地理学报 ›› 2017, Vol. 72 ›› Issue (1): 53-63.doi: 10.11821/dlxb201701005
陶泽兴1,2,3(), 仲舒颖1, 葛全胜1, 戴君虎1, 徐韵佳1,2, 王焕炯1(
)
收稿日期:
2016-07-29
修回日期:
2016-11-08
出版日期:
2017-01-20
发布日期:
2017-01-20
作者简介:
作者简介:陶泽兴(1989-), 男, 湖北十堰人, 博士生, 主要从事植被地理和物候学研究。E-mail:
基金资助:
Zexing TAO1,2,3(), Shuying ZHONG1, Quansheng GE1, Junhu DAI1, Yunjia XU1,2, Huanjiong WANG1(
)
Received:
2016-07-29
Revised:
2016-11-08
Online:
2017-01-20
Published:
2017-01-20
Supported by:
摘要:
花期物候变化研究对赏花活动安排、园林景观布置和致敏花粉防治等具有重要意义。现有研究对始花期与盛花期的变化趋势已有较为深刻的认识,但很少有研究辨识了花期长度的时空变化。本文基于“中国物候观测网”观测数据,统计了1963-2012年中国42个站点23种广布木本植物的花期长度变化趋势,分析了花期长度变化的时空格局、种间差异和变化形式。主要结论为:所有的259条花期长度时间序列中,61.39%的序列呈延长趋势,其中显著延长的占21.24%(P<0.05)。灌木花期的延长趋势比乔木更加显著。东北地区南部、华中和华东地区的多数站点花期长度主要呈缩短趋势。在东北地区北部、华北、西南和华南地区,大多数物种的花期长度呈延长趋势。花期长度变化趋势在20°N~22°N间最大(0.94 d/a)。西部地区(87°E~112°E)的花期长度变化趋势(平均0.28 d/a)高于东部地区(平均0.05 d/a)。花期长度的总体变化可分为3个阶段:1963-1980年(偏短)、1981-1997年(与多年平均值接近)和2001-2012年(偏长),但不同物种的花期长度变化存在显著差异。在花期长度延长的序列中,43.39%是因开花始期提前程度大于开花末期;在花期长度缩短的序列中,62.00%是因开花始期提前程度小于开花末期。
陶泽兴, 仲舒颖, 葛全胜, 戴君虎, 徐韵佳, 王焕炯. 1963-2012年中国主要木本植物花期长度时空变化[J]. 地理学报, 2017, 72(1): 53-63.
Zexing TAO, Shuying ZHONG, Quansheng GE, Junhu DAI, Yunjia XU, Huanjiong WANG. Spatiotemporal variations in flowering duration of woody plants in China from 1963 to 2012[J]. Acta Geographica Sinica, 2017, 72(1): 53-63.
表1
研究采用的物种概况"
编号 | 物种名 | 拉丁名 | 生活型 | 分布站点数 | 平均开花始期 |
---|---|---|---|---|---|
1 | 玉兰 | Magnolia denudata | 乔木 | 10 | 72 |
2 | 桃 | Amygdalus persica | 乔木 | 15 | 84 |
3 | 榆树 | Ulmus pumila | 乔木 | 15 | 84 |
4 | 垂柳 | Salix babylonica | 乔木 | 15 | 86 |
5 | 加拿大杨 | Populus canadensis | 乔木 | 9 | 90 |
6 | 泡桐 | Paulownia fortunei | 乔木 | 11 | 96 |
7 | 构树 | Broussonetia papyifera | 乔木 | 11 | 99 |
8 | 杏 | Armeniaca vulgaris | 乔木 | 10 | 105 |
9 | 旱柳 | Salix matsudana | 乔木 | 8 | 111 |
10 | 二球悬铃木 | Platanus acerifolia | 乔木 | 8 | 112 |
11 | 楝 | Melia azedarach | 乔木 | 15 | 116 |
12 | 刺槐 | Robinia pseudoacacia | 乔木 | 18 | 121 |
13 | 合欢 | Albizia julibrissin | 乔木 | 10 | 154 |
14 | 女贞 | Ligustrum lucidum | 乔木 | 10 | 161 |
15 | 梧桐 | Firmiana simples | 乔木 | 11 | 166 |
16 | 枣 | Ziziphus jujuba | 乔木 | 10 | 177 |
17 | 槐树 | Sophora japonica | 乔木 | 8 | 196 |
18 | 紫荆 | Cercis chinensis | 灌木 | 13 | 106 |
