地理学报 ›› 2017, Vol. 72 ›› Issue (9): 1569-1579.doi: 10.11821/dlxb201709003
收稿日期:
2017-05-01
修回日期:
2016-07-22
出版日期:
2017-09-30
发布日期:
2017-09-30
作者简介:
作者简介:张东良(1990-), 男, 汉族, 甘肃省通渭人, 博士研究生, 主要从事中亚过去气候变化研究。E-mail:
基金资助:
Dongliang ZHANG1,2(), Bo LAN1,2, Yunpeng YANG1,2
Received:
2017-05-01
Revised:
2016-07-22
Published:
2017-09-30
Online:
2017-09-30
Supported by:
摘要:
常年受到西风影响的阿尔泰山地区,是古气候研究的重点区域之一。利用阿尔泰山北部和南部的11个气象站观测数据和已发表的古气候数据(包括树轮、冰芯和湖芯),详细对比了不同时间尺度上(季节、年、几十年、百年和千年尺度)阿尔泰山北部和南部的降水变化。结果表明,阿尔泰山北部器测时段降水是逐渐下降的,而阿尔泰山南部降水反而呈现逐渐增加的趋势。这种反相的降水关系也体现在过去200年、过去1000年和全新世时段,说明阿尔泰山北部和南部降水在季节、年、几十年、百年和千年尺度上均存在相反的趋势。不同时间尺度上降水存在的相反关系表明阿尔泰山是一个重要的气候边界。但不同时间尺度上出现相反变化的原因需进一步详细探讨,这不仅有助于了解区域水汽变化的历史,也有助于加深理解欧亚草原丝绸之路文化的演替。
张东良, 兰波, 杨运鹏. 不同时间尺度的阿尔泰山北部和南部降水对比研究[J]. 地理学报, 2017, 72(9): 1569-1579.
Dongliang ZHANG, Bo LAN, Yunpeng YANG. Comparison of precipitation variations at different time scales in the northern and southern Altai Mountains[J]. Acta Geographica Sinica, 2017, 72(9): 1569-1579.
表1
阿尔泰山北部和南部气象站点的相关信息
序号 | 气象站名 | 纬度 | 经度 | 海拔(m) | 暖季降水(mm) | 冷季降水(mm) | 年降水(mm) | |
---|---|---|---|---|---|---|---|---|
阿尔泰山北部 | 1 | Kyzyl-Ozek | 51.90°N | 86.0°E | 331 | 569.3 | 160.2 | 729.5 |
2 | Yailu | 51.77°N | 87.6°E | 480 | 749.5 | 57.7 | 807.2 | |
3 | Ust-Coksa | 50.30°N | 85.6°E | 978 | 385.5 | 74.7 | 460.3 | |
4 | Kara-Tyurek | 50.00°N | 86.4°E | 2600 | 486.0 | 106.2 | 592.2 | |
5 | Kosh-Agach | 50.00°N | 88.4°E | 1760 | 105.3 | 16.5 | 121.7 | |
6 | Ulgii | 48.90°N | 91.9°E | 171 | 114.1 | 5.9 | 120.1 | |
7 | Hovd | 48.00°N | 91.4°E | 1400 | 121.6 | 7.0 | 128.6 | |
阿尔泰山南部 | 8 | 青河 | 46.67°N | 90.38°E | 1220 | 109.8 | 67.9 | 177.7 |
9 | 富蕴 | 46.98°N | 85.52°E | 826.6 | 106.5 | 83.7 | 190.1 | |
10 | 阿勒泰 | 47.03°N | 88.08°E | 736.9 | 107.0 | 92.9 | 200.0 | |
11 | 哈巴河 | 48.05°N | 86.40°E | 534 | 112.1 | 79.8 | 191.9 |
表2
阿尔泰山北部和南部树轮和冰芯的相关信息
位置 | 序号 | 研究区 | 方差解释量(%) | 序列长度(a) | 数据来源 |
---|---|---|---|---|---|
阿尔泰 山北部 | 1 | Koksu、Mongun、Aktash | - | 200(1800-2005 AD) | Sidorova等[ |
2 | Abakan附近 | 56 | 127(1875-2012 AD) | Shah等[ | |
3 | Belukha冰芯 | - | 750(1250-2000 AD) | Henderson等[ | |
阿尔泰 山南部 | 1 | 东南端 | 65.5 | 184(1825-2009 AD) | Chen等[ |
2 | 西北端 | 40.7 | 252(1760-2012 AD) | Chen等[ | |
3 | 西北端 | 36.6 | 524(1481-2004 AD) | 张同文等[ | |
4 | 南部 | 40.7 | 188(1818-2006 AD) | 胡义成等[ | |
5 | 东南端 | - | 221(1790-2011 AD) | Xu等[ | |
6 | 南部 | 46.5 | 160(1850-2012 AD) | 张瑞波等[ |
[1] |
Blyakharchuk T A, Wright H E, Borodavko P S, et al.The role of pingos in the development of the Dzhangyskol lake-pingo complex, central Altai Mountains, southern Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 257: 404-420.
