地理学报 ›› 2017, Vol. 72 ›› Issue (4): 657-670.doi: 10.11821/dlxb201704008
收稿日期:
2016-08-26
修回日期:
2016-11-25
出版日期:
2017-04-20
发布日期:
2017-04-20
作者简介:
作者简介:谭一洺(1987-), 女, 辽宁阜新人, 博士生, 研究方向为城市社会地理学与时间地理学。E-mail:
基金资助:
Yiming TAN1(), Yanwei CHAI1(
), Mei-Po KWAN2
Received:
2016-08-26
Revised:
2016-11-25
Published:
2017-04-20
Online:
2017-04-20
Supported by:
摘要:
伴随着城市研究新数据源与方法论的兴起,从时空间整合的角度反思和修正传统的概念与方法,成为时空行为研究重要发展趋势。地理背景作为城市研究的核心变量,其界定方式不确定性如何影响对个体行为作用效应的分析结果,已成为地理学的新方法论问题。在已有文献的基础上,本文基于西宁市的实证研究,尝试验证地理背景不确定性对行为模式分析的影响,并进一步探讨多个行为变量与其相互关系以及时间维度差异。通过比较两类地理背景范围(仅考虑居住地建成环境的地理背景范围、综合考虑居住地与家外活动地建成环境的地理背景范围),分析对个体行为作用效应结果的差异性。研究发现:如果仅以居住地作为地理背景范围,关注其中建成环境对行为影响时,可能会夸大“家”的作用,而综合考虑居住地与活动地的地理背景范围时,更为接近于“真实”的地理背景,建成环境对家外活动时长、出行时长和活动空间有一定的解释力,且能够捕捉到一些重要的影响因素并修正有悖于常识的结论。同时地理背景不确定性对个体行为作用效应的分析结果影响还表现出较明显的工作日/休息日差异,表明地理背景存在时间维度的不确定性。研究结论在一定程度上揭示了时空行为研究在重新审视传统城市地理学概念、探索日常生活视角的度量方法与研究范式方面的有效性。
谭一洺, 柴彦威, 关美宝. 地理背景的不确定性对时空行为模式分析的影响——基于西宁市的实证研究[J]. 地理学报, 2017, 72(4): 657-670.
Yiming TAN, Yanwei CHAI, Mei-Po KWAN. The impact of the uncertain geographic context on the space-time behavior analysis: A case study of Xining, China[J]. Acta Geographica Sinica, 2017, 72(4): 657-670.
表2
居民活动时间利用差异性
工作日 | 休息日 | F值 | |||||
---|---|---|---|---|---|---|---|
平均值(min) | 标准差 | 平均值(min) | 标准差 | ||||
强制性活动 | 家内 | 13.61 | 69.100 | 10.77 | 59.727 | 5.767*** | |
家外 | 293.30 | 259.980 | 156.55 | 249.284 | 3.258*** | ||
维护性活动 | 家内 | 763.25 | 183.876 | 798.23 | 184.300 | 2.663*** | |
家外 | 71.60 | 117.623 | 103.68 | 144.324 | 4.523*** | ||
可支配活动 | 家内 | 179.76 | 158.602 | 201.70 | 161.339 | 5.327*** | |
家外 | 76.61 | 142.051 | 126.10 | 170.492 | 6.472*** | ||
出行 | 41.87 | 38.472 | 42.98 | 40.593 | 7.953*** |
表5
工作日不同地理背景对行为模式分析影响的SEM模型
家外强制性 活动时长 | 家外维护性 活动时长 | 家外可支配活动时长 | 出行频次 | 出行时长 | 活动空间 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
居住地 | 居住地+活动地 | 居住地 | 居住地+活动地 | 居住地 | 居住地+活动地 | 居住地 | 居住地+活动地 | 居住地 | 居住地+活动地 | 居住地 | 居住地+活动地 | ||
年龄 | -0.33*** | -0.34*** | -0.11*** | -0.12*** | 0.14*** | 0.13*** | -0.05* | ||||||
性别 | -0.08** | -0.08** | -0.05* | -0.05* | -0.07** | -0.07** | |||||||
收入 | 0.29*** | 0.30*** | 0.06* | 0.07** | 0.13*** | 0.14*** | |||||||
驾照 | -0.06* | ||||||||||||
市中心距离 | -0.08** | 0.06* | 0.11** | 0.06* | |||||||||