19 | 桑 | Morus alba | 灌木 | 9 | 109 |
20 | 紫丁香 | Syringa oblata | 灌木 | 13 | 112 |
21 | 紫薇 | Lagerstroemia indica | 灌木 | 11 | 180 |
22 | 木槿 | Hibiscus syriacus | 灌木 | 9 | 183 |
23 | 紫藤 | Wisteria sinensis | 藤本 | 10 | 103 |
表3
不同生活型植物花期长度变化形式"
花期变化 类型 | 变化形式 | 全部植物 | 乔木 | 灌木 | |||||
---|---|---|---|---|---|---|---|---|---|
序列数(个) | 百分比(%) | 序列数(个) | 百分比(%) | 序列数(个) | 百分比(%) | ||||
延长 | FFD提前>EFD提前 | 69 | 26.64 | 49 | 25.13 | 16 | 29.09 | ||
FFD提前,EFD推迟 | 50 | 19.31 | 34 | 17.44 | 15 | 27.27 | |||
FFD推迟<EFD推迟 | 40 | 15.44 | 33 | 16.92 | 5 | 9.09 | |||
缩短 | FFD提前<EFD提前 | 62 | 23.94 | 49 | 25.13 | 12 | 21.82 | ||
FFD推迟,EFD提前 | 21 | 8.11 | 16 | 8.21 | 4 | 7.27 | |||
FFD推迟>EFD推迟 | 17 | 6.56 | 14 | 7.18 | 3 | 5.45 |
[1] | Taiz L, Zeiger E. Plant Physiology.4th ed. Sunderland: Sinauer Associates, 2006. |
[2] |
Zhang Zengxin, Huang Yuhan, Wang Yanxin, et al.Investigation and application of flowering phenology of garden plants in Nanjing. Guizhou Agriculture Sciences, 2014, 42(12): 195-198.
doi: 10.3969/j.issn.1001-3601.2014.12.046 |
[张增信, 黄钰瀚, 王言鑫, 等. 南京市园林植物的花期物候调查及应用. 贵州农业科学, 2014, 42(12): 195-198.]
doi: 10.3969/j.issn.1001-3601.2014.12.046 |
|
[3] | Matthews E R, Mazer S J.Historical changes in flowering phenology are governed by temperature x precipitation interactions in a widespread perennial herb in western North America. New Phytologist, 2016, 210(1): 157-167. |
[4] | Zhang Baocheng, Bai Yanfen. Flowering phenology response to climate change . Northern Horticulture, 2015(22): 190-194. |
[张宝成, 白艳芬. 花期物候对气候变化的响应进展 . 北方园艺, 2015(22): 190-194.] | |
[5] |
Ma Li, Fang Xiuqi.Effects of global warming on seasonal tourism for the last 20 years in Beijing: A case study on the Peach Flower Stanza of Beijing Botanical Garden. Advances in Earth Science, 2006, 21(3): 313-319.
doi: 10.3321/j.issn:1001-8166.2006.03.014 |
[马丽, 方修琦. 近20年气候变暖对北京时令旅游的影响: 以北京市植物园桃花节为例. 地球科学进展, 2006, 21(3): 313-319.]
doi: 10.3321/j.issn:1001-8166.2006.03.014 |
|
[6] |
Tao Zexing, Ge Quansheng, Wang Huanjiong, et al.Phenological basis of determining tourism seasons for ornamental plants in central and eastern China. Acta Geographica Sinica, 2015, 70(1): 85-96.
