhi, et al.Features and degradation of frozen ground in the sources area of the Yellow River, China. Journal of Glaciology and Geocryology, 2010, 32(1): 10-17. |
[金会军, 王绍令, 吕兰芝, 等. 黄河源区冻土特征及退化趋势. 冰川冻土, 2010, 32(1): 10-17.] | |
[14] |
Zhang Senqi, WangYonggui, Zhao Yongzhen, et al. Permafrost drgradation and its environmental sequent in the source regions of the Yellow River. Journal of Glaciology and Geocryology, 2004, 26(1): 1-6.
doi: 10.3969/j.issn.1000-0240.2004.01.001 |
[张森琦, 王永贵, 赵永真, 等. 黄河源区多年冻土退化及其环境反映. 冰川冻土, 2004, 26(1): 1-6.]
doi: 10.3969/j.issn.1000-0240.2004.01.001 |
|
[15] |
Wang Genxu, Shen Yongping, Cheng Guodong.Eco-environmental changes and causal analysis in the source regions of the Yellow River. Journal of Glaciology and Geocryology, 2000, 22(3): 200-205.
doi: 10.3969/j.issn.1000-0240.2000.03.002 |
[王根绪, 沈永平, 程国栋. 黄河源区生态环境变化与成因分析. 冰川冻土, 2000, 22(3): 200-205.]
doi: 10.3969/j.issn.1000-0240.2000.03.002 |
|
[16] |
Jin H J, He R X, Cheng G D, et al.Changes in frozen ground in the source area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environmental Research Letters, 2009, 4(4): 045206.
doi: 10.1088/1748-9326/4/4/045206 |
[17] |
Qian Cheng, Han Jianen, Zhu Dagang.An analysis of geomorphologic characteristics of the Yellow River source region based on ASTER-GDEM. Geology in China, 2012, 39(5): 1247-1260.
doi: 10.3969/j.issn.1000-3657.2012.05.012 |
[钱程, 韩建恩, 朱大岗, 等. 基于ASTER-GDEM数据的黄河源地区构造地貌分析. 中国地质, 2012, 39(5): 1247-1260.]
doi: 10.3969/j.issn.1000-3657.2012.05.012 |
|
[18] | Luo Dongliang, Jin Huijun, Lin Lin, et al.New progress on permafrost temperature and thickness new thickness in the source area of the Huanghe River. Scientia Geographica Sinica, 2012, 32(7): 898-904. |
[罗栋梁, 金会军, 林琳, 等. 黄河源区多年冻土温度及厚度研究新进展. 地理科学, 2012, 32(7): 898-904.] | |
[19] |
Li Jing, Sheng Yu, Wu Jichun, et al.Mapping frozen soil distribution and modeling permafrost stability in the source area of the Yellow River. Scientia Geographica Sinica, 2016, 36(4): 588-596.
doi: 10.13249/j.cnki.sgs.2016.04.013 |
[李静, 盛煜, 吴吉春, 等. 黄河源区冻土分布制图及其热稳定性特征模拟. 地理科学, 2016, 36(4): 588-596.]
doi: 10.13249/j.cnki.sgs.2016.04.013 |
|
[20] | Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al.Geocryology in China. Beijing: Science Press, 2000: 1-42, 108-114. |
[周幼吾, 郭东信, 邱国庆, 等. 中国冻土. 北京:科学出版社, 2000: 1- 42, 108-114.] | |
[21] |
Cao Yuanbing, Sheng Yu, Wu Jichun, et al.Influence of upper boundary conditions on simulated ground temperature field in permafrost regions. Journal of Glaciology and Geocryology, 2014, 36( 4): 802-810.
doi: 10.7522/j.issn.1000-0240.2014.0096 |
[曹元兵, 盛煜, 吴吉春, 等. 上边界条件对多年冻土地温场数值模拟结果的影响分析. 冰川冻土, 2014, 36(4): 802-810.]
doi: 10.7522/j.issn.1000-0240.2014.0096 |
|
[22] | GB 50324-2001. Code for Engineering Geological Investigation of Frozen Ground. |
[GB 50324-2001. 冻土工程地质勘察规范.] | |
[23] | Li Shuxun, Cheng Guodong, Guo Dongxin, et al.The future thermal regime of numerical simulating permafrost on Qinghai-Xizang (Tibet) Plateau, China, under climate warming. Science China: Earth Sciences, 1996, 26(4): 342-347. |
[李述训, 程国栋, 郭东信. 气候持续变暖条件下青藏高原多年冻土变化趋势数值模拟. 中国科学: 地球科学, 1996, 26(4): 342-347.] | |
[24] | Stocker T F, Qin D, Plattner G K, et al.IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2013: 710-719. |
[25] |
Jin Huijun, Zhao Lin, Wang Shaoling, et al.Degradation modes and ground temperature of permafrost along the Qinghai-Tibet Highway. Science China: Earth Sciences, 2006, 49(11): 1170-1183.
