地理学报 ›› 2017, Vol. 72 ›› Issue (7): 1139-1150.doi: 10.11821/dlxb201707001
所属专题: 气候变化与地表过程
• • 下一篇
刘凤山1,2, 陈莹2, 史文娇1,3, 张帅1,3, 陶福禄1,3, 葛全胜1,3
收稿日期:
2016-12-15
修回日期:
2017-03-24
出版日期:
2017-08-07
发布日期:
2017-08-07
作者简介:
作者简介:刘凤山(1986-), 男, 山东潍坊人, 博士, 助理研究员, 研究领域为生态治理和农业气象学。E-mai: liufs.11b@igsnrr.ac.cn
基金资助:
Fengshan LIU1,2, Ying CHEN2, Wenjiao SHI1,3, Shuai ZHANG1,3, Fulu TAO1,3, Quansheng GE1,3
Received:
2016-12-15
Revised:
2017-03-24
Published:
2017-08-07
Online:
2017-08-07
Supported by:
摘要:
地表过程对全球变化的响应和反馈是地球系统科学研究的核心课题之一,目前的研究多关注全球变化对地表过程的影响,而地表动态过程对地表生物物理过程及气候的反馈研究较少。系统认识地表物候动态对生物物理过程及气候的反馈对深化地球系统科学研究有着重要的意义。本文从农业物候动态的事实、农业物候动态在陆面过程模型中的参数化表达、农业物候动态对地表生物物理过程及气候的反馈等方面进行综述,发现在气候变化和管理措施影响下,以种植期和灌浆期为代表的农业物候期发生了显著的规律性变化;耦合农业物候动态,改善了模型对地表动态过程、生物物理过程和大气过程的数字化表达;农业物候变化对地表净辐射、潜热、感热、反照率和气温、降水、环流等过程产生了影响,并表现出以地表能量分配为主的气候反馈机理。针对农业物候动态对地表生物物理过程及气候效应的时空重要性,需要继续开展以下方面的工作:① 加强全球变化对地表物候动态的影响及其反馈的综合研究;② 不同光谱波段地表反射率与农业物候动态的关系研究;③ 农业物候动态引起的作物生理学特征变化在地表生物物理过程中的贡献;④ 重视不同气候区物候动态对气候反馈效应的差异。
刘凤山, 陈莹, 史文娇, 张帅, 陶福禄, 葛全胜. 农业物候动态对地表生物物理过程及气候的反馈研究进展[J]. 地理学报, 2017, 72(7): 1139-1150.
Fengshan LIU, Ying CHEN, Wenjiao SHI, Shuai ZHANG, Fulu TAO, Quansheng GE. Influences of agricultural phenology dynamics on land surface biophysical processes and climate feedback: A review[J]. Acta Geographica Sinica, 2017, 72(7): 1139-1150.
表 1
世界主要作物在主要分布区的物候变化特征及其驱动因素
分布区 | 作物 | 物候期变化 | 驱动因素 | 文献 |
---|---|---|---|---|
中国 | 冬小麦 | 种植期、出苗期、休眠期分别延迟1.5 d/decade、1.7 d/decade和1.5 d/decade;春季发芽、开花和成熟分别提前1.1 d/decade、2.7 d/decade和1.4 d/decade。 | 温度增加缩减生长期、品种积温增加延长生殖生长期、日照长度降低延长营养生长期。 | [29-31] |
中国 | 夏玉米 | 36.6%站点成熟期延长,41.1%站点生育期延长;生殖生长期延长2.4~3.7 d/decade。 | 平均温度增加降低生育期,品种更新延迟开花期和成熟期;适应温度增加的种植期提前策略。 | [32-34] |
中国 | 玉米 | 种植、拔节和开花期提前,成熟期推迟,营养生长期缩短,生殖生长期和生育期延长。 | 全球变暖加快玉米发育和缩短生长期;降水减少一定程度缩短生长期;品种更新延长生长期。 | [34] |
美国 | 玉米 | 种植期提前4.2 d/decade;种植—收获期增长5 d/decade;成熟—收割期变短3 d/decade。 | 生殖生长期有效积温需求增加14%;生长期更长的玉米品种;灌溉增加和施肥增加与品种更新的交互作用。 | [25] |
美国 | 大豆 | 种植期提前4.9 d/decade;收割期提前4.9 d/decade。 | 气温升高造成种植期提前,并有助于维持成熟期的稳定;品种更新造成更长的生殖生长期。 | [25] |
欧洲中部和北部 | 禾本科(小麦、燕麦和玉米) | 种植期提前1~3周;开花期和成熟期提前1~3周。 | 根据超过1500条站点记录设定模型,燕麦和小麦种植期—开花期发育依赖温度和昼长,玉米依赖温度;3种植物的开花期—成熟期发育仅依赖温度。 | [26] |
