地理学报 ›› 2016, Vol. 71 ›› Issue (11): 1886-1897.doi: 10.11821/dlxb201611002

• 气候与水文 • 上一篇    下一篇

SWH双源蒸散模型模拟效果验证及不确定性分析

吴戈男1,2, 胡中民1,2, 李胜功1,2, 郑涵1,2, 朱先进1, 孙晓敏1,2, 于贵瑞1,2, 李景保3   

  1. 1. 中国科学院地理科学与资源研究所 生态系统观测与模拟重点实验室,北京 100101
    2. 中国科学院大学,北京 100049
    3. 湖南师范大学资源与环境科学学院,长沙 410081
  • 收稿日期:2016-04-07 修回日期:2016-07-18 出版日期:2016-11-25 发布日期:2016-11-29
  • 作者简介:

    作者简介:吴戈男(1992-), 女, 湖南岳阳人, 硕士生, 主要从事全球变化生态学研究。E-mail: wugn.15s@igsnrr.ac.cn

  • 基金资助:
    国家自然科学基金项目(41301043);中国科学院青年创新促进会项目(2015037);中国科学院地理科学与资源研究所青年人才项目(2013RC203)

Evaluation and uncertainty analysis of a two-source evapotranspiration model

Genan WU1,2, Zhongmin HU1,2, Shenggong LI1,2, Han ZHENG1,2, Xianjin ZHU1, Xiaomin SUN1,2, Guirui YU1,2, Jingbao LI3   

  1. 1. Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research,CAS, Beijing 100101, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China
    3. College of Resources and Environmental Science, Hunan Normal University, Changsha 410081, China
  • Received:2016-04-07 Revised:2016-07-18 Online:2016-11-25 Published:2016-11-29
  • Supported by:
    Natural Sciences Foundation of China, No.41301043;Youth Innovation Promotion Association, CAS, No.2015037;Funding of Talented Young Scientists of IGSNRR, CAS, No.2013RC203

摘要:

SWH模型是在经典Shuttleworth-Wallace双源蒸散模型的基础上发展起来的蒸散模型。过去的研究结果表明在站点尺度上SWH模型表现出较高模拟精度,但有关模型对主要参数及驱动变量的敏感性以及模型模拟的不确定性来源等缺乏深入理解与认识。本文通过与51个陆地生态系统站点多年的蒸散观测数据对比,在季尺度、年尺度上验证了全国范围内SWH模型的模拟效果,并分析了关键参数和驱动变量对模型不确定性的贡献大小。结果表明:SWH模型在区域尺度上取得了较好的模拟效果,模拟蒸散与实测值R2均在0.75以上。模型各参数中,冠层导度估算涉及的两个参数对蒸散模拟不确定性影响较大;驱动数据中,归一化植被指数对蒸散模拟不确定性影响较大。尽管部分数据(如降水)因插补存在较大的误差,但总体上气候驱动数据对蒸散模拟的不确定性的贡献仍低于NDVI。

关键词: SWH双源蒸散模型, Shuttleworth-Wallace模型, 蒸散模拟, 不确定性分析

Abstract:

Evapotranspiration (ET) is one of the core processes of water cycle in ecosystem and ET modeling is a hotspot and frontier in the field of the global climate changes. It is therefore important to provide spatiotemporal information of ET across diverse ecosystems in order to predict the response of ecosystem carbon and water cycles to changes in global climate and land use. The SWH model incorporates the Ball-Berry stomatal conductance model and a light use efficiency-based gross primary productivity (GPP) model into the Shuttleworth-Wallace model, which can simulate both ET and GPP. The newly developed SWH model presents a satisfactory prediction ability of simulating ET in a forest and a grassland ecosystem, respectively. However, the SWH model still lacks comprehensive evaluation and uncertainty analysis at regional scale. In this study, we (1) tested the model's performances on estimating ET and GPP at seasonal and annual time scales; (2) quantified the uncertainties of the model parameters and driving variables, including Normalized Difference Vegetation Index, NDVI and meteorological data; (3) quantified the sensitivity of model outputs to the parameters and driving variables; (4) quantified and separated the uncertainties of ET simulation from the parameters and driving variables. Results showed that the SWH model performed well for ET simulation at regional scale as indicated by high coefficient of determination (R2 = 0.75) of linear regression of modeled against measured ET. Among the key parameters in the SWH model, two parameters related to estimating canopy stomatal conductance (g0 and a1) make great contribution to the model uncertainty. Among the forcing variables, NDVI is most critical in estimating GPP, which contributes much to uncertainty in ET simulation. In comparison, the climatic forcing variables contributes less to uncertainty in ET simulation owing to the high accuracy of the climate data (such as radiation and air temperature) or model’s low sensitivities to some variables (such as precipitation).

Key words: SWH model, Shuttleworth-Wallace model, evapotranspiration, uncertainty analysis