居住地餐饮娱乐设施密度 | 0.31*** | 0.28** | 0.26** | -0.20** | -0.23** | -0.16* | -0.21** | ||||||
居住地商业零售设施密度 | -0.21** | -0.17* | -0.38*** | -0.25** | 0.17* | 0.16* | 0.23** | ||||||
居住地公交车站设施密度 | 0.06* | -0.08** | |||||||||||
活动地餐饮娱乐设施密度 | -0.26** | -0.17* | |||||||||||
活动地商业零售设施密度 | 0.32** | -0.18* | 0.29** | ||||||||||
活动地公交车站设施密度 | 0.09** | 0.13*** | -0.27*** | ||||||||||
家外强制性活动时长 | -0.34*** | -0.35*** | -0.43*** | -0.44*** | 0.25*** | 0.23*** | 0.17*** | 0.20*** | |||||
家外维护性活动时长 | -0.15*** | -0.15*** | 0.29*** | 0.28*** | 0.08** | 0.10*** | |||||||
家外可支配活动时长 | 0.38*** | 0.37*** | 0.11*** | ||||||||||
出行频次 | 0.39*** | 0.38*** | 0.06* | ||||||||||
出行时长 | 0.31*** | 0.32*** |
表6
休息日不同地理背景对行为模式影响的SEM模型
家外强制性 活动时长 | 家外维护性 活动时长 | 家外可支配 活动时长 | 出行频次 | 出行时长 | 活动空间 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
居住地 | 居住地+活动地 | 居住地 | 居住地+活动地 | 居住地 | 居住地+活动地 | 居住地 | 居住地+活动地 | 居住地 | 居住地+活动地 | 居住地 | 居住地+活动地 | ||
年龄 | -0.24*** | -0.24*** | -0.20*** | -0.19*** | 0.05* | 0.05** | -0.05* | ||||||
性别 | -0.11*** | -0.11*** | -0.09** | -0.09** | -0.07** | -0.07** | |||||||
收入 | 0.10*** | 0.10** | |||||||||||
驾照 | -0.08** | -0.08** | -0.05* | -0.06** | |||||||||
市中心距离 | 0.08** | -0.07** | -0.09** | 0.08** | 0.08** | 0.20*** | 0.16*** | ||||||
居住地餐饮娱乐设施密度 | 0.71*** | 0.71*** | 0.37*** | 0.4*** | -0.20** | -0.22** | |||||||
居住地商业零售设施密度 | -0.58*** | -0.54*** | 0.16* | -0.37*** | -0.35*** | 0.20** | 0.23** | ||||||
居住地公交车站设施密度 | -0.06** | ||||||||||||
活动地餐饮娱乐设施密度 | |||||||||||||
活动地商业零售设施密度 | 0.29** | ||||||||||||
活动地公交车站设施密度 | -0.08** | -0.11** | -0.26*** | ||||||||||
家外强制性活动时长 | -0.32*** | -0.30*** | -0.50*** | -0.50*** | 0.20*** | 0.20*** | 0.10*** | 0.09*** | |||||
家外维护性活动时长 | -0.32*** | -0.31*** | 0.26*** | 0.26*** | |||||||||
家外可支配活动时长 | 0.43** | 0.43*** | |||||||||||
出行频次 | 0.43*** | 0.43*** | |||||||||||
出行时长 | -0.13*** | -0.12*** | 0.41*** | 0.40*** |
[1] | Aitken S C.Person-environment theories in contemporary perceptual and behavioural geography I: Personality, attitudinal and spatial choice theories. Progress in Human Geography, 1991, 15(2): 179-193. |
[2] |
Shen Yue, Chai Yanwei, Wang Donggen.Reviews on impacts of information and communication technologies on human spatial-temporal behavior. Progress in Geography, 2011, 30(6): 643-651.