西班牙 | 禾谷类作物(燕麦、小麦、黑麦、大麦和玉米) | 冬小麦春季的物候期提前;小麦和燕麦旗叶鞘肿提前30 d/decade;开花期提前10 d/decade。 | 物候开始之前的温度变化是物候趋势的主要因素;人类干预降低物候变化对产量的影响。 | [27] |
德国 | 玉米 | 播种期、出苗期、开始收获期分别提前1.7 d/decade、3.3 d/decade和1.3 d/decade;播种—出苗间隔减小1.6 d/decade;出苗—收获增加2.1 d/decade。 | 春季温度增加使提前播种成为可能;5月份强烈增温加速了植物发育,对出苗期影响最严重。 | [28] |
哈萨克 斯坦 | 小麦 | NDVI峰值提前4~7 d | 积温增加;苏联解体的影响。 | [38] |
表2
陆面过程模型耦合作物模型对改进地表水热平衡理解的贡献
模型a | 研究对象 | 结果 | 原因 | 文献 |
---|---|---|---|---|
Agro-IBIS 作物动态生长模型 | 美国玉米和大豆 | 农业物候变化改变了地表水热平衡,种植期提前造成6月份潜热增加,感热降低;成熟期—收割期降低增加10月份净辐射。 | 利用有效积温实现物候期的变化。 | [25] |
BATS CERES3.0 | 中国农田 | 冠层截流、作物蒸腾、土壤蒸发、潜热和感热通量都具有显著的影响;降低LAI和表层土壤水分系统误差,提高地表通量模拟精度。 | 增加了作物生长和发育过程。 | [51] |
BATS CERES-Maize | 美国玉米 | LAI从5变为1,潜热变化30%~45%,感热变化20%~35%;蒸发和蒸腾对潜热贡献受LAI强烈影响。 | 基于生理学的物候期和有机质积累及分配过程。 | [53] |
CLASS 碳氮模型 | 加拿大农田 | 提高了NEP模拟与实测数据的决定系数;有机质分配过程更加合理。 | 添加了农业物候方案和农田管理措施的查找表 | [54] |
CLM CornSoy | 美国大豆和玉米 | 碳通量的模拟与物候模拟有紧密大量联系;对LAI、能量和碳通量的模拟与实测值的相关性更好。 | 利用有效积温精确表达出苗—灌浆期和灌浆期—收割期;解除对LAI最大值的限制。 | [19] |
CLM农业物候模型 | 北美洲玉米、大豆和谷类 | 更加真实的作物LAI;更清晰的展示春季种植和秋季收割;在低LAI期更好的影响潜热通量;展示了物候的重要性。 | 利用温度驱动农业物候和碳分配的季节变化。 | [55] |
ISAM 作物动态生长模型 | 美国玉米—大豆轮作系统 2001-2004年 | 与静态作物比较,LAI季节变化、冠层高度、根深、土壤水分吸收和蒸腾、碳通量、水热通量、对生长季潜热和碳通量提高较多,对感热影响较小。 | 作物动态包含了考虑了光、水和养分胁迫;LAI季节动态模拟的提升;根系分布过程更好的模拟土壤水分吸收和蒸腾。 | [56] |
JULES InfoCrop | 印度农田 | 蒸散发模拟误差,湿润季节从7.5~24.4 mm month-1下降到5.4~11.6 mm month-1,干旱季节从10~17 mm month-1下降到2.2~3.4 mm month-1。 | 添加了作物生长的模型。 | [48] |
JULES SUCROS | 欧洲农田 | 显著提高农田模拟与实测数据的相关性;更好的捕获欧洲作物生长状态的时空特征;表明作物结构和物候对陆—气交互作用的重要性。 | 作物动态生长;包含果实器官、从种植到收割的物候周期等特征的农业系统特征过程。 | [57] |
LPJ DGVMs | 全球农田 | 温带禾本科种植日期、作物冠层季节发育更好;产量和碳积累过程更好;农业扩张造成蒸腾降低5%,蒸发增加40% | 物候的具体参数化,并与叶面积发育结合起来。 | [58] |
ORCHIDEE STICS | 法国和美国冬小麦和玉米 | 对不同气候区中的蒸散发、生物量积累过程模拟更好。 | 增加了对叶面积、养分胁迫,植物高度的模拟;改善了有机质分配、水分胁迫、羧化作用等过程。 | [44] |
SiB2农业物候模型 | 美国小麦、 大豆、玉米 | 提高LAI和碳通量;更好的模拟生长季的开始和结束、收割、轮作系统的季节动态。 | 针对特定作物开发出的物候方案和对应的生理学参数,取代旧的基于NDVI计算通量的算法。 | [46] |
SiB2农业物候模型 | 华北平原冬小麦—夏玉米轮作 | 精确模拟LAI、碳通量、潜热通量、土壤水分含量和产量。 | 针对特定作物开发出的物候方案和对应的生理学参数,取代旧的基于NDVI计算通量的算法。 | [47] |
[1] |
Bright R M, Zhao K, Jackson R B, et al.Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities. Global Change Biology, 2015, 21(9): 3246-3266.
