地理学报 ›› 2017, Vol. 72 ›› Issue (5): 906-917.doi: 10.11821/dlxb201705011
收稿日期:
2016-08-01
修回日期:
2017-01-15
出版日期:
2017-05-20
发布日期:
2017-05-20
作者简介:
作者简介:王瑛(1974-), 女, 云南曲靖人, 教授, 主要从事灾害风险评估和灾后恢复研究。E-mail:
基金资助:
Ying WANG1,2(), Qigen LIN1,2, Peijun SHI1,2
Received:
2016-08-01
Revised:
2017-01-15
Published:
2017-05-20
Online:
2017-05-20
Supported by:
摘要:
对中国2000-2012年造成人员伤亡的地质灾害事件进行分析,其空间分布格局受地形等自然环境要素的影响,南多北少,主要位于川西山区和云贵高原地区,东南丘陵地区,北方黄土丘陵,以及祁连山脉和天山山脉等地区,但局部地区的分布格局表明其还受到人为因素影响。构建基于二元Logistic回归的中国地质灾害伤亡事件发生概率模型(CELC),定量分析自然、人为因素的影响程度,结果表明GDP增长率是仅次于地形起伏度的第二大影响因素,GDP增长率每增加2.72%,地质灾害伤亡事件发生的概率变为原来的2.706倍。此外还有多年平均降水、植被覆盖度、岩性、土壤类型、断裂带、产业类型和人口密度等因素。将CELC模型应用于中国县域,计算各个县的地质灾害伤亡事件概率,发现尚未发生但概率较高的县有27个,或为贫困县、或为矿产工业县域,或为房产过度开发县,它们是未来中国需要重点防范地质灾害的县域。
王瑛, 林齐根, 史培军. 中国地质灾害伤亡事件的空间格局及影响因素[J]. 地理学报, 2017, 72(5): 906-917.
Ying WANG, Qigen LIN, Peijun SHI. Spatial pattern and influencing factors of casualty events caused by landslides[J]. Acta Geographica Sinica, 2017, 72(5): 906-917.
表2
Logistic回归模型中的变量
变量 | β | S.E. | Sig. | Exp(β) |
---|---|---|---|---|
ln地形起伏度 | 1.922 | 0.117 | 0.000 | 6.834 |
lnGDP增速 | 0.996 | 0.209 | 0.000 | 2.706 |
ln年平均降水量 | 0.535 | 0.178 | 0.003 | 1.707 |
ln植被覆盖度 | -0.333 | 0.159 | 0.037 | 0.717 |
断裂带 | 0.374 | 0.093 | 0.000 | 1.453 |
ln人口密度 | 0.317 | 0.063 | 0.000 | 1.373 |
岩性a | 0.000 | |||
碎屑沉积岩 | -0.649 | 0.171 | 0.000 | 0.523 |
火山碎屑岩 | -0.448 | 0.330 | 0.174 | 0.639 |
混合沉积岩 | -0.173 | 0.168 | 0.302 | 0.841 |
碳酸盐沉积岩 | -0.572 | 0.178 | 0.001 | 0.564 |
酸性火山岩 | -1.574 | 0.408 | 0.000 | 0.207 |
中性火山岩 | -0.866 | 0.475 | 0.069 | 0.421 |
基性火山岩 | -19.936 | 9093 | 0.998 | 0.000 |
酸性深成岩 | -0.204 | 0.184 | 0.268 | 0.815 |
中性深成岩 | -20.172 | 12480 | 0.999 | 0.000 |
基性深成岩 | -19.612 | 40190 | 1 | 0.000 |
变质岩 | 0.238 | 0.309 | 0.442 | 1.268 |
水体 | -17.337 | 27290 | 0.999 | 0.000 |
土壤类型a | 0.000 | |||
半淋溶土 | -0.396 | 0.241 | 0.1 | 0.673 |
钙层土 | 0.567 | 0.31 | 0.068 | 1.762 |
干旱土 | 1.183 | 0.477 | 0.013 | 3.263 |
漠土 | 2.083 | 0.532 | 0.000 | 8.026 |
初育土 | 0.447 | 0.169 | 0.008 | 1.564 |
半水成土 | 0.857 | 0.468 | 0.067 | 2.357 |
盐碱土 | -17.918 | 12030 | 0.999 | 0 |
人为土 | 0.893 | 0.284 | 0.002 | 2.443 |
高山土 | 0.467 | 0.3 | 0.119 | 1.595 |
铁铝土 | 0.524 | 0.157 | 0.001 | 1.69 |
产业类型a | 0.000 | |||
第一产业中等县 | 0.536 | 0.126 | 0.000 | 1.71 |
第一产业弱势县 | 0.352 | 0.145 | 0.015 | 1.422 |
Constant | -11.913 | 1.344 | 0.000 | 0.000 |
[1] | Sheng Laiyun, Wang Wenbo, Zhong Shouyang.China Statistical Yearbook.Beijing: China Statistics Press, 2013. |
[盛来运, 王文波, 钟守洋.中国统计年鉴. 北京: 中国统计出版社, 2013.] | |
[2] | The State Council.Geological Disaster Prevention Regulations. 2004. |
[国务院. 地质灾害防治条例. 2004.] | |