doi: 10.11821/dlxb201501007 |
[陶泽兴, 葛全胜, 王焕炯, 等. 中国中东部植被景观观赏季划分的物候学基础. 地理学报, 2015, 70(1): 85-96.]
doi: 10.11821/dlxb201501007 |
|
[7] |
Li Shujuan, Liu Yali.Ornamental characteristics and phenograms of plant leaf color in the main seasons in Xi'an. Journal of Northwest Forestry University, 2013, 28(2): 42-47.
doi: 10.3969/j.issn.1001-7461.2013.02.08 |
[李淑娟, 刘雅莉. 西安主要季色叶植物观赏特征及物候图谱研究初报. 西北林学院学报, 2013, 28(2): 42-47.]
doi: 10.3969/j.issn.1001-7461.2013.02.08 |
|
[8] |
Zhang Mingqing, Yang Guodong, Fan Zhentao, et al.Forecasting the first flower dates of allergic pollen trees in Beijing. Journal of Environment and Health, 2008, 25(3): 262-263.
doi: 10.3969/j.issn.1001-5914.2008.03.026 |
[张明庆, 杨国栋, 范振涛, 等. 北京地区主要致敏花粉树木花期的预报. 环境与健康杂志, 2008, 25(3): 262-263.]
doi: 10.3969/j.issn.1001-5914.2008.03.026 |
|
[9] |
Gonsamo A, Chen J M, Wu C.Citizen Science: Linking the recent rapid advances of plant flowering in Canada with climate variability. Scientific Reports, 2013, 3(2239): 1-5.
doi: 10.1038/srep02239 pmid: 23867863 |
[10] |
Wolfe D W, Schwartz M D, Lakso A N, et al.Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA. International Journal of Biometeorology, 2005, 49(5): 303-309.
doi: 10.1007/s00484-004-0248-9 pmid: 15592880 |
[11] |
Menzel A, Sparks T H, Estrella N, et al.European phenological response to climate change matches the warming pattern. Global Change Biology, 2006, 12(10): 1969-1976.
doi: 10.1111/j.1365-2486.2006.01193.x |
[12] |
Ge Q, Wang H, Rutishauser T, et al.Phenological response to climate change in China: A meta-analysis. Global Change Biology, 2015, 21(1): 265-274.
doi: 10.1111/gcb.12648 pmid: 24895088 |
[13] |
Dai Junhu, Wang Huanjiong, Ge Quansheng.Changes of spring frost risks during the flowering period of woody plants in temperate monsoon area of China over the past 50 years. Acta Geographica Sinica, 2013, 68(5): 593-601.
doi: 10.11821/xb201305002 |
[戴君虎, 王焕炯, 葛全胜. 近50年中国温带季风区植物花期春季霜冻风险变化. 地理学报, 2013, 68(5): 593-601.]
doi: 10.11821/xb201305002 |
|
[14] | Dunne J A, Harte J, Taylor K J.Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods. Ecological Monographs, 2003, 73(1): 69-86. |
[15] |
Crepinsek Z, Stampar F, Kajfez-Bogataj L, et al.The response of Corylus avellana L. phenology to rising temperature in north-eastern Slovenia. International Journal of Biometeorology, 2012, 56(4): 681-694.
doi: 10.1007/s00484-011-0469-7 pmid: 21786017 |
[16] |
Zhao J, Zhang Y, Song F, et al.Phenological response of tropical plants to regional climate change in Xishuangbanna, south-western China. Journal of Tropical Ecology, 2013, 29(2): 161-172.
doi: 10.1017/S0266467413000114 |
[17] |
Ge Q, Wang H, Zheng J, et al.A 170 year spring phenology index of plants in eastern China. Journal of Geophysical Research: Biogeosciences, 2014, 119(3): 301-310.
doi: 10.1002/2013JG002565 |
[18] |
Wang H, Ge Q, Dai J, et al.Geographical pattern in first bloom variability and its relation to temperature sensitivity in the USA and China. International Journal of Biometeorology, 2015, 59(8): 961-969.