doi: 10.1111/gcb.12951 pmid: 25914206 |
[2] | Pielke R A, Adegoke J, Beltran-Przekurat A, et al.An overview of regional land-use and land-cover impacts on rainfall. Tellus Series B-Chemical and Physical Meteorology, 2007, 59(3): 587-601. |
[3] |
Liu J Y, Shao Q Q, Yan X D, et al.The climatic impacts of land use and land cover change compared among countries. Journal of Geographical Sciences, 2016, 26(7): 889-903.
doi: 10.1007/s11442-016-1305-0 |
[4] |
Liu F S, Tao F L, Liu J Y, et al.Effects of land use/cover change on land surface energy partitioning and climate in Northeast China. Theoretical and Applied Climatology, 2016, 123(1/2): 141-150.
doi: 10.1007/s00704-014-1340-7 |
[5] |
Kowalczyk E A, Stevens L E, Law R M, et al.The impact of changing the land surface scheme in ACCESS (v1.0/1.1) on the surface climatology. Geoscientific Model Development, 2016, 9(8): 2771-2791.
doi: 10.5194/gmd-9-2771-2016 |
[6] | McGuire A D, Chapin F S, Walsh J E, et al. Integrated regional changes in arctic climate feedbacks: Implications for the global climate system. Annual Review of Environment and Resources, 2006, 31: 61-91. |
[7] |
Luyssaert S, Jammet M, Stoy P C, et al.Land management and land-cover change have impacts of similar magnitude on surface temperature. Nature Climate Change, 2014, 4(5): 389-393.
doi: 10.1038/NCLIMATE2196 |
[8] |
Jeong S J, Ho C H, Piao S, et al.Effects of double cropping on summer climate of the North China Plain and neighbouring regions. Nature Climate Change, 2014, 4(7): 615-619.
doi: 10.1038/NCLIMATE2266 |
[9] |
Mueller N D, Butler E E, McKinnon K A, et al. Cooling of US Midwest summer temperature extremes from cropland intensification. Nature Climate Change, 2016, 6(3): 317-324.
doi: 10.1038/nclimate2825 |
[10] |
Bagley J E, Miller J, Bernacchi C J.Biophysical impacts of climate-smart agriculture in the Midwest United States. Plant Cell and Environment, 2015, 38(9): 1913-1930.
doi: 10.1111/pce.12485 pmid: 25393245 |
[11] |
Zhang X, Tang Q, Zheng J, et al.Warming/cooling effects of cropland greenness changes during 1982-2006 in the North China Plain. Environmental Research Letters, 2013, 8(2): 024038.
doi: 10.1088/1748-9326/8/2/024038 |
[12] |
Lobell D B, Bala G, Duffy P B.Biogeophysical impacts of cropland management changes on climate. Geophysical Re search Letters, 2006, 33(6): L06708. doi: 10.1029/2005GL025492.
doi: 10.1029/2005GL025492 |
[13] | Korner C, Basler D.Phenology under global warming. Science, 2010, 327(5972): 1461-1462. |
[14] | Penuelas J, Rutishauser T, Filella I.Phenology feedbacks on climate change. Science, 2009, 324(5929): 887-888. |
[15] |
Dai Junhu, Wang Huanjiong, Ge Quansheng.Changes of spring frost risks during the flowering period of woody plants in temperate monsoon area of China over the past 50 years. Acta Geographica Sinica, 2013, 68(5): 593-601.
