地理学报 ›› 2017, Vol. 72 ›› Issue (7): 1207-1220.doi: 10.11821/dlxb201707007
收稿日期:
2016-11-25
修回日期:
2017-04-05
出版日期:
2017-08-07
发布日期:
2017-08-07
作者简介:
作者简介:王圆圆(1981-), 女, 安徽六安人, 博士, 副研究员, 主要从事生态环境遥感应用研究。E-mail:
基金资助:
Yuanyaun WANG(), Zheng GUO, Guicai LI, Zhaodi GUO
Received:
2016-11-25
Revised:
2017-04-05
Published:
2017-08-07
Online:
2017-08-07
摘要:
高精度、长时间序列、空间连续的降水产品是气候分析、水文模拟等众多研究领域中的重要输入。近期欧洲研究人员融合了3种不同类型的降水数据:站点观测、遥感产品、再分析资料,制作了全球1979-2014年3小时一次0.25°空间分辨率的降水产品(Multi-Source Weighted-Ensemble Precipitation, MSWEP),凭借高时空分辨率及其对多源信息的挖掘和融合,该产品一经发布即受到广泛关注。本文利用三峡库区及附近地区气象站点的降水资料对MSWEP月降水数据进行评估,采用广义加性模型算法(General Additive Model,GAM)融合站点降水空间插值结果和MSWEP产品,对三峡库区融合后降水进行分析。主要结论为:① 降水估算精度呈现冬春季偏高、夏秋季偏低的特征,MSWEP产品与站点插值方法具有互补性,前者对夏秋季降水估算精度更高,后者对冬春季降水估算精度更高;② GAM算法可以充分发挥站点插值和MSWEP数据各自的优势,提高区域降水估算精度,与融合前相比,均方根误差减少了17%~50%,相关系数r提高了10%~30%;③ 2003年库区蓄水前后降水变化的主要特征有:库区中部长江以南地区汛期降水(5-10月)下降,库区西部干季(1-4月,11-12月)降水增加,库区外围西北部(大巴山地区)汛期降水增加,降水空间格局异质性增加,干季降水占全年降水比例升高。
王圆圆, 郭徵, 李贵才, 郭兆迪. 基于广义加性模型估算1979-2014年三峡库区降水及其特征分析[J]. 地理学报, 2017, 72(7): 1207-1220.
Yuanyaun WANG, Zheng GUO, Guicai LI, Zhaodi GUO. Precipitation estimation and analysis of the Three Gorges Dam region (1979-2014) by combining gauge measurements and MSWEP with generalized additive model[J]. Acta Geographica Sinica, 2017, 72(7): 1207-1220.
[1] | Dalya C, Neilson R P, Phillips D L.A statistical-topographic model for mapping climatological precipitation over mountainous terrain. Journal of Applied Meteorology, 1994, 33: 140-158. |
[2] |
Herold N, Alexander L V, Donat M G, et al.How much does it rain over land? Geophysical Research Letter, 2015, 43: 341-348.
doi: 10.1002/2015GL066615 |
[3] |
Prein A F, Gobiet A.Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. International Journal of Climatology, 2016. doi: 10.1002/joc.4706.
doi: 10.1002/joc.4706 pmid: 5214405 |
[4] | Beck H E, van Dijk A I J M, Levizzani V, et al. MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci. Discuss., 2016. doi:10.5194/hess-2016-236. |
[5] | Huffman G J, Bolvin D T, Nelkin, E J.et al.The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales, Journal of Hydrometeorology, 2007, 8: 38-55. |
[6] |
Funk C, Verdin A, Michaelsen J, et al.A global satellite-assisted precipitation climatology. Earth System Science Data, 2015, 7: 275-287.
doi: 10.5194/essdd-8-401-2015 |
[7] |
Kidd C, Bauer P, Turk J, et al.Inter comparison of high-resolution precipitation products over Northwest Europe. Journal of Hydrometeorology, 2012, 13: 67-83.