doi: 10.3321/j.issn:1006-9267.2006.11.004 |
[金会军, 赵林, 王绍令, 等. 青藏公路沿线冻土的地温特征及退化方式. 中国科学: 地球科学, 2006, 36(11): 1009-1019.]
doi: 10.3321/j.issn:1006-9267.2006.11.004 |
|
[26] | Wu Jichun, Sheng Yu, Wu Qingbai, et al.Processes and modes of permafrost degradation on the Qinghai-Tibet Plateau. Science China: Earth Sciences, 2010, 53(1): 151-158. |
[吴吉春, 盛煜, 吴青柏, 等. 青藏高原多年冻土退化过程及方式. 中国科学: 地球科学, 2009, 39(11): 1570-1578.] | |
[27] |
Wu Q B, Zhang T J, Liu Y Z.Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Global & Planetary Change, 2010, 72(1/2): 32-38.
doi: 10.1016/j.gloplacha.2010.03.001 |
[28] | Luo Dongliang, Jin Huijun.Variations of air temperature and precipitation from 1953 to 2012 in the Maduo station in the sources areas of the Yellow River. Journal of Arid Land Resources and Environment, 2014, 28(11): 185-192. |
[罗栋梁, 金会军. 黄河源区玛多县1953-2012年气温和降水特征及突变分析. 干旱区资源与环境, 2014, 28(11): 185-192.] | |
[29] | Li Jing, Sheng Yu, Chen Ji, et al.Modeling permafrost temperature distribution and analysing zoning characteristics of permafrost in the source regiona of the Datong River. Journal of China University of Mining & Technology, 2012, 41(1): 145-152. |
[李静, 盛煜, 陈继, 等. 大通河源区冻土地温模拟与分类特征分析. 中国矿业大学学报, 2012, 41(1): 145-152.] |
[1] | 刘诗奇, 王平, 王田野, 黄其威, 于静洁. 西伯利亚北极河流有机碳输出特征及影响要素[J]. 地理学报, 2021, 76(5): 1065-1077. |
[2] | 侯光良, 兰措卓玛, 朱燕, 庞龙辉. 青藏高原史前时期交流路线及其演变[J]. 地理学报, 2021, 76(5): 1294-1313. |
[3] | 吕建树. 烟台海岸带土壤重金属定量源解析及空间预测[J]. 地理学报, 2021, 76(3): 713-725. |
[4] | 关皓明, 杨青山, 浩飞龙, 冯章献. 基于“产业—企业—空间”的沈阳市经济韧性特征[J]. 地理学报, 2021, 76(2): 415-427. |
[5] | 刘敏, 郝炜. 山西省国家A级旅游景区空间分布影响因素研究[J]. 地理学报, 2020, 75(4): 878-888. |
[6] | 夏军, 张永勇, 穆兴民, 左其亭, 周宇建, 赵广举. 中国生态水文学发展趋势与重点方向[J]. 地理学报, 2020, 75(3): 445-457. |
[7] | 马恩朴, 蔡建明, 林静, 郭华, 韩燕, 廖柳文. 2000—2014年全球粮食安全格局的时空演化及影响因素[J]. 地理学报, 2020, 75(2): 332-347. |
[8] | 吴祥文, 臧淑英, 马大龙, 任建华, 李昊, 赵光影. 大兴安岭多年冻土区森林土壤温室气体通量[J]. 地理学报, 2020, 75(11): 2319-2331. |
[9] | 周扬, 黄晗, 刘彦随. 中国村庄空间分布规律及其影响因素[J]. 地理学报, 2020, 75(10): 2206-2223. |
[10] | 张杰, 史培军, 杨静, 龚道溢. 北京地区景观城市化进程对暴雨过程的影响——以“7·21”暴雨为例[J]. 地理学报, 2020, 75(1): 113-125. |
[11] | 林晓,徐伟,杜德斌,杨凡. 上海市风险投资企业的空间分布与“技术—资本”地理邻近性[J]. 地理学报, 2019, 74(6): 1112-1130. |
[12] | 王建邦, 赵军, 李传华, 朱钰, 康重阳, 高超. 2001-2015年中国植被覆盖人为影响的时空格局[J]. 地理学报, 2019, 74(3): 504-519. |
[13] | 裴韬, 刘亚溪, 郭思慧, 舒华, 杜云艳, 马廷, 周成虎. 地理大数据挖掘的本质[J]. 地理学报, 2019, 74(3): 586-598. |
[14] | 董锁成,杨洋,李富佳,程昊,李静楠,BILGAEVAlexey,李泽红,李宇. 中蒙俄高铁建设的影响机理及对策[J]. 地理学报, 2019, 74(2): 297-311. |
[15] | 梁鑫源,李阳兵. 三峡库区规模农地时空变化特征及其驱动机制[J]. 地理学报, 2018, 73(9): 1630-1646. |