doi: 10.11821/xb201305002 |
[戴君虎, 王焕炯, 葛全胜. 近50年中国温带季风区植物花期春季霜冻风险变化. 地理学报, 2013, 68(5): 593-601.]
doi: 10.11821/xb201305002 |
|
[16] |
Fu Y S H, Zhao H F, Piao S L, et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature, 2015, 526(7571): 104-107.
doi: 10.1038/nature15402 pmid: 26416746 |
[17] |
Guillevic P, Koster R D, Suarez M J, et al.Influence of the interannual variability of vegetation on the surface energy balance: A global sensitivity study. Journal of Hydrometeorology, 2002, 3(6): 617-629.
doi: 10.1175/1525-7541(2002)0032.0.CO;2 |
[18] |
Oguntunde P G, van de Giesen N. Crop growth and development effects on surface albedo for maize and cowpea fields in Ghana, West Africa. International Journal of Biometeorology, 2004, 49(2): 106-112.
doi: 10.1007/s00484-004-0216-4 |
[19] |
Chen M, Griffis T J, Baker J, et al.Simulating crop phenology in the Community Land Model and its impact on energy and carbon fluxes. Journal of Geophysical Research-Biogeosciences, 2015, 120(2): 310-325.
doi: 10.1002/2014JG002780 |
[20] |
Ge Q S, Wang H J, Zheng J Y, et al.A 170 year spring phenology index of plants in eastern China. Journal of Geophysical Research-Biogeosciences, 2014, 119(3): 301-311.
doi: 10.1002/2013JG002565 |
[21] | Zheng J Y, Liu Y, Ge Q S, et al.Spring phenodate records derived from historical documents and reconstruction on temperature change in Central China during 1850-2008. Acta Geographica Sinica, 2015, 70(5): 696-704. |
[郑景云, 刘洋, 葛全胜, 等. 华中地区历史物候记录与1850-2008年的气温变化重建. 地理学报, 2015, 70(5): 696-704.] | |
[22] |
Garnaud C, Sushama L.Biosphere-climate interactions in a changing climate over North America. Journal of Geophysical Research-Atmospheres, 2015, 120(3): 1091-1108.
doi: 10.1002/2014JD022055 |
[23] | Leff B, Ramankutty N, Foley J A. Geographic distribution of major crops across the world. Global Biogeochemical Cycles, 2004, 18(1): GB1009. doi: 10.1029/2003GB002108. |
[24] |
Bagley J E, Desai A R, Dirmeyer P A, et al.Effects of land cover change on moisture availability and potential crop yield in the world's breadbaskets. Environmental Research Letters, 2012, 7(1): 014009. doi: 10.1088/1748-9326/7/1/014009.
doi: 10.1088/1748-9326/7/1/014009 |
[25] |
Sacks W J, Kucharik C J.Crop management and phenology trends in the US Corn Belt: Impacts on yields, evapotranspiration and energy balance. Agricultural and Forest Meteorology, 2011, 151(7): 882-894.
doi: 10.1016/j.agrformet.2011.02.010 |
[26] |
Olesen J E, Borgesen C D, Elsgaard L, et al.Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Food Additives and Contaminants Part A: Chemistry Analysis Control Exposure and Risk Assessment, 2012, 29(10): 1527-1542.
doi: 10.1080/19440049.2012.712060 pmid: 22934894 |
[27] |
Oteros J, Garcia-Mozo H, Botey R, et al.Variations in cereal crop phenology in Spain over the last twenty-six years (1986-2012). Climatic Change, 2015, 130(4): 545-558.
doi: 10.1007/s10584-015-1363-9 |
[28] |
Chmielewski F M, Müller A, Bruns E.Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961-2000. Agricultural and Forest Meteorology, 2004, 121(1/2): 69-78.
doi: 10.1016/S0168-1923(03)00161-8 |
[29] |
Xiao D P, Tao F L, Liu Y J, et al.Observed changes in winter wheat phenology in the North China Plain for 1981-2009. International Journal of Biometeorology, 2013, 57(2): 275-285.
