地理学报 ›› 2017, Vol. 72 ›› Issue (1): 39-52.doi: 10.11821/dlxb201701004
收稿日期:
2016-09-18
修回日期:
2016-11-28
出版日期:
2017-01-20
发布日期:
2017-01-20
作者简介:
作者简介:孔冬冬(1993-), 男, 河南周口人, 博士生, 主要从事生态水文研究。E-mail:
基金资助:
Dongdong KONG1(), Qiang ZHANG1,2,3(
), Wenlin HUANG1, Xihui GU1
Received:
2016-09-18
Revised:
2016-11-28
Published:
2017-01-20
Online:
2017-01-20
Supported by:
摘要:
根据NDVI3g数据,本文定义了18种植被物候指标研究植被物候变化情况。根据1:100万植被区划,把青藏高原划分为8个植被区分。对物候变化比较显著的区域,采用最高温度、最低温度、平均温度、降水、太阳辐射数据,运用偏最小二乘法回归(PLS)研究物候变化的气候成因。结果表明:① 青藏高原生长季初期物候指标,转折发生在1997-2000年,转折前初期物候指标平均提前2~3 d/10a;青藏高原末期物候指标转折发生在2004-2007年左右,生长季长度物候指标突变发生在2005年左右,转折前末期物候指标平均延迟1~2 d/10a、生长季长度平均延长1~2 d/10a;转折之后生长季初期物候指标推迟趋势的显著性水平仅为0.1,生长季末期物候指标、生长季长度指标趋势不显著。② 高寒草甸与高寒灌木草甸是青藏高原物候变化最剧烈的植被分区。高寒草甸区生长季长度的延长主要是由生长季初期物候指标提前导致的。高寒灌木草甸区生长季长度的延长主要是由于初期物候指标的提前,以及末期物候指标的推迟共同作用导致的。③ 采用PLS进一步分析气象因素对高寒草甸与高寒灌木草甸物候剧烈变化的影响。表明,温度对物候的影响占主导地位,两植被分区均显示上年秋季、冬初温度对生长季初期物候具有正的影响,该时段温度一方面会导致上年末期物候指标推迟,间接推迟生长季开始时间;另一方面高温不利用冬季休眠。除夏季外,其余月份最小温度对植被物候的影响与平均温度、最高温度的影响类似。降水对植被物候的影响不同月份波动较大,上年秋冬季节降水对初期物候指标具有负的影响,春初降水对初期物候指标具有正的影响。8月份限制植被生长季的主要因素是降水,此时降水与末期物候指标模型系数为正。太阳辐射对植被物候的影响主要在夏季与秋初。PLS方法在物候变化研究中具有较好的效果,本文研究结果将会对植被物候模型改进,提供有力的科学依据。
孔冬冬, 张强, 黄文琳, 顾西辉. 1982-2013年青藏高原植被物候变化及气象因素影响[J]. 地理学报, 2017, 72(1): 39-52.
Dongdong KONG, Qiang ZHANG, Wenlin HUANG, Xihui GU. Vegetation phenology change in Tibetan Plateau from 1982 to2013 and its related meteorological factors[J]. Acta Geographica Sinica, 2017, 72(1): 39-52.
[1] | Zhang Xuexia, Ge Quanshen, Zheng Jingyun.Relationships between climate change and vegetation in Beijing using remote sensed data and phenological data. Acta Phytoecologica Sinica, 2004, 28(4): 499-506. |
[张学霞, 葛全胜, 郑景云. 北京地区气候变化和植被的关系: 基于遥感数据和物候资料的分析. 植物生态学报, 2004, 28(4): 499-506.] | |
[2] | Lu Peiling, Yu Qiang, He Qingtang.Responses of plant phenology to climatic change. Acta Ecologica Sinica, 2006, 26(3): 923-929. |
[陆佩玲, 于强, 贺庆棠. 植物物候对气候变化的响应. 生态学报, 2006, 26(3): 923-929.] | |
[3] | Zhang G, Zhang Y, Dong J, et al.Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proceedings of the National Academy of Sciences, 2013, 110(11): 4309-4314. |
[4] | Ding Mingjun, Zhang Yili, Sun Xiaomin, et al.Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009. Chinese Science Bulletin, 2012, 57(33): 3185-3194. |
[丁明军, 张镱锂, 孙晓敏, 等. 近10年青藏高原高寒草地物候时空变化特征分析. 科学通报, 2012, 57(33): 3185-3194.] | |
[5] |
Shen M.Spring phenology was not consistently related to winter warming on the Tibetan Plateau. Proceedings of the National Academy of Sciences, 2011, 108(19): E91-E92.
doi: 10.1073/pnas.1018390108 pmid: 21482816 |
[6] |
Yu H, Luedeling E, Xu J.Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences, 2010, 107(51): 22151-22156.