China Institute for Geo-Environment Monitoring. Rockfall and Landslide Disaster Map of China. Beijing: SinoMaps Press, 2007. | |
[中国地质环境监测院. 中国崩塌滑坡灾害图.北京: 中国地图出版社, 2007.] | |
[4] | China Institute for Geo-Environment Monitoring. Debris Flow Disaster Map of China. Beijing: SinoMaps Press, 2007. |
[中国地质环境监测院.中国泥石流灾害图.北京: 中国地图出版社, 2007.] | |
[5] |
Eeckhaut M., Hervás J., Jaedicke C,et al.Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides, 2011, 9(3): 357-369.
doi: 10.1007/s10346-011-0299-z |
[6] |
Ramani S E, Pitchaimani K, Gnanamanickam V R.GIS based landslide susceptibility mapping of Tevankarai Ar Sub-watershed, Kodaikkanal, India using binary logistic regression analysis. Journal of Mountain Science, 2011, 8(4): 505-517.
doi: 10.1007/s11629-011-2157-9 |
[7] |
García-Rodríguez M J, Malpica J A, Benito B, et al. Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression. Geomorphology, 2008, 95(3/4): 172-191.
doi: 10.1016/j.geomorph.2007.06.001 |
[8] |
Guzzetti F, Peruccacci S, Rossi M, et al.Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorology and Atmospheric Physics, 2007, 98(3/4): 239-267.
doi: 10.1007/s00703-007-0262-7 |
[9] |
Ohlmacher G C, Davis J C.Using multiple logistic regression and GIS technology to predict landslide hazard in Northeast Kansas, USA. Engineering Geology, 2003, 69(3/4): 331-343.
doi: 10.1016/S0013-7952(03)00069-3 |
[10] |
Atkinson P.M.,ssari R.Generalised linear modelling of susceptibility to landsliding in the Central Apennines, Italy. Computers & Geosciences, 1998, 24(4): 373-385.
doi: 10.1016/S0098-3004(97)00117-9 |
[11] |
Ayalew L, Yamagishi H, Ugawa N.Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides, 2004, 1(1): 73-81.
doi: 10.1007/s10346-003-0006-9 |
[12] |
Huang Runqiu.Large-scale landslides and their sliding mechanisms in China since the 20th century. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454.
doi: 10.3321/j.issn:1000-6915.2007.03.001 |
[黄润秋. 20世纪以来中国的大型滑坡及其发生机制. 岩石力学与工程学报, 2007, 26(3): 433-454.]
doi: 10.3321/j.issn:1000-6915.2007.03.001 |
|
[13] |
Ayalew L, Yamagishi H.The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, central Japan. Geomorphology, 2005, 65(1/2): 15-31.
doi: 10.1016/j.geomorph.2004.06.010 |
[14] |
Jadda M,Shafri H Z M,Mansor S B.PFR model and GiT for landslide susceptibility mapping: A case study from central Alborz, Iran. Natural Hazards, 2011, 57(2): 395-412.
doi: 10.1007/s11069-010-9620-8 |
[15] |
Li Yuan, Meng Hui, Dong Ying, et al.Main types and characteristics of geo-hazard in China-based on the results of geo-hazard survey in 290 counties. The Chinese Journal of Geological Hazard and Control, 2004, 15(2): 29-34.