doi: 10.1007/s00484-012-0552-8 |
[30] |
Xiao D P, Moiwo J P, Tao F L, et al.Spatiotemporal variability of winter wheat phenology in response to weather and climate variability in China. Mitigation and Adaptation Strategies for Global Change, 2015, 20(7): 1191-1202.
doi: 10.1007/s11027-013-9531-6 |
[31] |
Tao F L, Zhang S A, Zhang Z.Spatiotemporal changes of wheat phenology in China under the effects of temperature, day length and cultivar thermal characteristics. European Journal of Agronomy, 2012, 43: 201-212.
doi: 10.1016/j.eja.2012.07.005 |
[32] |
Xiao D P, Qi Y Q, Shen Y J, et al.Impact of warming climate and cultivar change on maize phenology in the last three decades in North China Plain. Theoretical and Applied Climatology, 2016, 124(3/4): 653-661.
doi: 10.1007/s00704-015-1450-x |
[33] |
Tao F L, Zhang S, Zhang Z, et al.Maize growing duration was prolonged across China in the past three decades under the combined effects of temperature, agronomic management, and cultivar shift. Global Change Biology, 2014, 20(12): 3686-3699.
doi: 10.1111/gcb.12684 |
[34] | Wang Z, Chen J, Li Y, et al.Effects of climate change and cultivar on summer maize phenology. International Journal of Plant Production, 2016, 10(4): 509-525. |
[35] |
Eyshi Rezaei E, Siebert S, Ewert F.Climate and management interaction cause diverse crop phenology trends. Agricultural and Forest Meteorology, 2017, 233: 55-70.
doi: 10.1016/j.agrformet.2016.11.003 |
[36] |
Mirschel W, Wenkel K O, Schultz A, et al.Dynamic phenological model for winter rye and winter barley. European Journal of Agronomy, 2005, 23(2): 123-135.
doi: 10.1016/j.eja.2004.10.002 |
[37] |
Zhou G S.Research prospect on impact of climate change on agricultural production in China. Meteorological and Environmental Sciences, 2015, 38(1): 80-94.
doi: 10.3969/j.issn.1673-7148.2015.01.012 |
[周广胜. 气候变化对中国农业生产影响研究展望. 气象与环境科学, 2015, 38(1): 80-94.]
doi: 10.3969/j.issn.1673-7148.2015.01.012 |
|
[38] |
de Beurs K M, Henebry G M. Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land cover change in Kazakhstan. Remote Sensing of Environment, 2004, 89(4): 497-509.
doi: 10.1016/j.rse.2003.11.006 |
[39] |
Fan Deqin, Zhao Xuesheng, Zhu Wenquan, et al.Review of influencing factors of accuracy of plant phenology monitoring based on remote sensing data. Progress in Geography, 2016, 35(3): 304-319.
doi: 10.18306/dlkxjz.2016.03.005 |
[范德芹, 赵学胜, 朱文泉, 等. 植物物候遥感监测精度影响因素研究综述. 地理科学进展, 2016, 35(3): 304-319.]
doi: 10.18306/dlkxjz.2016.03.005 |
|
[40] |
Schwartz M D, Ahas R, Aasa A.Onset of spring starting earlier across the Northern Hemisphere. Global Change Biology, 2006, 12(2): 343-351.
doi: 10.1111/j.1365-2486.2005.01097.x |
[41] | Ge Quansheng, Dai Junhu, Zheng Jingyun.The progress of phenology studies and challenges to modern phenology research in China. Bulletin of Chinese Academy of Sciences, 2010, 25(3): 310-316. |
[葛全胜, 戴君虎, 郑景云. 物候学研究进展及中国现代物候学面临的挑战. 中国科学院院刊, 2010, 25(3): 310-316.] | |
[42] |
Chen Xiaoqiu, Wang Linhai.Progress in remote sensing phenological research. Progress in Geography, 2009, 28(1): 33-40.
doi: 10.11820/dlkxjz.2009.01.005 |
[陈效逑, 王林海. 遥感物候学研究进展. 地理科学进展, 2009, 28(1): 33-40.]
doi: 10.11820/dlkxjz.2009.01.005 |
|
[43] |
Morin X, Lechowicz M J, Augspurger C, et al.Leaf phenology in 22 North American tree species during the 21st century. Global Change Biology, 2009, 15(4): 961-975.