doi: 10.1073/pnas.1012490107 pmid: 21115833 |
[7] |
Shen M, Sun Z, Wang S, et al.No evidence of continuously advanced green-up dates in the Tibetan Plateau over the last decade. Proceedings of the National Academy of Sciences, 2013, 110(26): E2329.
doi: 10.1073/pnas.1304625110 pmid: 23661054 |
[8] |
Cong N, Wang T, Nan H, et al.Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: A multimethod analysis. Global Change Biology, 2013, 19(3): 881-891.
doi: 10.1111/gcb.12077 pmid: 23504844 |
[9] |
Shen M, Tang Y, Chen J, et al.Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 2011, 151(12): 1711-1722.
doi: 10.1016/j.agrformet.2011.07.003 |
[10] |
Shen M, Piao S, Chen X, et al.Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau. Global Change Biology, 2016, 22(9): 3057-3066.
doi: 10.1111/gcb.13301 pmid: 27103613 |
[11] |
Buitenwerf R, Rose L, Higgins S I.Three decades of multi-dimensional change in global leaf phenology. Nature Climate Change, 2015, 5(4): 364-368.
doi: 10.1038/nclimate2533 |
[12] |
Garonna I, de Jong R, de Wit A J W, et al. Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982-2011). Global Change Biology, 2014, 20(11): 3457-3470.
doi: 10.1111/gcb.12625 pmid: 24797086 |
[13] |
Liu Q, Fu Y H, Zeng Z, et al.Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Global Change Biology, 2016, 22(2): 644-655.
doi: 10.1111/gcb.13081 pmid: 26340580 |
[14] | He Jie, Yang Kun.China Meteorological Forcing Dataset. Lanzhou: Cold and Arid Regions Science Data Center at Lanzhou, 2011. |
[何杰, 阳坤. 中国区域高时空分辨率地面气象要素驱动数据集. 兰州: 寒区旱区科学数据中心, 2011.] | |
[15] | Editorial Board of the Vegetation Atlas of China, Chinese Academy of Sciences. Vegetation Atlas of China .Beijing:Science Press, 2001. |
[中国科学院中国植被图编辑委员会. 中国植被图集 . 北京: 科学出版社, 2001.] | |
[16] | Hou Xueyu.Vegetation Geography and the Chemical Composition of Its Dominant Plants. Beijing: Science Press, 1982. |
[侯学煜. 中国植被地理及优势植物化学成分. 北京: 科学出版社, 1982.] | |
[17] |
Filippa G, Cremonese E, Migliavacca M, et al.Phenopix: A R package for image-based vegetation phenology. Agricultural and Forest Meteorology, 2016, 220: 141-150.
doi: 10.1016/j.agrformet.2016.01.006 |
[18] |
White M A, de Beurs K M, Didan K, et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006. Global Change Biology, 2009, 15(10): 2335-2359.
doi: 10.1111/j.1365-2486.2009.01910.x |
[19] |
Shen M, Zhang G, Cong N, et al. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 2014, 189/190: 71-80.
doi: 10.1016/j.agrformet.2014.01.003 |
[20] | Kline M.Calculus: An Intuitive and Physical Approach. 2nd ed. Dover Publications, 1998. |
[21] |
Gu L, Post W M, Baldocchi D D, et al.Characterizing the Seasonal Dynamics of Plant Community Photosynthesis across a Range of Vegetation Types. Springer New York, 2009: 35-58.
doi: 10.1007/978-1-4419-0026-5_2 |
[22] |
Hou Meiting, Hu Wei, Qiao Hailong, et al.Application of Partial Least Squares (PLS) regression method in attribution of vegetation change in eastern China. Journal of Natural Resources, 2015, 30(3): 409-422.
doi: 10.11849/zrzyxb.2015.03.005 |
[侯美亭, 胡伟, 乔海龙, 等. 偏最小二乘(PLS)回归方法在中国东部植被变化归因研究中的应用. 自然资源学报, 2015, 30(3): 409-422.]
doi: 10.11849/zrzyxb.2015.03.005 |
|
[23] |
Wold S, Sjostrom M, Eriksson L.PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 2001, 58(2): 109-130.
doi: 10.1016/S0169-7439(01)00155-1 |
[24] |
Fridley J D.Extended leaf phenology and the autumn niche in deciduous forest invasions. Nature, 2012, 485(7398): 359-362.
doi: 10.1038/nature11056 pmid: 22535249 |
[25] |
Piao S, Cui M, Chen A, et al.Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural and Forest Meteorology, 2011, 151(12): 1599-1608.
doi: 10.1016/j.agrformet.2011.06.016 |
[26] | Shen M, Piao S, Dorji T, et al.Plant phenological responses to climate change on the Tibetan Plateau: Research status and challenges. National Science Review, 2016, 2(4): 454-467. |
[27] |
Che M, Chen B, Innes J L, et al. Spatial and temporal variations in the end date of the vegetation growing season throughout the Qinghai-Tibetan Plateau from 1982to 2011.Agricultural and Forest Meteorology, 2014, 189/190: 81-90.