doi: 10.11820/dlkxjz.2011.06.001 |
[申悦, 柴彦威, 王冬根. ICT对居民时空行为影响研究进展. 地理科学进展, 2011, 30(6): 643-651.]
doi: 10.11820/dlkxjz.2011.06.001 |
|
[3] |
Qin Xiao, Zhen Feng, Xiong Lifang, et al.Methods in urban temporal and spatial behavior research in the Big Data Era. Progress in Geography, 2013, 32(9): 1352-1361.
doi: 10.11820/dlkxjz.2013.09.005 |
[秦萧, 甄峰, 熊丽芳, 等. 大数据时代城市时空间行为研究方法. 地理科学进展, 2013, 32(9): 1352-1361.]
doi: 10.11820/dlkxjz.2013.09.005 |
|
[4] | Long Ying, Mao Mingrui, Mao Qizhi, et al.Fine-scale urban modeling and its opportunities in the "big data" era: methods, data and empirical studies. Human Geography, 2014, 29(3): 7-13. |
[龙瀛, 茅明睿, 毛其智, 等. 大数据时代的精细化城市模拟: 方法、数据和案例. 人文地理, 2014, 29(3): 7-13.] | |
[5] |
Chai Yanwei, Shen Yue, Xiao Zuopeng, et al.Review for space-time behavior research: Theory frontiers and application in the future. Progress in Geography, 2012, 31(6): 667-675.
doi: 10.11820/dlkxjz.2012.06.001 |
[柴彦威, 申悦, 肖作鹏, 等. 时空间行为研究动态及其实践应用前景. 地理科学进展, 2012, 31(6): 667-675.]
doi: 10.11820/dlkxjz.2012.06.001 |
|
[6] | Fotheringham A S, Wong D W S. The modifiable areal unit problem in multivariate statistical analysis. Environment and Planning A, 1991, 23(7): 1025-1044. |
[7] |
Fisher P F.Algorithm and implementation uncertainty in viewshed analysis. International Journal of Geographical Information Science, 1993, 7(4): 331-347.
doi: 10.1080/02693799308901965 |
[8] |
Holt D, Steel D G, Tranmer M, et al.Aggregation and ecological effects in geographically based data. Geographical Analysis, 1996, 28: 244-261.
doi: 10.1111/j.1538-4632.1996.tb00933.x |
[9] |
Kwan M P.The uncertain geographic context problem.Annals of the Association of American Geographers, 2012, 102(5): 958-968.
doi: 10.1080/00045608.2012.687349 |
[10] |
Basta L A, Richmond T S, Wiebe D J.Neighborhoods, daily activities, and measuring health risks experienced in urban environments. Social Science & Medicine, 2010, 71(11): 1943-1950.
doi: 10.1016/j.socscimed.2010.09.008 pmid: 20980088 |
[11] |
Wiehe S E, Hoch S C, Liu G C, et al.Adolescent travel patterns: pilot data indicating distance from home varies by time of day and day of week. Journal of Adolescent Health, 2008, 42(4): 418-420.
doi: 10.1016/j.jadohealth.2007.09.018 pmid: 18346668 |
[12] | Kwan M P, Hawthorne T, Calder C, et al.Activity-space measures for studying spatial crime and social isolation//Annual Meeting of the Association of American Geographers, Las Vegas, NV, 2009. |
[13] |
Kwan, M P.From place-based to people-based exposure measures. Social Science & Medicine, 2009, 69(9): 1311-1313.
doi: 10.1016/j.socscimed.2009.07.013 pmid: 19665828 |
[14] |
Troped P J, Wilson J S, Matthews C E, et al.The built environment and location based physical activity. American Journal of Preventive Medicine, 2010, 38(4): 429-438.
doi: 10.1016/j.amepre.2009.12.032 pmid: 3568665 |
[15] |
Zhou Xingang, Yue Yang, Yeh Anthony Gar On, et al. Uncertainty in spatial analysis of dynamic data: Identifying city center. Geomatics and Information Science of Wuhan University, 2014, 32(6): 701-705.