doi: 10.1016/j.palaeo.2007.09.015 |
[2] |
Blyakharchuk T A, Wright H E, Borodavko P S, et al.Late glacial and Holocene vegetation changes on the Ulagan high-mountains plateau, Altai Mountains, southern Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 209: 259-279.
doi: 10.1016/j.palaeo.2004.02.011 |
[3] |
Blyakharchuk T A, Wright H E, Borodavko P S, et al.Late Glacial and Holocene vegetational history of the Altai Mountains (southwestern Tuva Republic, Siberia). Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 245: 518-534.
doi: 10.1016/j.palaeo.2006.09.010 |
[4] |
Blyakharchuk T A, Chernova N A.Vegetation and climate in the Western Sayan Mts according to pollen data from Lugovoe Mire as a background for prehistoric cultural change in southern Middle Sibieria. Quaternary Science Reviews, 2013, 75: 22-42.
doi: 10.1016/j.quascirev.2013.05.017 |
[5] |
Chen F H, Yu Z C, Yang M L, et al.Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quaternary Science Reviews, 2008, 27(3): 351-364.
doi: 10.1016/j.quascirev.2007.10.017 |
[6] |
Chen F H, Jia J, Chen J, et al.A persistent Holocene wetting trend in arid central Asia, with wettest conditions in the late Holocene, revealed by multi-proxy analyses of loess-paleosol sequences in Xinjiang, China. Quaternary Science Reviews, 2016, 146: 134-146.
doi: 10.1016/j.quascirev.2016.06.002 |
[7] |
Feng Z D, Sun A Z, Abdusalih N, et al.Vegetation changes and associated climatic changes in the southern Altai Mountains within China during the Holocene. The Holocene, 2017, 27(5): 683-693.
doi: 10.1177/0959683616670469 |
[8] |
Liu X Q, Herzschuh U, Shen J, et al.Holocene environmental and climatic changes inferred from Wulungu Lake in northern Xinjiang, China. Quaternary Research, 2008, 70: 412-425.
doi: 10.1016/j.yqres.2008.06.005 |
[9] |
Rudaya N, Tarasov P, Dorofeyuk N, et al.Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records: A step towards better understanding climate dynamics in Central Asia. Quaternary Science Reviews, 2009, 28: 540-554.
doi: 10.1016/j.quascirev.2008.10.013 |
[10] |
Zhang Y, Meyers P A, Liu X Y, et al.Holocene climate changes in the central Asia mountain region inferred from a peat sequence from the Altai Mountains, Xinjiang, northwestern China. Quaternary Science Reviews, 2016, 152: 19-30.
doi: 10.1016/j.quascirev.2016.09.016 |
[11] | Ran M, Feng Z D. Holocene moisture variations across China and driving mechanisms: A synthesis of climatic records. Quaternary International , 2013, 313/314 : 179-193. |
[12] |
Wang W, Feng Z D.Holocene moisture evolution across the Mongolian Plateau and its surrounding areas: A synthesis of climatic records. Earth-Science Reviews, 2013, 122: 38-57.