doi: 10.1175/JHM-D-11-042.1 |
[8] |
Wu J, Gao X J, Giorgi F, et al.Climate effects of the Three Gorges Reservoir as simulated by a high resolution double nested regional climate model. Quaternary International, 2012, 282: 27-36.
doi: 10.1016/j.quaint.2012.04.028 |
[9] |
Miller N, Jin J M, Tsang C F.Local climate sensitivity of the Three Gorges Dam. Geophysical Research Letter, 2005, 32, L16704.
doi: 10.1029/2005GL022821 |
[10] |
Wu L G, Zhang Q, Jiang Z H.The Three Gorges Dam affects regional precipitation. Geophysical Research Letter, 2006, 33: L13806. doi: 10.1029/2006GL026780.
doi: 10.1029/2006GL026780 |
[11] |
Li Bo, Tang Shihao.Local Precipitation changes induced by the Three Gorges Reservoir based on TRMM observations. Resources and Environment in the Yangtze Basin, 2014, 23(5): 617-625.
doi: 10.11870/cjlyzyyhj201405004 |
[李博, 唐世浩. 基于TRMM卫星资料分析三峡蓄水前后的局地降水变化. 长江流域资源与环境, 2014, 23(5): 617-625.]
doi: 10.11870/cjlyzyyhj201405004 |
|
[12] |
Xiao C, Yu R C, Fu Y F.Precipitation characteristics in the Three Gorges Dam vicinity. International Journal of Climatology, 2010, 30: 2021-2024.
doi: 10.1002/joc.1963 |
[13] | Ma Zhanshan, Zhang Qiang, Qin Yanyan.Numerical simulation and analysis of the effect of Three Gorges Reservoir Project on the regional climate change. Resources and Environment in the Yangtze Basin, 2010, 19(9): 1044-1052. |
[马占山, 张强, 秦琰琰. 三峡水库对区域气候影响的数值模拟分析. 长江流域资源与环境, 2010, 19(9): 1044-1052.] | |
[14] |
Zhao F, Sheperd M.Precipitation changes near Three Gorges Dam, China (Part I): A spatiotemporal validation analysis. Journal of Hydrometeorology, 2012, 13: 735-745.
doi: 10.1175/JHM-D-11-061.1 |
[15] |
Tian, Y D, Peters-Lidard C D. A global map of uncertainties in satellite-based precipitation measurements. Geophysical Research Letters, 2010, 37: L24407.
doi: 10.1029/2010GL046008 |
[16] | Wood S N.Thin plate regression splines. Journal of the Royal Statistical Society Series B (Statistical Methodology), 2003, 65(1): 95-114. |
[17] |
Parmentier B, McGill B, Wilson A M, et al. An assessment of methods and remote-sensing derived covariates for regional predictions of 1 km daily maximum air temperature. Remote Sensing, 2014, 6: 8639-8670.
doi: 10.3390/rs6098639 |
[18] |
Ouarda T B M J, Charron C, Marpu P R. The generalized additive model for the assessment of the direct, diffuse, and global solar irradiances using SEVIRI images, with application to the UAE. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(4): 1553-1566.
doi: 10.1109/JSTARS.2016.2522764 |
[19] |
Zhang X, Liang S, Song Z, et al.Local adaptive calibration of the satellite derived surface incident shortwave radiation product using smoothing spline. IEEE Transactions on Geoscience and Remote Sensing, 2016. doi: 10.1109/TGRS. 2015.2475615.
doi: 10.1109/TGRS.2015.2475615 |
[20] |
Park N W, Chi K H.Quantitative assessment of landslide susceptibility using high resolution remote sensing data and a generalized additive model. International Journal of Remote Sensing, 2008, 29(1): 247-264.
doi: 10.1080/01431160701227661 |
[21] | Package 'mgcv'. https://cran.r-project.org/web/packages/mgcv/mgcv.pdf. |
[22] |
Hamed K H.Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology, 2008, 349(3/4): 350-363.