doi: 10.13203/j.whugis20140074 |
[周新刚, 乐阳, 叶嘉安, 等. 动态数据空间分析的不确定性问题: 以城市中心识别为例. 武汉大学学报(信息科学版), 2014, 32(6): 701-705.]
doi: 10.13203/j.whugis20140074 |
|
[16] |
Tana, Chai Yanwei, Kwan Mei-Po. The relationship between the built environment and car travel distance on weekdays in Beijing. Acta Geographica Sinica, 2015, 70(10): 1675-1685.
doi: 10.11821/dlxb201510011 |
[塔娜, 柴彦威, 关美宝. 建成环境对北京市郊区居民工作日汽车出行的影响. 地理学报, 2015, 70(10): 1675-1685.]
doi: 10.11821/dlxb201510011 |
|
[17] |
Handy S, Boarnet M G, Ewing R, et al.How the built environment affects physical activity: Views from urban planning. American Journal of Preventive Medicine, 2002, 23(2): 64-73.
doi: 10.1016/S0749-3797(02)00475-0 pmid: 12133739 |
[18] |
Handy S, Cao X, Mokhtarian P.Correlation or causality between the built environment and travel behavior? Evidence from Northern California. Transportation Research Part D: Transport andEnvironment, 2005, 10(6): 427-444.
doi: 10.1016/j.trd.2005.05.002 |
[19] |
Merlin L A.Can the built environment influence nonwork activity participation? An analysis with national data. Transportation, 2015, 42(2): 369-387.
doi: 10.1007/s11116-014-9554-1 |
[20] |
Hanson S, Hanson P.The travel-activity patterns of urban residents: dimensions and relationships to sociodemographic characteristics. Economic Geography, 1981, 57: 332-347.
doi: 10.2307/144213 |
[21] |
Burnett P, Hanson S.The analysis of travel as an example of complex human behavior in spatially-constrained situations: definition and measurement issues. Transportation Research A, 1982, 16(2): 87-102.
doi: 10.1016/0191-2607(82)90001-2 |
[22] |
Kwan M P.Gender and individual access to urban opportunities: A study using space-time measures. The Professional Geographer, 1999, 51(2): 210-227.
doi: 10.1111/0033-0124.00158 |
[23] |
Kwan M P.Interactive geovisualization of activity-travel patterns using three-dimensional geographical information systems: A methodological exploration with a large data set. Transportation Research C, 2000, 8: 185-203.
doi: 10.1016/S0968-090X(00)00017-6 |
[24] |
Chen X, Kwan M P.Contextual uncertainties, human mobility, and perceived food environment: The uncertain geographic context problem in food access research. American journal of public health, 2015, 105(9): 1734-1737.
doi: 10.2105/AJPH.2015.302792 pmid: 26180982 |
[25] |
Bhat C R, Misra R.Discretionary activity time allocation of individuals between in-home and out-of-home and between weekdays and weekends. Transportation, 1999, 26(2): 193-229.
doi: 10.1023/A:1005192230485 |
[26] |
Susilo Y, Kitamura R.Analysis of day-to-day variability in an individual's action space: Exploration of 6-week Mobidrive travel diary data. Transportation Research Record: Journal of the Transportation Research Board, 2005, (1902): 124-133.
doi: 10.3141/1902-15 |
[27] |
Novák J, Sýkora L.A city in motion: Time-space activity and mobility patterns of suburban inhabitants and the structuration of the spatial organization of the patterns of the Prague metropolitan area. Geografiska Annaler: Series B, Human Geography, 2007, 89(2): 147-168.
doi: 10.1111/j.1468-0467.2007.00245.x |
[28] |
Shen Yue, Chai Yanwei.Daily activity space of suburban mega-community residents in Beijing based on GPS data. Acta Geographica Sinica, 2013, 68(4): 506-516.
doi: 10.3969/j.issn.0375-5444.2013.04.006 |
[29] |
Kwan M P.How GIS can help address the uncertain geographic context problem in social science research. Annals of GIS, 2012, 18(4): 245-255.