doi: 10.1016/j.agrformet.2014.01.004 |
[28] | Wang Lianxi, Chen Huailing, Li Qi, et al.Research advances in plant phenology and climate. Acta Ecologica Sinica, 2010, 30(2): 447-454. |
[王连喜, 陈怀亮, 李琪, 等.植物物候与气候研究进展. 生态学报. 2010, 30(2): 447-454.] | |
[29] |
Zhang Fuchun.Effects of global warming on plant phonological events in China. Acta Geographica Sinica, 1995, 50(5): 402-410.
doi: 10.1088/0256-307X/12/7/010 |
[张福春. 气候变化对中国木本植物物候的可能影响. 地理学报, 1995, 50(5): 402-410.]
doi: 10.1088/0256-307X/12/7/010 |
|
[30] |
Guo L, Dai J, Wang M, et al.Responses of spring phenology in temperate zone trees to climate warming: A case study of apricot flowering in China. Agricultural and Forest Meteorology, 2015, 201: 1-7.
doi: 10.1016/j.agrformet.2014.10.016 |
[31] |
Luedeling E, Gassner A.Partial Least Squares Regression for analyzing walnut phenology in California.Agricultural and Forest Meteorology, 2012, 158/159: 43-52.
doi: 10.1016/j.agrformet.2011.10.020 |
[32] |
Shen M, Piao S, Cong N, et al.Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Global Change Biology, 2015, 21(10): 3647-3656.
doi: 10.1111/gcb.12961 pmid: 25926356 |
[1] | 侯光良, 兰措卓玛, 朱燕, 庞龙辉. 青藏高原史前时期交流路线及其演变[J]. 地理学报, 2021, 76(5): 1294-1313. |
[2] | 黄海, 田尤, 刘建康, 张佳佳, 杨东旭, 杨顺. 藏东地区斜坡土壤冻融侵蚀力学机制及敏感性分析[J]. 地理学报, 2021, 76(1): 87-100. |
[3] | 封志明, 李文君, 李鹏, 肖池伟. 青藏高原地形起伏度及其地理意义[J]. 地理学报, 2020, 75(7): 1359-1372. |
[4] | 孙思奥, 王晶, 戚伟. 青藏高原地区城乡虚拟水贸易格局与影响因素[J]. 地理学报, 2020, 75(7): 1346-1358. |
[5] | 梁馨月, 徐梦珍, 吕立群, 崔一飞, 张风宝. 基于地貌特征的青藏高原边缘泥石流沟分类[J]. 地理学报, 2020, 75(7): 1373-1385. |
[6] | 冯雨雪, 李广东. 青藏高原城镇化与生态环境交互影响关系分析[J]. 地理学报, 2020, 75(7): 1386-1405. |
[7] | 许珺, 徐阳, 胡蕾, 王振波. 基于位置大数据的青藏高原人类活动时空模式[J]. 地理学报, 2020, 75(7): 1406-1417. |
[8] | 王楠, 王会蒙, 杜云艳, 易嘉伟, 刘张, 涂文娜. 青藏高原人口流入流出时空模式研究[J]. 地理学报, 2020, 75(7): 1418-1431. |
[9] | 陶泽兴, 葛全胜, 王焕炯. 1963—2018年中国垂柳和榆树开花始期积温需求的时空变化[J]. 地理学报, 2020, 75(7): 1451-1464. |
[10] | 戚伟, 刘盛和, 周亮. 青藏高原人口地域分异规律及“胡焕庸线”思想应用[J]. 地理学报, 2020, 75(2): 255-267. |
[11] | 高星, 康世昌, 刘青松, 陈鹏飞, 段宗奇. 1899—2011年青藏高原南部枪勇错沉积物磁性矿物的环境意义[J]. 地理学报, 2020, 75(1): 68-81. |
[12] | 刘玉洁, 葛全胜, 戴君虎. 全球变化下作物物候研究进展[J]. 地理学报, 2020, 75(1): 14-24. |
[13] | 周玉科. 中国东北地区植被生产力控制因素分析[J]. 地理学报, 2020, 75(1): 53-67. |
[14] | 范科科, 张强, 孙鹏, 宋长青, 余慧倩, 朱秀迪, 申泽西. 青藏高原土壤水分变化对近地面气温的影响[J]. 地理学报, 2020, 75(1): 82-97. |
[15] | 郭超,蒙红卫,马玉贞,李丹丹,胡彩莉,刘杰瑞,雒聪文,王凯. 藏南羊卓雍错沉积物元素地球化学记录的过去2000年环境变化[J]. 地理学报, 2019, 74(7): 1345-1362. |