doi: 10.1007/s00484-014-0909-2 pmid: 25312515 |
[19] | Zheng Xiangru, Wang Li.Botany. Beijing: China Agricultural University Press, 2001. |
[郑湘如, 王丽. 植物学 . 北京:中国农业大学出版社, 2001.] | |
[20] |
Bock A, Sparks T H, Estrella N, et al.Changes in first flowering dates and flowering duration of 232 plant species on the island of Guernsey. Global Change Biology, 2014, 20(11): 3508-3519.
doi: 10.1111/gcb.12579 pmid: 24639048 |
[21] |
Ho C H, Lee E J, Lee I, et al.Earlier spring in Seoul, Korea. International Journal of Climatology, 2006, 26(14): 2117-2127.
doi: 10.1002/joc.1356 |
[22] |
Ziello C, Boeck A, Estrella N, et al.First flowering of wind-pollinated species with the greatest phenological advances in Europe. Ecography, 2012, 35(11): 1017-1023.
doi: 10.1111/j.1600-0587.2012.07607.x |
[23] | Arroyo M, Armesto J J, Villagran C.Plant phenological patterns in the high Andean Cordillera of central Chile. Journal of Ecology, 1981, 69(1): 205-223. |
[24] |
Vega Y, Marques I.Both biotic and abiotic factors influence floral longevity in three species of Epidendrum (Orchidaceae). Plant Species Biology, 2015, 30(3): 184-192.
doi: 10.1111/1442-1984.12046 |
[25] |
Miller-Rushing A J, Katsuki T, Primack R B, et al. Impact of global warming on a group of related species and their hybrids: Cherry tree (Rosaceae) flowering at Mt. Takao, Japan. American Journal of Botany, 2007, 94(9): 1470-1478.
doi: 10.3732/ajb.94.9.1470 pmid: 21636514 |
[26] |
Zhang Sisi,Xiao Yi'an, Deng Hongping,et al. Effects of short-term warming on flowering phenology and reproductive allocation of Erigeron annuus. Journal of Southwest University (Natural Science Edition), 2016, 38(1): 53-59.
doi: 10.13718/j.cnki.xdzk.2016.01.008 |
[张斯斯, 肖宜安, 邓洪平, 等. 短期增温对入侵植物一年蓬开花物候与繁殖分配的影响. 西南大学学报(自然科学版), 2016, 38(1): 53-59.]
doi: 10.13718/j.cnki.xdzk.2016.01.008 |
|
[27] |
Fitter A H, Fitter R.Rapid changes in flowering time in British plants. Science, 2002, 296(5573): 1689-1691.
doi: 10.1126/science.1071617 pmid: 12040195 |
[28] | Menzel A.Plant phenological anomalies in Germany and their relation to air temperature and NAO. Climatic Change, 2003, 57(3): 243-263. |
[29] |
Bai J, Ge Q, Dai J.The response of first flowering dates to abrupt climate change in Beijing. Advances in Atmospheric Sciences, 2011, 28(3): 564-572.
doi: 10.1007/s00376-010-9219-8 |
[30] |
Miller-Rushing A J, Inouye D W, Primack R B. How well do first flowering dates measure plant responses to climate change? The effects of population size and sampling frequency. Journal of Ecology, 2008, 96(6): 1289-1296.
doi: 10.1111/j.1365-2745.2008.01436.x |
[31] | IPCC. Summary for Policymakers. Climate Change 2013: The Physical Science Basis//Stocker T F, Qin D, Plattner G K, et al. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013: 3-29. |
[32] |
Zhang Zhiqiang, Li Qingjun.Review of evolutionary ecology of floral longevity. Chinese Journal of Plant Ecology, 2009, 33(3): 598-606.
doi: 10.3773/j.issn.1005-264x.2009.03.019 |
[张志强, 李庆军. 花寿命的进化生态学意义. 植物生态学报, 2009, 33(3): 598-606.]
doi: 10.3773/j.issn.1005-264x.2009.03.019 |
|
[33] | Hafdahl C E, Craig T P.Flowering phenology in Solidago altissima: Adaptive strategies against temporal variation in temperature. Journal of Plant Interactions, 2014, 9(1): 122-127. |
[34] |
Way D A, Montgomery R A.Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell and Environment, 2015, 38(9SI): 1725-1736.