doi: 10.3969/j.issn.1003-8035.2004.02.005 |
[李媛, 孟晖, 董颖, 等. 中国地质灾害类型及其特征: 基于全国县市地质灾害调查成果分析. 中国地质灾害与防治学报, 2004, 15(2): 29-34.]
doi: 10.3969/j.issn.1003-8035.2004.02.005 |
|
[16] | Ministry of Land and Resources of China,Accessed September, 2014. |
[中国国土资源部 访问时间: 2014年9月.] | |
[17] | China Institute for Geo-Environment Monitoring. China Geological Hazard Bulletin (2004-2012). China Geological Environmental Information Site. . |
[中国地质环境监测院. 全国地质灾害通报(2004-2012).中国地质环境信息网. 访问时间: 2014年9月.] | |
[18] | Ministry of Civil Affairs National Disaster Reduction Center.Yesterday's Disaster (2004-2012). |
[民政部国家减灾中心.昨日灾情 (2004-2012).] | |
[19] | Computer Network Information Center of CAS. |
[中国科学院计算机网络信息中心.] | |
[20] | Institute of Geographic Sciences and Natural Resources Research of CAS. |
[中国科学院地理科学与资源研究所.] | |
[21] | Zhang Haibo, Tong Xing.Public policy in a high-risk society.Journal of Nanjing Normal University:ocial Science, 2009(6): 23-28. |
[张海波, 童星. 高风险社会中的公共政策.南京师大学报:社会科学版, 2009(6): 23-28.] | |
[22] |
Hu Y, Wang J, Li X, et al.Geographical detector-based risk assessment of the under-five mortality in the 2008 Wenchuan earthquake, China. PloS One, 2011, 6(6): e21427.
doi: 10.1371/journal.pone.0021427 pmid: 21738660 |
[23] |
Luo W, Jasiewicz J, Stepinski T, et al.Spatial association between dissection density and environmental factors over the entire conterminous United States. Geophysical Research Letters, 2016, 43(2): 692-700.
doi: 10.1002/2015GL066941 |
[24] |
Li Hong, Gong Zhaoning, Zhao Wenji, et al.Driving forces analysis of reservoir wetland evolution in Beijing based on logistic regression model. Acta Geographica Sinica, 2012, 67(3): 357-367.
doi: 10.1007/s11783-011-0280-z |
[李洪, 宫兆宁, 赵文吉, 等. 基于Logistic回归模型的北京市水库湿地演变驱动力分析. 地理学报, 2012. 67(3): 357-367.]
doi: 10.1007/s11783-011-0280-z |
|
[25] |
Qi Lili, Bo Yanchen.MAUP effects on the detection of spatial hot spots in socio-economic statistical data. Acta Geographica Sinica, 2012, 67(10): 1317-1326.
doi: 10.11821/xb201210003 |
[齐丽丽, 柏延臣. 社会经济统计数据热点探测的MAUP效应. 地理学报, 2012, 67(10): 1317-1326.]
doi: 10.11821/xb201210003 |
|
[26] |
Liu Wangbao, Yan Xiaopei, Cao Xiaoshu.Housing type variation and its influencing factors in transitional urban China: Based on analysis of CGSS 2005. Acta Geographica Sinica, 2010, 65(8): 949-960.
doi: 10.11821/xb201008006 |
[刘望保, 闫小培, 曹小曙. 转型期中国城镇居民住房类型分化及其影响因素: 基于CGSS(2005)的分析. 地理学报, 2010, 65(8): 949-960.]
doi: 10.11821/xb201008006 |
|
[27] |
Chau K T, Chan J E.Regional bias of landslide data in generating susceptibility maps using logistic regression: case of Hong Kong Island. Landslides, 2005, 2(4): 280-290.
doi: 10.1007/s10346-005-0024-x |
[28] |
Lee S, Pradhan B.Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 2006, 4(1): 33-41.
doi: 10.1007/s10346-006-0047-y |
[29] |
Wang Y, Song C, Lin Q, et al.Occurrence probability assessment of earthquake-triggered landslides with Newmark displacement values and logistic regression: The Wenchuan earthquake, China. Geomorphology, 2016, 258: 108-119.