doi: 10.1111/j.1365-2486.2008.01735.x |
[44] | Gervois S, de Noblet-Ducoudre N, Viovy N, et al. Including croplands in a global biosphere model: Methodology and evaluation at specific sites. Earth Interactions, 2004, 18: GB1009. doi: 10.1029/2003GB002108. |
[45] |
Wang E, Engel T.Simulation of phenological development of wheat crops. Agricultural Systems, 1998, 58(1): 1-24.
doi: 10.1016/S0308-521X(98)00028-6 |
[46] |
Lokupitiya E, Denning S, Paustian K, et al.Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands. Biogeosciences, 2009, 6(6): 969-986.
doi: 10.5194/bgd-6-1903-2009 |
[47] |
Lei H, Yang D, Lokupitiya E, et al.Coupling land surface and crop growth models for predicting evapotranspiration and carbon exchange in wheat-maize rotation croplands. Biogeosciences, 2010, 7(10): 3363-3375.
doi: 10.5194/bg-7-3363-2010 |
[48] |
Tsarouchi G M, Buytaert W, Mijic A.Coupling a land-surface model with a crop growth model to improve ET flux estimations in the Upper Ganges Basin, India. Hydrology and Earth System Sciences, 2014, 18(10): 4223-4238.
doi: 10.5194/hess-18-4223-2014 |
[49] |
Shi Wenjiao, Tao Fulu, Zhang Zhao.Identifying contributions of climate change to crop yields based on statistical models: A review. Acta Geographica Sinica, 2012, 67(9): 1213-1222.
doi: 10.11821/xb201209006 |
[史文娇, 陶福禄, 张朝. 基于统计模型识别气候变化对农业产量贡献的研究进展. 地理学报, 2012, 67(9): 1213-1222.]
doi: 10.11821/xb201209006 |
|
[50] |
de Noblet-Ducoudre N, Gervois S, Ciais P, et al. Coupling the Soil-Vegetation-Atmosphere-Transfer Scheme ORCHIDEE to the agronomy model STICS to study the influence of croplands on the European carbon and water budgets. Agronomie, 2004, 24(6/7): 397-407.
doi: 10.1051/agro:2004038 pmid: 22921729 |
[51] |
Chen F, Xie Z.Effects of crop growth and development on land surface fluxes. Advances in Atmospheric Sciences, 2011, 28(4): 927-944.
doi: 10.1007/s00376-010-0105-1 |
[52] | Yuan Zaijuan, Shen Yanjun, Chu Yingmin, et al.Characteristics and simulation of heat and CO2 fluxes over a typical cropland during the winter wheat growing in the North China Plain. Environmental Science, 2010, 31(1): 41-48. |
[袁再健, 沈彦俊, 褚英敏, 等. 华北平原冬小麦生长期典型农田热、碳通量特征与过程模拟. 环境科学, 2010, 31(1): 41-48.] | |
[53] | Tsvetsinskaya E A, Mearns L O, Easterling W E.Investigating the effect of seasonal plant growth and development in three-dimensional atmospheric simulations. Part I: Simulation of surface fluxes over the growing season. Journal of Climate, 2001, 14(5): 692-709. |
[54] |
Chang K H, Warland J S, Bartlett P A, et al.A simple crop phenology algorithm in the land surface model CN-CLASS. Agronomy Journal, 2014, 106(1): 297-308.
doi: 10.2134/agronj2013.0164 |
[55] |
Levis S, Bonan G B, Kluzek E, et al.Interactive crop management in the Community Earth System Model (CESM1): Seasonal influences on land-atmosphere fluxes. Journal of Climate, 2012, 25(14): 4839-4859.
doi: 10.1175/JCLI-D-11-00446.1 |
[56] |
Song Y, Jain A K, McIsaac G F. Implementation of dynamic crop growth processes into a land surface model: Evaluation of energy, water and carbon fluxes under corn and soybean rotation. Biogeosciences, 2013, 10(12): 8201-8201.
doi: 10.5194/bgd-10-9897-2013 |
[57] |
Van den Hoof C, Hanert E, Vidale P L. Simulating dynamic crop growth with an adapted land surface model-JULES-SUCROS: Model development and validation. Agricultural and Forest Meteorology, 2011, 151(2): 137-153.
doi: 10.1016/j.agrformet.2010.09.011 |
[58] |
Bondeau A, Smith P C, Zaehle S, et al.Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biology, 2007, 13(3): 679-706.
doi: 10.1007/s10267-003-0125-0 |
[59] |
Hammerle A, Haslwanter A, Tappeiner U, et al.Leaf area controls on energy partitioning of a temperate mountain grassland. Biogeosciences, 2008, 5(2): 421-431.