doi: 10.1016/j.earscirev.2013.03.005 |
[13] |
Malygina N, Papina T, Kononova N, et al.Influence of atmospheric circulation on precipitation in Altai Mountains. Journal of Mountain Science, 2017, 14(1): 46-59.
doi: 10.1007/s11629-016-4162-5 |
[14] |
Andreev A A, Pierau R, Kalugin I A, et al.Environmental changes in the northern Altai during the last millennium documented in Lake Teletskoye pollen record. Quaternary Research, 2007, 67: 394-399.
doi: 10.1016/j.yqres.2006.11.004 |
[15] |
Kalugin I, Daryin A, Smolyaninova L, et al.The 800 year long annual records of air temperature and precipitation over Southern Siberia inferred from high-resolution time-series of Teletskoye Lake sediments. Quaternary Research, 2007, 67: 400-410.
doi: 10.1016/j.yqres.2007.01.007 |
[16] | Li Y, Qiang M, Zhang J, et al.Hydroclimatic changes over the past 900 years documented by the sediments of Tiewaike Lake, Altai Mountains, Northwestern China. Quaternary International, 2016. . |
[17] |
Sidorova O V, Siegwolf R T W, Myglan V S, et al. The application of tree-rings and stable isotopes for reconstructions of climate conditions in the Russian Altai. Climate Change, 2013, 120(1/2): 153-167.
doi: 10.1007/s10584-013-0805-5 |
[18] |
Shah S K, Touchan R, Babushkina E, et al.August to July precipitation from tree rings in the forest-steppe zone of Central Siberia (Russia). Tree-Ring Research, 2015, 71(1): 37-44.
doi: 10.3959/1536-1098-71.1.37 |
[19] |
Henderson K A, Laube A, Gaggeler H W, et al.Temporal variations of accumulation and temperature during the past two centuries from Belukha ice core, Siberian Altai. Journal of Geophysics Research, 2006, 111: D03104.
doi: 10.1029/2005JD005819 |
[20] |
Chen F, Yuan Y J, Wei W S, et al.Precipitation reconstruction for the southern Altay Mountains (China) from tree rings of Siberian spruce, reveals recent wetting trend. Dendrochronologia, 2014, 32: 266-272.
doi: 10.1016/j.dendro.2014.06.003 |
[21] |
Chen F, Yuan Y J, Zhang T W, et al.Precipitation reconstruction for the northwestern Chinese Altay since 1760 indicates the drought signals of the northern part of inner Asia. International Journal of Biometeorology, 2016, 60(3): 455-463.
doi: 10.1007/s00484-015-1043-5 pmid: 26232944 |
[22] | Zhang T W, Yuan Y J, Yu S L, et al.June to September precipitation series of 1481-2004 reconstructed from tree-ring in the western region of Altay Prefecture, Xinjiang. Journal of Glaciology and Geocryology, 2008, 30(4): 659-667. |
[张同文, 袁玉江, 喻树龙, 等. 树木年轮重建阿勒泰西部1481-2004年6-9月降水量序列. 冰川冻土, 2008, 30(4): 659-667.] | |
[23] | Hu Yicheng, Wei Wernshou, Yuan Yujiang, et al.Reconstruction and analysis of January-February snowfall in the Altay prefecture during 1818-2006. Journal of Glaciology and Geocryology, 2012, 34(2): 319-327. |
[胡义成, 魏文寿, 袁玉江, 等. 基于树轮的阿勒泰地区1818-2006年1-2月降雪量重建与分析. 冰川冻土, 2012, 34(2): 319-327.] | |
[24] |
Xu G, Liu X, Qin D, et al.Relative humidity reconstruction for northwestern China's Altay Mountains using tree-ring δ18O. Chinese Science Bulletin, 2014, 59(2): 190-200.