doi: 10.1038/nature15402 pmid: 26416746 |
[35] |
Pau S, Wolkovich E M, Cook B I, et al.Predicting phenology by integrating ecology, evolution and climate science. Global Change Biology, 2011, 17(12): 3633-3643.
doi: 10.1111/j.1365-2486.2011.02515.x |
[36] | He Ping.Conservation Biology of the Rare & Endangered Plants. Chongqing: Southwest Normal University Press, 2005. |
[何平. 珍稀濒危植物保护生物学 . 重庆: 西南师范大学出版社, 2005.] | |
[37] |
Wolkovich E M, Cook B I, Davies T J.Progress towards an interdisciplinary science of plant phenology: Building predictions across space, time and species diversity. New Phytologist, 2014, 201(4): 1156-1162.
doi: 10.1111/nph.12599 pmid: 24649487 |
[1] | 古恒宇, 沈体雁. 中国高学历人才的空间演化特征及驱动因素[J]. 地理学报, 2021, 76(2): 326-340. |
[2] | 朱晟君, 金文纨. 地方出口产品结构及制度环境与企业出口相关多样化[J]. 地理学报, 2021, 76(2): 398-414. |
[3] | 李钢, 薛淑艳, 马雪瑶, 周俊俊, 徐婷婷, 王皎贝. 中国失踪人口的时空格局演变与形成机制[J]. 地理学报, 2021, 76(2): 310-325. |
[4] | 葛全胜, 朱会义. 两千年来中国自然与人文地理环境变迁及启示[J]. 地理学报, 2021, 76(1): 3-14. |
[5] | 张兴航, 张百平, 王晶, 余付勤, 赵超, 姚永慧. 中国南北过渡带东段样带植被序列与气候分界问题[J]. 地理学报, 2021, 76(1): 30-43. |
[6] | 李哲, 丁永建, 陈艾姣, 张智华, 张世强. 1960—2019年西北地区气候变化中的Hiatus现象及特征[J]. 地理学报, 2020, 75(9): 1845-1859. |
[7] | 郭泽呈, 魏伟, 石培基, 周亮, 王旭峰, 李振亚, 庞素菲, 颉斌斌. 中国西北干旱区土地沙漠化敏感性时空格局[J]. 地理学报, 2020, 75(9): 1948-1965. |
[8] | 敖荣军, 常亮. 基于结构方程模型的中国县域人口老龄化影响机制[J]. 地理学报, 2020, 75(8): 1572-1584. |
[9] | 宋周莺, 祝巧玲. 中国边境地区的城镇化格局及其驱动力[J]. 地理学报, 2020, 75(8): 1603-1616. |
[10] | 马春玥, 买买提·沙吾提, 姚杰, 古丽努尔·依沙克. 1950—2015年中国棉花生产时空动态变化[J]. 地理学报, 2020, 75(8): 1699-1710. |
[11] | 郑景云, 张学珍, 刘洋, 郝志新. 过去千年中国不同区域干湿的多尺度变化特征评估[J]. 地理学报, 2020, 75(7): 1432-1450. |
[12] | 陶泽兴, 葛全胜, 王焕炯. 1963—2018年中国垂柳和榆树开花始期积温需求的时空变化[J]. 地理学报, 2020, 75(7): 1451-1464. |
[13] | 瞿诗进, 胡守庚, 李全峰. 中国城市建设用地转型阶段及其空间格局[J]. 地理学报, 2020, 75(7): 1539-1553. |
[14] | 葛全胜, 方创琳, 江东. 美丽中国建设的地理学使命与人地系统耦合路径[J]. 地理学报, 2020, 75(6): 1109-1119. |
[15] | 魏素豪, 李晶, 李泽怡, 宗刚. 中国农业竞争力时空格局演化及其影响因素[J]. 地理学报, 2020, 75(6): 1287-1300. |