doi: 10.1016/j.geomorph.2016.01.004 |
[30] |
King G, Zeng L.Logistic regression in rare events data. Political Analysis, 2001, 9(2): 137-163.
doi: 10.1093/oxfordjournals.pan.a004868 |
[31] | Yen S J, Lee Y S, Lin C H, et al. Investigating the effect of sampling methods for imbalanced data distributions//2006 IEEE International Conference on Systems, Man and Cybernetics .IEEE, 2006(5): 4163-4168. |
[32] |
Hartmann J, Moosdorf N.The new global lithological map database GLiM: A representation of rock properties at the earth surface. Geochemistry, Geophysics, Geosystems, 2012, 13(12): 1-37.
doi: 10.1029/2012GC004370 |
[33] |
Swets J A.Measuring the accuracy of diagnostic systems. Science, 1988, 240(4857): 1285-1293.
doi: 10.1126/science.3287615 pmid: 3287615 |
[34] |
Chung C F, Fabbri A G.Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 2003, 30(3): 451-472.
doi: 10.1023/B:NHAZ.0000007172.62651.2b |
[35] |
Poiraud A.Landslide susceptibility-certainty mapping by a multi-method approach: A case study in the tertiary basin of Puy-En-Velay (Massif central, France). Geomorphology, 2014, 216: 208-224.
doi: 10.1016/j.geomorph.2014.04.001 |
[1] | 林李月, 朱宇, 林坤, 柯文前. 两栖生计下中国流动人口城镇购房意愿的空间特征和影响因素[J]. 地理学报, 2021, 76(6): 1350-1365. |
[2] | 魏石梅, 潘竟虎. 中国地级及以上城市网络结构韧性测度[J]. 地理学报, 2021, 76(6): 1394-1407. |
[3] | 杨忍, 潘瑜鑫. 中国县域乡村脆弱性空间特征与形成机制及对策[J]. 地理学报, 2021, 76(6): 1438-1454. |
[4] | 殷江滨, 李尚谦, 姜磊, 程哲, 黄晓燕, 路改改. 中国连片特困地区非农就业增长的时空特征与驱动因素[J]. 地理学报, 2021, 76(6): 1471-1488. |
[5] | 胡畔, 陈波, 史培军. 中国暴雨洪涝灾情时空格局及影响因素[J]. 地理学报, 2021, 76(5): 1148-1162. |
[6] | 黄晓东, 马海涛, 苗长虹. 基于创新企业的中国城市网络联系特征[J]. 地理学报, 2021, 76(4): 835-852. |
[7] | 王录仓, 刘海洋, 刘清. 基于腾讯迁徙大数据的中国城市网络研究[J]. 地理学报, 2021, 76(4): 853-869. |
[8] | 夏兴生, 潘耀忠, 朱秀芳, 张锦水. 中国综合农业分区下的Ångström-Prescott公式系数逐月校正与优选[J]. 地理学报, 2021, 76(4): 888-902. |
[9] | 周扬, 李寻欢, 童春阳, 黄晗. 中国村域贫困地理格局及其分异机理[J]. 地理学报, 2021, 76(4): 903-920. |
[10] | 王淑佳, 孙九霞. 中国传统村落可持续发展评价体系构建与实证[J]. 地理学报, 2021, 76(4): 921-938. |
[11] | 范泽孟. 中国生态过渡带分布的空间识别及情景模拟[J]. 地理学报, 2021, 76(3): 626-644. |
[12] | 郭付友, 佟连军, 仇方道, 李一鸣. 黄河流域生态经济走廊绿色发展时空分异特征与影响因素识别[J]. 地理学报, 2021, 76(3): 726-739. |
[13] | 徐羽, 李秀彬, 辛良杰. 中国耕地规模化流转租金的分异特征及其影响因素[J]. 地理学报, 2021, 76(3): 753-763. |
[14] | 李钢, 薛淑艳, 马雪瑶, 周俊俊, 徐婷婷, 王皎贝. 中国失踪人口的时空格局演变与形成机制[J]. 地理学报, 2021, 76(2): 310-325. |
[15] | 古恒宇, 沈体雁. 中国高学历人才的空间演化特征及驱动因素[J]. 地理学报, 2021, 76(2): 326-340. |