doi: 10.1016/j.jhydrol.2007.11.009 |
[23] |
Wang Yuanyuan, Li Guicai, Zhang Yan.Regional representativeness analysis of national reference climatological stations based on MODIS/LST product. Journal of Applied Meteorological Science, 2011, 22(2): 214-220.
doi: 10.3969/j.issn.1001-7313.2011.02.010 |
[王圆圆, 李贵才, 张艳. 利用MODIS/LST产品分析基准气候站环境代表性. 应用气象学报, 2011, 22(2): 214-220.]
doi: 10.3969/j.issn.1001-7313.2011.02.010 |
|
[24] | Hu Ting, Zhou Jiangxing, Dai Kan.Application of USCRN Station Density Strategy to China Climate Reference Network. Journal of Applied Meteorological Science, 2012, 23(1): 40-46. |
[胡婷, 周江兴, 代刊. USCRN气候基准站网布局理论在我国的应用. 应用气象学报, 2012, 23(1): 40-46.] |
[1] | 温庆志, 孙鹏, 张强, 姚蕊. 非平稳标准化降水蒸散指数构建及中国未来干旱时空格局[J]. 地理学报, 2020, 75(7): 1465-1482. |
[2] | 李双双, 汪成博, 延军平, 刘宪锋. 面向事件过程的秦岭南北极端降水时空变化特征[J]. 地理学报, 2020, 75(5): 989-1007. |
[3] | 王芳, 张晋韬. 《巴黎协定》排放情景下中亚地区降水变化响应[J]. 地理学报, 2020, 75(1): 25-40. |
[4] | 何丽烨, 程善俊, 马宁, 郭军. 海河流域夏季降水关键区季内演变及其环流配置的定量化分析[J]. 地理学报, 2020, 75(1): 41-52. |
[5] | 刘晓琼, 吴泽洲, 刘彦随, 赵新正, 芮旸, 张健. 1960-2015年青海三江源地区降水时空特征[J]. 地理学报, 2019, 74(9): 1803-1820. |
[6] | 梁鑫源, 李阳兵, 邵景安, 刘雁慧, 冉彩虹. 三峡库区山区传统农业生态系统转型[J]. 地理学报, 2019, 74(8): 1605-1621. |
[7] | 曾岁康,雍斌. 全球降水计划IMERG和GSMaP反演降水在四川地区的精度评估[J]. 地理学报, 2019, 74(7): 1305-1318. |
[8] | 陆福志,鹿化煜. 秦岭—大巴山高分辨率气温和降水格点数据集的建立及其对区域气候的指示[J]. 地理学报, 2019, 74(5): 875-888. |
[9] | 杨家伟, 陈华, 侯雨坤, 赵英, 陈启会, 许崇育, 陈杰. 基于气象旱涝指数的旱涝急转事件识别方法[J]. 地理学报, 2019, 74(11): 2358-2370. |
[10] | 辛蕊, 段克勤. 2017年夏季秦岭降水的数值模拟及其空间分布[J]. 地理学报, 2019, 74(11): 2329-2341. |
[11] | 梁鑫源,李阳兵. 三峡库区规模农地时空变化特征及其驱动机制[J]. 地理学报, 2018, 73(9): 1630-1646. |
[12] | 孙倩,于坤霞,李占斌,李鹏,张晓明,龚珺夫. 黄河中游多沙粗沙区水沙变化趋势及其主控因素的贡献率[J]. 地理学报, 2018, 73(5): 945-956. |
[13] | 尹占娥,田鹏飞,迟潇潇. 基于情景的1951-2011年中国极端降水风险评估[J]. 地理学报, 2018, 73(3): 405-413. |
[14] | 朱秀迪, 张强, 孙鹏. 北京市快速城市化对短时间尺度降水时空特征影响及成因[J]. 地理学报, 2018, 73(11): 2086-2104. |
[15] | 张晓东,朱文博,张静静,朱连奇,赵芳,崔耀平. 伏牛山地森林植被物候及其对气候变化的响应[J]. 地理学报, 2018, 73(1): 41-53. |