doi: 10.1080/19475683.2012.727867 |
[30] |
Kwan M P.Algorithmic geographies: Big data, algorithmic uncertainty, and the production of geographic knowledge. Annals of the American Association of Geographers, 2016, 106(2): 274-282.
doi: 10.1080/00045608.2015.1117937 |
[31] |
Hägerstraand T.What about people in regional science? Papers in Regional Science, 1970, 24(1): 7-24.
doi: 10.1111/j.1435-5597.1970.tb01464.x |
[32] | Reichman S.Travel adjustments and life styles: A behavioral approach//Stopher P R, Meyburg A H. Behavioral Travel Demand Models. Lexington, Massachusetts: Lexington Books, 1976: 143-152. |
[33] |
Chapin F S.Human Activity Patterns in the City: Things People Do in Time and in Space. New York: Wiley, 1974.
doi: 10.2307/1530466 |
[34] |
Bhat C R, Koppelman F S.A conceptual framework of individual activity program generation. Transportation Research Part A: Policy and Practice, 1993, 27(6): 433-446.
doi: 10.1016/0965-8564(93)90050-U |
[35] |
Gliebe J P, Koppelman F S.A model of joint activity participation between household members. Transportation, 2002, 29(1): 49-72.
doi: 10.1023/A:1012995509777 |
[36] |
Andreev P, Salomon I, Pliskin N.Review: State of teleactivities. Transportation Research Part C: Emerging Technologies, 2010, 18(1): 3-20.
doi: 10.1016/j.trc.2009.04.017 |
[37] | Ettema D, Timmermans H.Theories and models of activity patterns//Ettema D, Timmermans H. Activity-based Approaches to Travel Analysis. Oxford: Pergamon, 1997: 1-36. |
[38] |
Ma T Y, Gerber P, Carpentier S, et al.Geographic, social-cultural and modal usage determinants of activity space: A case study of EU Institutions in Luxembourg and Strasbourg. Transportation Research Procedia, 2014, 3: 109-118.
doi: 10.1016/j.trpro.2014.10.096 |
[39] |
McEntee J, Agyeman J. Towards the development of a GIS method for identifying rural food deserts: Geographic access in Vermont, USA. Applied Geography, 2010, 30(1): 165-176.
doi: 10.1016/j.apgeog.2009.05.004 |
[40] |
Cervero R, Sarmiento O L, Jacoby E, et al.Influences of built environments on walking and cycling: Lessons from Bogotá. International Journal of Sustainable Transportation, 2009, 3(4): 203-226.
doi: 10.1080/15568310802178314 |
[41] |
Fan Yingling, Khattak A.Urban form, individual spatial footprints, and travel examination of space-use behavior.Transportation Research Record, 2008, 2082: 98-106.
doi: 10.3141/2082-12 |
[42] |
Dijst M.Two-earner families and their action spaces: A case study of two Dutch communities. GeoJournal, 1999, 48(3): 195-206.
doi: 10.1023/A:1007031809319 |
[43] |
Golob T F, McNally M G. A model of activity participation and travel interactions between household heads. Transportation Research Part B: Methodological, 1997, 31(3): 177-194.
doi: 10.1016/S0191-2615(96)00027-6 |
[44] |
Cao X, Chai Y.Gender role-based differences in time allocation: Case study of Shenzhen, China. Transportation Research Record: Journal of the Transportation Research Board, 2008: 58-66.
doi: 10.3141/2014-08 |
[45] |
Ettema D, Timmermans H.Modeling departure time choice in the context of activity scheduling behavior. Transportation Research Record: Journal of the Transportation Research Board, 2003, 1831(1): 39-46.
doi: 10.3141/1831-05 |
[46] |
Golob T F.Structural equation modeling for travel behavior research. Transportation Research Part B: Methodological, 2003, 37(1): 1-25.
doi: 10.1016/S0191-2615(01)00046-7 |
[47] |
Kuppam A R, Pendyala R M.A structural equations analysis of commuters' activity and travel patterns. Transportation, 2001, 28(1): 33-54.