doi: 10.1007/s11434-013-0055-y |
[25] |
Zhang Ruibo, Shang Huaming, Yuan Yujiang, et al.Summer precipitation variation in the southern slope of the Altay Mountains recorded by tree-ring δ13C. Journal of Desert Research, 2015, 35(1): 106-112.
doi: 10.7522/j.issn.1000-694X.2014.00198 |
[张瑞波, 尚华明, 袁玉江, 等. 基于树轮δ13C的阿尔泰山南坡夏季降水变化分析. 中国沙漠, 2015, 35(1): 106-112.]
doi: 10.7522/j.issn.1000-694X.2014.00198 |
|
[26] |
Chen Yaning, Li Zhi, Fang Gonghuan, et al.Impact of climate change on water resources in the Tianshan Mountians, Central Asia. Acta Geographica Sinica, 2017, 72(1): 18-26.
doi: 10.11821/dlxb201701002 |
[陈亚宁, 李稚, 方功焕, 等. 气候变化对中亚天山山区水资源影响研究. 地理学报, 2017, 72(1): 18-26.]
doi: 10.11821/dlxb201701002 |
|
[27] |
Xu C C, Li J, Zhao J, et al.Climate variations in northern Xinjiang of China over the past 50 years under global warming. Quaternary International, 2015, 358: 83-92.
doi: 10.1016/j.quaint.2014.10.025 |
[28] |
Hildebrandt S, Muller S, Kalugin I A, et al.Tracing the North Atlantic decadal-scale climate variability in a late Holocene pollen record from southern Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 426: 75-84.
doi: 10.1016/j.palaeo.2015.02.037 |
[29] |
Willis K S, Beilman D, Booth R K, et al.Peatland paleohydrology in the southern West Siberian Lowlands: Comparison of multiple testate amoeba transfer functions, sites, and Sphagnum δ13C values. The Holocene, 2015, 25(9): 1425-1436.
doi: 10.1177/0959683615585833 |
[30] |
Lan B, Zhang D L, Yang Y P.Evolution of lake Ailike (northern Xinjiang of China) during past 130 years inferred from diatom data. Quaternary International, 2017. doi: 10.2016/j.quanint.2016.014.
doi: 10.1016/j.quaint.2016.11.014 |
[31] |
Song M, Zhou A, Zhang X, et al.Solar imprints on Asian inland moisture fluctuations over the last millennium. The Holocene, 2015, 25(12): 1935-1943.
doi: 10.1177/0959683615596839 |
[32] |
Ma L, Wu J L, Hong Y, et al.The medieval warm period and the Little Ice Age from a sediment record of Lake Ebinur, Northwest China. Boreas, 2011, 40(3): 518-524.
doi: 10.1111/j.1502-3885.2010.00200.x |
[33] |
Chen F, Huang X, Zhang J, et al.Humid little ice age in arid central Asia documented by Bosten Lake, Xinjiang, China. Science in China Series D: Earth Sciences, 2006, 49(12): 1280-1290.
doi: 10.1007/s11430-006-2027-4 |
[34] |
Putnam A E, Putnam D E, Andreu-Hayles L, et al.Little Ice Age wetting of interior Asian deserts and the rise of the Mongol Empire. Quaternary Science Reviews, 2016, 131: 33-50.
doi: 10.1016/j.quascirev.2015.10.033 |
[35] |
Feng Z D, Wu H N, Zhang C J, et al.Bioclimatic change of the past 2500 years within the Balkhash Basin, eastern Kazakhstan, Central Asia. Quaternary International, 2013, 311: 63-70.
doi: 10.1016/j.quaint.2013.06.032 |
[36] |
Tian F, Herzschuh U, Dallmeyer A, et al.Environmental variability in the monsoon-westerlies transition zone during the last 1200 years: Lake sediment analyses from central Mongolia and supra-regional synthesis. Quaternary Science Reviews, 2013, 73: 31-47.