doi: 10.5194/bg-5-421-2008 pmid: 3858997 |
[60] |
Erb K H, Luyssaert S, Meyfroidt P, et al.Land management: data availability and process understanding for global change studies. Global Change Biology, 2016, 23(2): 512-533.
doi: 10.1111/gcb.13443 pmid: 27447350 |
[61] |
Xiao Y G, Qian Z G, Wu K, et al.Genetic gains in grain yield and physiological traits of winter wheat in Shandong Province, China, from 1969 to 2006. Crop Science, 2012, 52(1): 44-56.
doi: 10.2135/cropsci2011.05.0246 |
[62] |
Koester R P, Nohl B M, Diers B W, et al.Has photosynthetic capacity increased with 80 years of soybean breeding? An examination of historical soybean cultivars. Plant Cell and Environment, 2016, 39(5): 1058-1067.
doi: 10.1111/pce.12675 pmid: 26565891 |
[63] |
Balota M, William A P, Evett S R, et al.Morphological and physiological traits associated with canopy temperature depression in three closely related wheat lines. Crop Science, 2008, 48(5): 1897-1910.
doi: 10.2135/cropsci2007.06.0317 |
[64] |
Aisawi K A B, Reynolds M P, Singh R P, et al. The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Science, 2015, 55(4): 1749-1764.
doi: 10.2135/cropsci2014.09.0601 |
[65] | Sharma K D, Pannu R K.Physiological response of wheat (Triticum durum L.) to limited irrigation. Journal of Agrometeorology, 2008, 10(2): 113-117. |
[66] |
Kumudini S, Andrade F H, Boote K J, et al.Predicting maize phenology: Intercomparison of functions for developmental response to temperature. Agronomy Journal, 2014, 106(6): 2087-2097.
doi: 10.2134/agronj14.0200 |
[67] | Gilmore E C, Rogers J S.Heat units as a method of measuring maturity in corn. Agronomy Journal, 1958, 50(10): 611-615. |
[68] |
Wilson D R, Muchow R C, Murgatroyd C J.Model analysis of temperature and solar radiation limitations to maize potential productivity in a cool climate. Field Crops Research, 1995, 43(1): 1-18.
doi: 10.1016/0378-4290(95)00037-Q |
[69] |
Parent B, Tardieu F.Temperature responses of development processes have not been affected by breeding in different ecological areas for 17 crop species. New Phytologist, 2012, 194(3): 760-774.
doi: 10.1111/j.1469-8137.2012.04086.x pmid: 22390357 |
[70] |
Asseng S, Ewert F, Rosenzweig C, et al.Uncertainty in simulating wheat yields under climate change. Nature Climate Change, 2013, 3(9): 827-832.
doi: 10.1038/nclimate1916 |
[71] | Betts R A.Integrated approaches to climate-crop modelling: Needs and challenges. Philosophical Transactions of the Royal Society B-Biological Sciences, 2005, 360(1463): 2049-2065. |
[72] |
Jeong S J, Ho C H, Jeong J H.Increase in vegetation greenness and decrease in springtime warming over east Asia. Geophysical Research Letters, 2009, 36(2): L02710. doi: 10.1029/2008GL036583.
doi: 10.1029/2008GL036583 |
[73] |
Raddatz R L, Cummine J D.Inter-annual variability of moisture flux from the prairie agro-ecosystem: Impact of crop phenology on the seasonal pattern of Tornado Days. Boundary-Layer Meteorology, 2003, 106(2): 283-295.
doi: 10.1023/A:1021117925505 |
[74] |
Jackson B M, Wheater H S, Mcintyre N R, et al.The impact of upland land management on flooding: Insights from a multiscale experimental and modelling programme. Journal of Flood Risk Management, 2008, 1(2): 71-80.
doi: 10.1111/j.1753-318X.2008.00009.x |
[75] |
Bali M, Collins D.Contribution of phenology and soil moisture to atmospheric variability in ECHAM5/JSBACH model. Climate Dynamics, 2015, 45(9): 2329-2336.
doi: 10.1007/s00382-015-2473-9 |
[76] | Osborne T M, Lawrence D M, Challinor A J, et al.Development and assessment of a coupled crop-climate model. Global Change Biology, 2007, 13(1): 169-183. |
No related articles found! |