doi: 10.1023/A:1005253813277 |
[48] | Fan Y.The built environment, activity space, and time allocation. An activity-based framework for modeling the land use and travel connection [D]. The University of North Carolina at Chapel Hill, 2007. |
[49] |
Golob T F.Structural equation modeling for travel behavior research.Transportation Research Part B: Methodological, 2003, 37(1): 1-25.
doi: 10.1016/S0191-2615(01)00046-7 |
[50] |
Oliver L N, Schuurman N, Hall A W.Comparing circular and network buffers to examine the influence of land use on walking for leisure and errands. International journal of health geographics, 2007, 6(1): 1.
doi: 10.1186/1476-072X-6-41 pmid: 17883870 |
[51] |
Zhao Ying, Chai Yanwei.Residents' activity-travel behavior variation by communities in Beijing, China. Chinese Geographical Science, 2013, 23(4): 492-505.
doi: 10.1007/s11769-013-0616-7 |
[52] |
Dijst M, Vidakovic V.Travel time ratio: The key factor of spatial reach. Transportation, 2000, 27(2): 179-199.
doi: 10.1023/A:1005293330869 |
[53] |
Wiehe S E, Kwan M P, Wilson J, et al.Adolescent health-risk behavior and community disorder. PloS One, 2013, 8(11): e77667.
doi: 10.1371/journal.pone.0077667 pmid: 24278107 |
[1] | 吴朝宁, 李仁杰, 郭风华. 基于圈层结构的游客活动空间边界提取新方法[J]. 地理学报, 2021, 76(6): 1537-1552. |
[2] | 敖荣军, 常亮. 基于结构方程模型的中国县域人口老龄化影响机制[J]. 地理学报, 2020, 75(8): 1572-1584. |
[3] | 塔娜, 申悦. 基于共享度的上海郊区社区居民活动空间隔离及其影响因素[J]. 地理学报, 2020, 75(4): 849-859. |
[4] | 林雄斌,杨家文,陶卓霖,宋金平,任颋. 交通投资、经济空间集聚与多样化路径——空间面板回归与结构方程模型视角[J]. 地理学报, 2018, 73(10): 1970-1984. |
[5] | 傅辰昊, 周素红, 闫小培, 柳林, 陈蔚珊. 广州市零售商业中心的居民消费时空行为及其机制[J]. 地理学报, 2017, 72(4): 603-617. |
[6] | 塔娜, 柴彦威. 基于收入群体差异的北京典型郊区低收入居民的行为空间困境[J]. 地理学报, 2017, 72(10): 1776-1786. |
[7] | 塔娜, 柴彦威, 关美宝. 北京郊区居民日常生活方式的行为测度与空间—行为互动[J]. 地理学报, 2015, 70(8): 1271-1280. |
[8] | 陈梓烽, 柴彦威. 城市居民非工作活动的家内外时间分配及影响因素——以北京上地—清河地区为例[J]. 地理学报, 2014, 69(10): 1547-1556. |
[9] | 申悦, 柴彦威. 基于GPS数据的北京市郊区巨型社区居民日常活动空间[J]. 地理学报, 2013, 68(4): 506-516. |
[10] | 马静, 柴彦威, 刘志林. 基于居民出行行为的北京市交通碳排放影响机理[J]. 地理学报, 2011, 66(8): 1023-1032. |
[11] | 曹小曙, 林强. 基于结构方程模型的广州城市社区居民出行行为[J]. 地理学报, 2011, 66(2): 167-177. |
[12] | 武文杰, 刘志林, 张文忠. 基于结构方程模型的北京居住用地价格影响因素评价[J]. 地理学报, 2010, 65(6): 676-684. |
[13] | 张文佳, 柴彦威. 基于家庭的城市居民出行需求理论与验证模型[J]. 地理学报, 2008, 63(12): 1246-1256. |
[14] | 吴必虎. 上海城市游憩者流动行为研究[J]. 地理学报, 1994, 49(2): 117-127. |