doi: 10.1016/j.quascirev.2013.05.005 |
[37] |
Ran M, Feng Z.D. Variation in carbon isotopic composition over the past ca. 46,000 yr in the loess-paleosol sequence in central Kazakhstan and paleoclimatic significance. Organic Geochemistry, 2014, 73: 47-55.
doi: 10.1016/j.orggeochem.2014.05.006 |
[38] |
Hong B, Gasse F, Uchida M, et al.Increasing summer rainfall in arid eastern-central Asia over the past 8500 years. Scientific Reports, 2014, 4: 5279.
doi: 10.1038/srep05279 pmid: 4055903 |
[39] |
Long H, Shen J, Tsukamoto S, et al.Dry early Holocene revealed by sand dune accumulation chronology in Bayanbulak Basin (Xinjiang, NW China). The Holocene, 2014, 24(5): 614-626.
doi: 10.1177/0959683614523804 |
[1] | 温庆志, 孙鹏, 张强, 姚蕊. 非平稳标准化降水蒸散指数构建及中国未来干旱时空格局[J]. 地理学报, 2020, 75(7): 1465-1482. |
[2] | 李双双, 汪成博, 延军平, 刘宪锋. 面向事件过程的秦岭南北极端降水时空变化特征[J]. 地理学报, 2020, 75(5): 989-1007. |
[3] | 王芳, 张晋韬. 《巴黎协定》排放情景下中亚地区降水变化响应[J]. 地理学报, 2020, 75(1): 25-40. |
[4] | 何丽烨, 程善俊, 马宁, 郭军. 海河流域夏季降水关键区季内演变及其环流配置的定量化分析[J]. 地理学报, 2020, 75(1): 41-52. |
[5] | 刘晓琼, 吴泽洲, 刘彦随, 赵新正, 芮旸, 张健. 1960-2015年青海三江源地区降水时空特征[J]. 地理学报, 2019, 74(9): 1803-1820. |
[6] | 曾岁康,雍斌. 全球降水计划IMERG和GSMaP反演降水在四川地区的精度评估[J]. 地理学报, 2019, 74(7): 1305-1318. |
[7] | 陆福志,鹿化煜. 秦岭—大巴山高分辨率气温和降水格点数据集的建立及其对区域气候的指示[J]. 地理学报, 2019, 74(5): 875-888. |
[8] | 杨家伟, 陈华, 侯雨坤, 赵英, 陈启会, 许崇育, 陈杰. 基于气象旱涝指数的旱涝急转事件识别方法[J]. 地理学报, 2019, 74(11): 2358-2370. |
[9] | 凌智永, 靳建辉, 吴铎, 刘向军, 夏敦胜, 陈发虎. MIS 3以来雅鲁藏布江流域风成沉积及环境意义[J]. 地理学报, 2019, 74(11): 2385-2400. |
[10] | 辛蕊, 段克勤. 2017年夏季秦岭降水的数值模拟及其空间分布[J]. 地理学报, 2019, 74(11): 2329-2341. |
[11] | 贾彬彬,周亚利,赵军. 新疆阿尔泰山东段冰碛物光释光测年研究[J]. 地理学报, 2018, 73(5): 957-972. |
[12] | 尹占娥,田鹏飞,迟潇潇. 基于情景的1951-2011年中国极端降水风险评估[J]. 地理学报, 2018, 73(3): 405-413. |
[13] | 朱秀迪, 张强, 孙鹏. 北京市快速城市化对短时间尺度降水时空特征影响及成因[J]. 地理学报, 2018, 73(11): 2086-2104. |
[14] | 张晓东,朱文博,张静静,朱连奇,赵芳,崔耀平. 伏牛山地森林植被物候及其对气候变化的响应[J]. 地理学报, 2018, 73(1): 41-53. |
[15] | 王圆圆, 郭徵, 李贵才, 郭兆迪. 基于广义加性模型估算1979-2014年三峡库区降水及其特征分析[J]. 地理学报, 2017, 72(7): 1207-1220. |